Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Powder X-ray Diffraction (PXRD)
2.2.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.4. Thermal Analysis
2.2.5. Contact Angle Measurement
2.2.6. Dissolution Test of HCT-OLM Tablets
2.2.7. Solid-State and Physical Stability Study
3. Results
3.1. Powder X-ray Powder Diffraction (PXRD)
3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.3. Thermal Analysis (TA)
3.4. Contact Angle
3.5. Dissolution Test of HCT-OLM Tablets
3.6. Solid-State and Physical Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. A Global Brief on Hypertension. Available online: http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/ (accessed on 21 September 2021).
- World Health Organization. Hypertension. Available online: https://www.who.int/health-topics/hypertension#tab=tab_1 (accessed on 9 August 2021).
- Greathouse, M. Olmesartan medoxomil combined with hydrochlorothiazide for the treatment of hypertension. Vasc. Health Risk Manag. 2006, 2, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarzani, R.; Giulietti, F.; Filipponi, A.; Marziali, S.; Ristori, L.; Buscarini, S.; Garbuglia, C.; Biondini, S.; Allevi, M.; Spannella, F. The Number of Pills, Rather Than the Type of Renin—Angiotensin System Inhibitor, Predicts Ambulatory Blood Pressure Control in Essential Hypertensives on Triple Therapy: A Real-Life Cross-Sectional Study. Adv. Ther. 2021, 38, 4013–4025. [Google Scholar] [CrossRef]
- Filipova, E.; Dineva, S.; Uzunova, K.; Pavlova, V.; Kalinov, K.; Vekov, T. Combining angiotensin receptor blockers with chlorthalidone or hydrochlorothiazide—which is the better alternative? A meta-analysis. Syst. Rev. 2020, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Weon, K.Y. Pharmaceutical application and development of fixed-dose combination: Dosage form review. J. Pharm. Investig. 2021, 51, 555–570. [Google Scholar] [CrossRef]
- Kjeldsen, S.E.; Os, I.; Høieggea, A.; Beckey, K.; Gleim, G.W.; Oparil, S. Fixed-Dose Combinations in the Management of Hypertension. Am. J. Cardiovasc. Drugs 2005, 5, 17–22. [Google Scholar] [CrossRef]
- Chrysant, S. Evaluation of antihypertensive therapy with the combination of olmesartan medoxomil and hydrochlorothiazide. Am. J. Hypertens. 2004, 17, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Sellin, L.; Stegbauer, J.; Laeis, P.; Rump, L.C. Adding hydrochlorothiazide to olmesartan dose dependently improves 24-h blood pressure and response rates in mild-to-moderate hypertension. J. Hypertens. 2005, 23, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Lacourcière, Y.; Neutel, J.M.; Schumacher, H. Comparison of fixed-dose combinations of telmisartan/hydrochlorothiazide 40/12.5 mg and 80/12.5 mg and a fixed-dose combination of losartan/hydrochlorothiazide 50/12.5 mg in mild to moderate essential hypertension: Pooled analysis of two multicenter, prospective, randomized, open-label, blinded-end point (PROBE) trials. Clin. Ther. 2005, 27, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Neutel, J.M.; Saunders, E.; Bakris, G.L.; Cushman, W.C.; Ferdinand, K.C.; Ofili, E.O.; Sowers, J.R.; Weber, M.A. The Efficacy and Safety of Low- and High- Dose Fixed Combinations of Irbesartan/Hydrochlorothiazide in Patients With Uncontrolled Systolic Blood Pressure on Monotherapy: The INCLUSIVE Trial. J. Clin. Hypertens. 2005, 7, 578–586. [Google Scholar] [CrossRef]
- Ball, K.J.; Williams, P.A.; Stumpe, K.O. Relative efficacy of an angiotensin II antagonist compared with other antihypertensive agents. Olmesartan medoxomil versus antihypertensives. J. Hypertens. 2001, 19, S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Quan, A.; Chavanu, K.; Merkel, J. A Review of the Efficacy of Fixed-Dose Combinations Olmesartan Medoxomil/Hydrochlorothiazide and Amlodipine Besylate/Benazepril in Factorial Design Studies. Am. J. Cardiovasc. Drugs 2006, 6, 103–113. [Google Scholar] [CrossRef]
- Del Pinto, R.; Desideri, G.; Ferri, C.; Agabiti Rosei, E. Real-world Antihypertensive Treatment Patterns, Treatment Adherence, and Blood Pressure Control in the Elderly: An Italian Awareness-raising Campaign on Hypertension by Senior Italia FederAnziani, the Italian Society of Hypertension and the Italian Federa. High Blood Press. Cardiovasc. Prev. 2021, 28, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Jeličić, M.-L.; Brusač, E.; Kurajica, S.; Cvetnić, M.; Amidžić Klarić, D.; Nigović, B.; Mornar, A. Drug–Drug Compatibility Evaluation of Sulfasalazine and Folic Acid for Fixed-Dose Combination Development Using Various Analytical Tools. Pharmaceutics 2021, 13, 400. [Google Scholar] [CrossRef]
- Narang, A.S.; Desai, D.; Badawy, S. Impact of Excipient Interactions on Solid Dosage Form Stability. Pharm. Res. 2012, 29, 2660–2683. [Google Scholar] [CrossRef]
- Byrn, S.; Pfeiffer, R.; Stowell, J. Solid-State Chemistry of Drugs, 2nd ed.; SSCI, Inc.: Indiana, IN, USA, 1999. [Google Scholar]
- Shi, Q.; Chen, H.; Wang, Y.; Xu, J.; Liu, Z.; Zhang, C. Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int. J. Pharm. 2022, 611, 121320. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.S.; Bharate, S.B.; Bajaj, A.N. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review. J. Excip. Food Chem. 2010, 1, 3–26. [Google Scholar]
- ICH Harmonised Tripartite Guideline. Q1F Stability Data Package for Registration Applications in Climatic Zones III and IV. ICH Harmon. Tripart. Guidel. 2018, 52, 309–352. [Google Scholar]
- Subert, J.; Cizmárik, J. Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients. Pharmazie 2008, 63, 331–336. [Google Scholar] [PubMed]
- International Commission on Illumination. Available online: https://cie.co.at/publications/international-standards (accessed on 22 October 2021).
- Murillo, M.A.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Melgosa, M.; Pacheco, J.; Vargas, R.; Montero, E.; Gutiérrez, D. Color evolution during a coating process of pharmaceutical tablet cores by random spraying. Color Res. Appl. 2019, 44, 160–167. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Yu, L. Physical characterization of polymorphic drugs: An integrated characterization strategy. Pharm. Sci. Technolo. Today 1998, 1, 118–127. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry ANDAs: Pharmaceutical Solid Polymorphism. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/andaspharmaceutical-solid-polymorphism-chemistry-manufacturing-and-controls-information (accessed on 21 September 2021).
- Araya-Sibaja, A.M.; Fandaruff, C.; Wilhelm, K.; Vega-Baudrit, J.R.; Guillén-Girón, T.; Navarro-Hoyos, M. Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials. Mini. Rev. Org. Chem. 2020, 17, 518–538. [Google Scholar] [CrossRef]
- Kapoor, A.K.; Mehta, H.S.; Nath, A.; Prasad, M. Polymorphic forms of Olmesartan Medoxomil. International Patent Application No. PCT/IB2010/053463, 3 February 2011. [Google Scholar]
- Qi, M.-H.; Chen, W.-S.; Zhou, H.; Chen, J.-Y.; Ren, G.-B. Solution-mediated polymorphic transformation of amorphous form to Form I of olmesartan medoxomil in methanol-water mixture solvents. Cryst. Res. Technol. 2017, 52, 1700038. [Google Scholar] [CrossRef]
- Saini, A.; Chadha, R.; Gupta, A.; Singh, P.; Bhandari, S.; Khullar, S.; Mandal, S.; Jain, D.S. New conformational polymorph of hydrochlorothiazide with improved solubility. Pharm. Dev. Technol. 2016, 21, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Williams, R.O. Effects of the Preparation Process on the Properties of Amorphous Solid Dispersions. AAPS PharmSciTech 2018, 19, 1971–1984. [Google Scholar] [CrossRef]
- Einfalt, T.; Planinšek, O.; Hrovat, K. Methods of amorphization and investigation of the amorphous state. Acta Pharm. 2013, 63, 305–334. [Google Scholar] [CrossRef] [Green Version]
- Maréchal, Y. The hydrogen bond: Formation, thermodynamic properties, classification. In The Hydrogen Bond and the Water Molecule; Elsevier: Amsterdam, The Netherlands, 2007; pp. 3–24. [Google Scholar]
- Larkin, P. Environmental dependence of vibrational spectra. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; pp. 55–62. [Google Scholar]
- Abdelquader, M.M.; Essa, E.A.; El Maghraby, G.M. Inhibition of Co-Crystallization of Olmesartan Medoxomil and Hydrochlorothiazide for Enhanced Dissolution Rate in Their Fixed Dose Combination. AAPS PharmSciTech 2019, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P. General outline and strategies for IR and raman spectral Interpretation. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; pp. 117–133. [Google Scholar]
- Setu, M.N.I.; Mia, M.Y.; Lubna, N.J.; Chowdhury, A.A. Preparation of Microcrystalline Cellulose from Cotton and its Evaluation as Direct Compressible Excipient in the Formulation of Naproxen Tablets. Dhaka Univ. J. Pharm. Sci. 2015, 13, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Pachuau, L.; Vanlalfakawma, D.C.; Tripathi, S.K.; Lalhlenmawia, H. Muli bamboo (Melocanna baccifera) as a new source of microcrystalline cellulose. J. Appl. Pharm. Sci. 2014, 4, 087–094. [Google Scholar] [CrossRef] [Green Version]
- Detoisien, T.; Arnoux, M.; Taulelle, P.; Colson, D.; Klein, J.P.; Veesler, S. Thermal analysis: A further step in characterizing solid forms obtained by screening crystallization of an API. Int. J. Pharm. 2011, 403, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Reading, M.; Craig, D.Q.M. Principles of differential scanning calorimetry. In Thermal Analysis of Pharmaceutical Compounds; Taylor and Francis: London, UK, 2007; pp. 1–22. [Google Scholar]
- Galwey, A.K.; Craig, D.Q.M. Thermogravimetric analysis: Basic principles. In Thermal Analysis of Pharmaceutical Compounds; Taylor and Francis: London, UK, 2007; pp. 139–192. [Google Scholar]
- Jain, H.; Khomane, K.S.; Bansal, A.K. Implication of microstructure on the mechanical behaviour of an aspirin–paracetamol eutectic mixture. CrystEngComm 2014, 16, 8471–8478. [Google Scholar] [CrossRef]
- Tran, T.T.D.; Tran, P.H.L. Molecular Interactions in Solid Dispersions of Poorly Water-Soluble Drugs. Pharmaceutics 2020, 12, 745. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chem. Commun. 2014, 50, 906–923. [Google Scholar] [CrossRef]
- Vippagunta, S.R.; Wang, Z.; Hornung, S.; Krill, S.L. Factors Affecting the Formation of Eutectic Solid Dispersions and Their Dissolution Behavior. J. Pharm. Sci. 2007, 96, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.-M.; Lee, B.J.; Abuzar, S.M.; Lee, S.; Joo, Y.; Hong, S.-H.; Kang, H.; Kwon, K.-A.; Velaga, S.; Hwang, S.-J. Preparation, characterization, and evaluation of celecoxib eutectic mixtures with adipic acid/saccharin for improvement of wettability and dissolution rate. Int. J. Pharm. 2019, 554, 61–71. [Google Scholar] [CrossRef]
- Sathisaran, I.; Dalvi, S. Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018, 10, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef]
- International Conference on Harmonisation ICH Harmonised Tripartite Guideline Q6A. Test Procedures and Acceptance Criteria for New Drug Substance. Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q6A/Step4/Q6Astep4.pdf (accessed on 20 September 2021).
- Pilpel, N.; Britten, J.R.; Onyekweli, A.O.; Esezobo, S. Compression and Tableting of Pharmaceutical Powders at Elevated Temperatures. Int. J. Pharm. 1991, 70, 241–249. [Google Scholar] [CrossRef]
- Bi, M.; Hwang, S.-J.; Morris, K.R. Mechanism of eutectic formation upon compaction and its effects on tablet properties. Thermochim. Acta 2003, 404, 213–226. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. Solid-liquid interface. In Interface Science and Composites; Academic Press: Cambridge, MA, USA, 2011; pp. 147–252. [Google Scholar]
- Lu, Y.; Tang, N.; Lian, R.; Qi, J.; Wu, W. Understanding the relationship between wettability and dissolution of solid dispersion. Int. J. Pharm. 2014, 465, 25–31. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry ANDAs: Analytical Procedures and Methods Validation for Drugs and Biologics. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 21 September 2021).
Sample | Contact Angle ° |
---|---|
OLM | 41.4 ± 0.3 |
HCT | 52.7 ± 0.3 |
OLM 20 mg-HCT 12.5 mg | 26.1 ± 0.3 |
OLM 40 mg-HCT 12.5 mg | 38.2 ± 0.3 |
F1 | F2 | |||
---|---|---|---|---|
OLM | HCT | OLM | HCT | |
Drug per tablet (mg) | 38.8 ± 0.6 | 12.3 ± 0.3 | 19.6 ± 0.2 | 12.4 ± 0.4 |
Drug dissolved (%) | 97.0 | 98.0 | 97.8 | 99.1 |
F1 | F2 | |||
---|---|---|---|---|
OLM | HCT | OLM | HCT | |
Drug per tablet (mg) | 40.8 ± 0.2 | 13.0 ± 0.1 | 19.1 ± 0.3 | 12.6 ± 0.3 |
Drug dissolved (%) | 101.0 | 104.0 | 96.0 | 106.0 |
Formulation | 0 Months | 24 Months | Color Stability Results | |||||
---|---|---|---|---|---|---|---|---|
L* | C* | h° | L* | C* | h° | MCDM | ∆E00 | |
F1 | 95.65 | 3.71 | 105.17 | 93.91 | 2.79 | 100.99 | 0.43/0.39 | 1.32 |
F2 | 75.83 | 26.88 | 27.40 | 74.88 | 26.51 | 27.98 | 0.44/0.35 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-Fernández, M.A.; Montero-Zeledón, E.; Abdala-Saiz, A.; Vega-Baudrit, J.R.; Araya-Sibaja, A.M. Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process. Pharmaceutics 2022, 14, 424. https://doi.org/10.3390/pharmaceutics14020424
Murillo-Fernández MA, Montero-Zeledón E, Abdala-Saiz A, Vega-Baudrit JR, Araya-Sibaja AM. Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process. Pharmaceutics. 2022; 14(2):424. https://doi.org/10.3390/pharmaceutics14020424
Chicago/Turabian StyleMurillo-Fernández, Mac Arturo, Ernesto Montero-Zeledón, Ariadna Abdala-Saiz, José Roberto Vega-Baudrit, and Andrea Mariela Araya-Sibaja. 2022. "Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process" Pharmaceutics 14, no. 2: 424. https://doi.org/10.3390/pharmaceutics14020424
APA StyleMurillo-Fernández, M. A., Montero-Zeledón, E., Abdala-Saiz, A., Vega-Baudrit, J. R., & Araya-Sibaja, A. M. (2022). Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process. Pharmaceutics, 14(2), 424. https://doi.org/10.3390/pharmaceutics14020424