Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Candida Strains and Growth Condition
2.3. Clotrimazole Solubility Test
2.4. Construction of Ternary Phase Diagram and Preparation of CLT-Loaded OA-SMEDDS and OA-SMEDDS Gel
2.5. Micromeritic Properties and Stability Test of CLT-Loaded OA-SMEDDS
2.6. Viscosity Test of CLT-Loaded OA-SMEDDS Gel
2.7. Antifungal Susceptibility Test
2.8. Effects of CLT-Loaded OA-SMEDDS on Biofilm
2.9. Disc Diffusion Assay
2.10. Franz Cell Diffusion Test
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Seelig, M.S. Mechanisms by which antibiotics increase the incidence and severity of candidiasis and alter the immunological defenses. Bacteriol. Rev. 1966, 30, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Schwartz, K.; Bartoces, M.; Monsur, J.; Severson, R.K.; Sobel, J.D. Effect of antibiotics on vulvovaginal candidiasis: A MetroNet study. J. Am. Board. Fam. Med. 2008, 21, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Treatment of vaginal Candida infections. Expert Opin. Pharmacother. 2002, 3, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Ferris, D.G.; Nyirjesy, P.; Sobel, J.D.; Soper, D.; Pavletic, A.; Litaker, M.S. Over-the-counter antifungal drug misuse associated with patient-diagnosed vulvovaginal candidiasis. Obstet. Gynecol. 2002, 99, 419–425. [Google Scholar]
- Hurley, R.; de Louvois, J. Candida vaginitis. Postgrad. Med. J. 1979, 55, 645–647. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.S.; Galask, R.P.; Messer, S.A.; Hollis, R.J.; Diekema, D.J.; Pfaller, M.A. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases. J. Clin. Microbiol. 2005, 43, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.M.; Gracely, E.; Nyirjesy, P. Non-albicans Candida Vulvovaginitis: Treatment Experience at a Tertiary Care Vaginitis Center. J. Low Genit. Tract. Dis. 2016, 20, 85–89. [Google Scholar] [CrossRef]
- Sobel, J.D. Vulvovaginal candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef]
- Horowitz, B.J.; Edelstein, S.W.; Lippman, L. Candida tropicalis vulvovaginitis. Obstet. Gynecol. 1985, 66, 229–232. [Google Scholar]
- Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, T.; Fan, S.; Zhu, Y.; Liu, X.; Guo, X.; Liang, Y. The efficacy and safety of clotrimazole vaginal tablet vs. oral fluconazole in treating severe vulvovaginal candidiasis. Mycoses 2016, 59, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Woolley, P.D.; Higgins, S.P. Comparison of clotrimazole, fluconazole and itraconazole in vaginal candidiasis. Br. J. Clin. Pract. 1995, 49, 65–66. [Google Scholar]
- Santos, S.S.; Lorenzoni, A.; Ferreira, L.M.; Mattiazzi, J.; Adams, A.I.H.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater. Sci. Eng. C 2013, 33, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Pavelic, Z.; Skalko-Basnet, N.; Jalsenjak, I. Characterisation and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis. Int. J. Pharm. 2005, 301, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Bilensoy, E.; Rouf, M.A.; Vural, I.; Sen, M.; Hincal, A.A. Mucoadhesive, thermosensitive, prolonged-release vaginal gel for clotrimazole:beta-cyclodextrin complex. AAPS PharmSciTech 2006, 7, E38. [Google Scholar] [CrossRef] [Green Version]
- Esposito, E.; Ravani, L.; Contado, C.; Costenaro, A.; Drechsler, M.; Rossi, D.; Menegatti, E.; Grandini, A.; Cortesi, R. Clotrimazole nanoparticle gel for mucosal administration. Mater. Sci. Eng. C 2013, 33, 411–418. [Google Scholar] [CrossRef]
- Alam, M.A.; Al-Janoobi, F.I.; Alzahrani, K.A.; Al-Agamy, M.H.; Abdelgalil, A.A.; Al-Mohizea, A.M. In-vitro efficacies of topical microemulsions of clotrimazole and ketoconazole; and in-vivo performance of clotrimazole microemulsion. J. Drug Deliv. Sci. Technol. 2017, 39, 408–416. [Google Scholar] [CrossRef]
- Bachhav, Y.G.; Patravale, V.B. Microemulsion-based vaginal gel of clotrimazole: Formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech 2009, 10, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Muthamil, S.; Prasath, K.G.; Priya, A.; Precilla, P.; Pandian, S.K. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.N.; Trofa, D.; Nosanchuk, J.D. Fatty Acid Synthase Impacts the Pathobiology of Candida parapsilosis In Vitro and during Mammalian Infection. PLoS ONE 2009, 4, e8421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Bandara, H.M.H.N.; Du, P.; Huang, H.; Hoang, K.; Nguyen, D.; Mogarala, S.V.; Smyth, H.D.C. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms. Mol. Pharm. 2015, 12, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Vavia, P.R. Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate. AAPS J. 2007, 9, E344–E352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J. Pharm. Sci. 2009, 98, 2549–2572. [Google Scholar] [CrossRef]
- Tseng, P.-L.; Chen, T.-C.; Chien, Y.-S.; Hung, C.-H.; Yen, Y.-H.; Chang, K.-C.; Tsai, M.-C.; Lin, M.-T.; Lee, C.-T.; Shen, C.-H.; et al. Efficacy and Safety of Pegylated Interferon Alfa-2b and Ribavirin Combination Therapy Versus Pegylated Interferon Monotherapy in Hemodialysis Patients: A Comparison of 2 Sequentially Treated Cohorts. Am. J. Kidney Dis. 2013, 62, 789–795. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Shen, M.; Li, P.-T.; Wu, Y.-J.; Lin, C.-H.; Chai, E.; Chang, T.-C.; Chen, C.-T. The antifungal activities and biological consequences of BMVC-12C-P, a carbazole derivative against Candida species. Med. Mycol. 2019, 58, 521–529. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, F.-Y.; Hung, D.-K. Terpene microemulsions for transdermal curcumin delivery: Effects of terpenes and cosurfactants. Colloids Surf. B Biointerfaces 2011, 82, 63–70. [Google Scholar] [CrossRef]
- Patel, N.A.; Patel, N.J.; Patel, R.P. Formulation and evaluation of curcumin gel for topical application. Pharm. Dev. Technol. 2009, 14, 80–89. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Estrin, N.F. The cosmetic ingredient review. Cutis 1978, 21, 35–41. [Google Scholar] [PubMed]
- Hugger, E.D.; Novak, B.L.; Burton, P.S.; Audus, K.L.; Borchardt, R.T. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J. Pharm. Sci. 2002, 91, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.C.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients, 6th ed.; Raymond, R.C., Sheskey, P., Quinn, M., Eds.; APhA/Pharmaceutical Press: London, UK, 2009; p. 888. [Google Scholar]
- Weiss, A. Surfactants, Micelles, Microemulsions, and Liquid Crystals. Progress in Colloid & Polymer Science; Steinkopff: Darmstadt, Germany, 1984; p. 180. [Google Scholar]
- Mendling, W.; Shazly, M.A.E.A.E.; Zhang, L. Clotrimazole for Vulvovaginal Candidosis: More Than 45 Years of Clinical Experience. Pharmaceuticals 2020, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Cho, Y.-H.; Kim, H.-H.; Lee, G.-W.; Baek, M.-K. Self-microemulsifying drug-delivery system for improved oral bioavailability of pranlukast hemihydrate: Preparation and evaluation. Int. J. Nanomed. 2013, 8, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricardo, F.; Pradilla, D.; Cruz, J.C.; Alvarez, O. Emerging Emulsifiers: Conceptual Basis for the Identification and Rational Design of Peptides with Surface Activity. Int. J. Mol. Sci. 2021, 22, 4615. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Sinko, P.J. Martin’s Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, 7th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2017; p. 701. [Google Scholar]
- Kossena, G.A.; Charman, W.N.; Boyd, B.J.; Dunstan, D.E.; Porter, C.J.H. Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: A phase diagram approach. J. Pharm. Sci. 2004, 93, 332–348. [Google Scholar] [CrossRef]
- Hosmer, J.M.; Shin, S.H.; Nornoo, A.; Zheng, H.; Lopes, L.B. Influence of Internal Structure and Composition of Liquid Crystalline Phases on Topical Delivery of Paclitaxel. J. Pharm. Sci. 2011, 100, 1444–1455. [Google Scholar] [CrossRef]
- Esposito, E.; Carducci, F.; Mariani, P.; Huang, N.; Simelière, F.; Cortesi, R.; Romeo, G.; Puglia, C. Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids Surf. B Biointerfaces 2018, 171, 67–74. [Google Scholar] [CrossRef]
- Goddeeris, C.; Goderis, B.; van den Mooter, G. Lyotropic, liquid crystalline nanostructures of aqueous dilutions of SMEDDS revealed by small-angle X-ray scattering: Impact on solubility and drug release. Eur. J. Pharm. Sci. 2010, 40, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Mahato, R.I.; Narang, A.S. Targeted Delivery of Small and Macromolecular Drugs; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010; p. 614. [Google Scholar]
RPMI 1640 | SIFsp | |
---|---|---|
Particle size (nm) | 84 ± 24.2 | 12.1 ± 5.3 |
PDI value | 0.233 | 0.342 |
Size range |
Strain | Antimicrobial Agent | Inoculum | Growth Medium | MIC50 (μg/mL) |
---|---|---|---|---|
C. albicans | CLT-loaded F35 | 103 | RPMI 1640 | 0.01 |
CLT in DMSO | 103 | RPMI 1640 | 0.04 | |
DMSO only | 103 | RPMI 1640 | Not observed | |
F35 without drug | 103 | RPMI 1640 | Not observed |
Strain | Formula | Drug Conc./Disk (mg) | Inhibition Zone (mm) |
---|---|---|---|
C. albicans | CLT-loaded F35 | 0.5 | 45.0 ± 2.0 |
0.1 | 37.3 ± 3.0 | ||
Mycosten® | 0.5 | 25.0 ± 0.1 | |
0.1 | 19.5 ± 3.5 | ||
F35 without drug | 0 | 0 | |
Fluconazole-resistant C. albicans | CLT-loaded F35 | 0.5 | 34.5 ± 1.5 |
0.1 | 21.0 ± 6.0 | ||
Mycosten® | 0.5 | 0 | |
0.1 | 0 | ||
F35 without drug | 0 | 0 | |
C. tropicalis | CLT-loaded F35 | 0.5 | 33.0 ± 1.0 |
0.1 | 23.0 ± 4.0 | ||
Mycosten® | 0.5 | 15.0 ± 1.0 | |
0.1 | 10.5 ± 1.5 | ||
F35 without drug | 0 | 0 | |
Fluconazole-resistant C. tropicalis | CLT-loaded F35 | 0.5 | 27.5 ± 2.5 |
0.1 | 21.0 ± 4.0 | ||
Mycosten® | 0.5 | 12.0 ± 1.0 | |
0.1 | 10.5 ± 2.5 | ||
F35 without drug | 0 | 0 |
CLT-Loaded F35 | CLT-Loaded F35 Gel | |
---|---|---|
Viscosity | 279.3 ± 0.9 mPass | 6422.6 ± 10.7 mPass |
Representative Appearance |
Strain | Formula | Drug Conc./Disk (mg) | Inhibition Zone (mm) |
---|---|---|---|
C. albicans | CLT-loaded F35 gel | 0.1 | 37.0 ± 3.0 |
Mycosten® | 0.1 | 19.5 ± 3.5 | |
F35 gel without drug | 0 | 0 | |
Fluconazole-resistant C. albicans | CLT-loaded F35 gel | 0.1 | 30.5 ± 2.5 |
Mycosten® | 0.1 | 0 | |
F35 gel without drug | 0 | 0 | |
C. tropicalis | CLT-loaded F35 gel | 0.1 | 32.0 ± 1.0 |
Mycosten® | 0.1 | 13.5 ± 1.5 | |
F35 gel without drug | 0 | 0 | |
Fluconazole-resistant C. tropicalis | CLT-loaded F35 gel | 0.1 | 27.0 ± 6.0 |
Mycosten® | 0.1 | 13.0 ± 2.0 | |
F35 gel without drug | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.-L.; Hsieh, C.-M.; Meng, L.-J.; Tsai, T.; Chen, C.-T. Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole. Pharmaceutics 2022, 14, 478. https://doi.org/10.3390/pharmaceutics14030478
Yang T-L, Hsieh C-M, Meng L-J, Tsai T, Chen C-T. Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole. Pharmaceutics. 2022; 14(3):478. https://doi.org/10.3390/pharmaceutics14030478
Chicago/Turabian StyleYang, Ting-Lun, Chien-Ming Hsieh, Ling-Jei Meng, Tsuimin Tsai, and Chin-Tin Chen. 2022. "Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole" Pharmaceutics 14, no. 3: 478. https://doi.org/10.3390/pharmaceutics14030478
APA StyleYang, T. -L., Hsieh, C. -M., Meng, L. -J., Tsai, T., & Chen, C. -T. (2022). Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole. Pharmaceutics, 14(3), 478. https://doi.org/10.3390/pharmaceutics14030478