Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Chemical Characterization
2.3. Cell Culture
2.4. Cell Viability
2.5. Anti-Inflammatory Effect
2.5.1. Measurement of the Nitric Oxide Production
2.5.2. Expression of Pro-Inflammatory Mediators
2.6. Wound Healing Effect
2.7. Anti-Senescent Effect
2.7.1. Senescence-Associated β-Galactosidase Activity
2.7.2. Levels of the Senescence Marker p53
2.7.3. Metalloproteinase Activity Inhibition
2.7.4. Expression of Collagen I
2.8. Depigmenting Effect
2.9. Allergic Effect
2.9.1. Expression of the Nrf2-Dependent Genes Hmox-1 and Nqo1
2.9.2. Maturation of THP-1 Cells through the Up-regulation of the Co-stimulatory Molecules CD54 and CD86
2.10. Skin Irritation
2.11. Antifungal Activity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization
3.1.1. EO Composition
3.1.2. HRW Phenolic Composition
3.2. Cell Viability
3.3. Anti-Inflammatory Effect
3.4. Wound Healing Effect
3.5. Anti-Senescent Effect
3.6. Depigmenting Effect
3.7. Allergic Effect
3.8. Skin Irritation
3.9. Antifungal Effect
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chuong, C.M.; Nickoloff, B.J.; Elias, P.M.; Goldsmith, L.A.; Macher, E.; Maderson, P.A.; Sundberg, J.P.; Tagami, H.; Plonka, P.M.; Thestrup-Pederson, K.; et al. What is the ‘true’ function of skin? Exp. Dermatol. 2002, 11, 159–187. [Google Scholar] [PubMed]
- Blume-Peytavi, U.; Kottner, J.; Sterry, W.; Hodin, M.W.; Griffiths, T.W.; Watson, R.E.B.; Hay, R.J.; Griffiths, C.E.M. Age-Associated Skin Conditions and Diseases: Current Perspectives and Future Options. Gerontologist 2016, 56, S230–S242. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef] [Green Version]
- Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 2017, 18, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA. Assessment Report on Eucalytus globulus Labill., Eucalyptus polybractea R.T. Baker and/or Eucalyptus smithii R.T. Baker, Aetheroleum; EMA: Amsterdam, The Netherlands, 2012. [Google Scholar]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C.; Miguel, M.G. Anti-oxidant, Anti-inflammatory and Anti-proliferative Activities of Moroccan Commercial Essential Oils. Nat. Prod. Commun. 2014, 9, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Wang, S.-H.; Huang, C.-C.; Lai, Y.-C.; Song, T.-Y.; Tsai, M.-S. Anti-Fatigue, Antioxidation, and Anti- Inflammatory Effects of Eucalyptus Oil Aromatherapy in Swimming-Exercised Rats. Chin. J. Physiol. 2018, 61, 257–265. [Google Scholar] [CrossRef]
- Ji, Y.-E.; Sun, X.; Kim, M.-K.; Li, W.Y.; Lee, S.W.; Koppula, S.; Yu, S.-H.; Kim, H.-B.; Kang, T.-B.; Lee, K.-H. Eucalyptus globulus Inhibits Inflammasome-Activated Pro-Inflammatory Responses and Ameliorate Monosodium Urate-Induced Peritonitis in Murine Experimental Model. Am. J. Chin. Med. 2018, 46, 423–433. [Google Scholar] [CrossRef]
- Vigo, E.; Cepeda, A.; Perez-Fernandez, R.; Gualillo, O. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: Nitric oxide inhibition in J774A.1 murine macrophages. J. Pharm. Pharmacol. 2010, 56, 257–263. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Sobeh, M.; El-Maadawy, W.H.; Mohammed, H.S.; Khalil, H.; Botros, S.; Wink, M. Chemical Profiling of Polyphenolics in Eucalyptus globulus and Evaluation of Its Hepato–Renal Protective Potential Against Cyclophosphamide Induced Toxicity in Mice. Antioxidants 2019, 8, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Costa, P.; Bahia, M. Oxygen and Nitrogen Reactive Species Are Effectively Scavenged by Eucalyptus globulus Leaf Water Extract. J. Med. Food 2009, 12, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef]
- Park, B.; Hwang, E.; Seo, S.A.; Cho, J.G.; Yang, J.E.; Yi, T.H. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-beta/Smad signals and attenuation of AP-1. Arch. Biochem. Biophys. 2018, 637, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Testing (NIST): Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- McLafferty, H. Wiley Registry of Mass Spectral Data 9th/NIST 08; Mass Spectral Library: Hoboken, NJ, USA, 2009. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456, pp. 544–545. [Google Scholar]
- Neves, B.M.; Rosa, S.C.; Martins, J.D.; Silva, A.; Gonçalo, M.; Lopes, M.C.; Cruz, M.T. Development of an in Vitro Dendritic Cell-Based Test for Skin Sensitizer Identification. Chem. Res. Toxicol. 2013, 26, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Kolle, S.N.; Landsiedel, R.; Natsch, A. Replacing the refinement for skin sensitization testing: Considerations to the implementation of adverse outcome pathway (AOP)-based defined approaches (DA) in OECD guidelines. Regul. Toxicol. Pharmacol. 2020, 115, 104713. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar]
- OECD. Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome Pathway for Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar]
- OECD. Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2021. [Google Scholar]
- CLSI. M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard, 3rd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. M38-A2; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard, 2nd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- España, M.D.; Arboleda, J.W.; Ribeiro, J.A.; Abdelnur, P.V.; Guzman, J.D. Eucalyptus leaf byproduct inhibits the anthracnose-causing fungus Colletotrichum gloeosporioides. Ind. Crop. Prod. 2017, 108, 793–797. [Google Scholar] [CrossRef]
- Joshi, A.; Sharma, A.; Bachheti, A.J.; Pandey, D.P. A Comparative Study of the Chemical Composition of the Essential oil from Eucalyptus globulus Growing in Dehradun (India) and Around the World. Orient. J. Chem. 2016, 32, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef] [Green Version]
- Topiar, M.; Sajfrtova, M.; Pavela, R.; Machalova, Z. Comparison of fractionation techniques of CO2 extracts from Eucalyptus globulus—Composition and insecticidal activity. J. Supercrit. Fluids 2015, 97, 202–210. [Google Scholar] [CrossRef]
- Vieira, M.; Bessa, L.J.; Martins, M.R.; Arantes, S.; Teixeira, A.P.S.; Mendes, Â.; Da Costa, P.M.; Belo, A.D.F. Chemical Composition, Antibacterial, Antibiofilm and Synergistic Properties of Essential Oils from Eucalyptus globulus LABILL. and Seven Mediterranean Aromatic Plants. Chem. Biodivers. 2017, 14, e1700006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestre, A.J.D.; Cavaleiro, J.A.S.; Delmond, B.; Filliatre, C.; Bourgeois, G. The Essential Oil of Eucalyptus globulus Labill. from Portugal. Flavour Frag. J. 1994, 9, 51–53. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Choi, H.-Y.; Choi, W.-S.; Clark, A.J.M.; Ahn, Y.-J. Ovicidal and Adulticidal Activity of Eucalyptus globulus Leaf Oil Terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2004, 52, 2507–2511. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Pellati, F.; Iseppi, R.; Bondi, M.; Bruzzesi, G.; Benvenuti, S. Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Nat. Prod. Res. 2017, 32, 544–551. [Google Scholar] [CrossRef]
- Zunino, M.P.; Areco, V.A.; Zygadlo, J.A. Insecticidal activity of three essential oils against two new important soybean pests: Sternechus pinguis (Fabricius) and Rhyssomatus subtilis Fiedler (Coleoptera: Curculionidae). Boletín Latinoam. Caribe Plantas Med. Aromáticas 2012, 11, 269–277. [Google Scholar]
- Dezsi, Ș.; Bădărău, A.S.; Bischin, C.; Vodnar, D.C.; Silaghi-Dumitrescu, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L. Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules 2015, 20, 4720–4734. [Google Scholar] [CrossRef] [Green Version]
- Salgado, P.; Márquez, K.; Rubilar, O.; Contreras, D.; Vidal, G. The effect of phenolic compounds on the green synthesis of iron nanoparticles (Fe x O y-NPs) with photocatalytic activity. Appl. Nanosci. 2019, 9, 371–385. [Google Scholar] [CrossRef]
- Nile, S.H.; Keum, Y.S. Chemical composition, antioxidant, anti-inflammatory and antitumor activities of Eucalyptus globulus Labill. Indian J. Exp. Biol. 2018, 56, 734–742. [Google Scholar]
- Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedrol, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE 2018, 13, e0192872. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Gutiérrez-Cutiño, M.; Moenne, A. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees. Molecules 2014, 19, 7356–7367. [Google Scholar] [CrossRef] [Green Version]
- Boulekbache-Makhlouf, L.; Meudec, E.; Mazauric, J.-P.; Madani, K.; Cheynier, V. Qualitative and Semi-quantitative Analysis of Phenolics in Eucalyptus globulus Leaves by High-performance Liquid Chromatography Coupled with Diode Array Detection and Electrospray Ionisation Mass Spectrometry. Phytochem. Anal. 2013, 24, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, M.; Pande, A.; Tewari, S.K.; Prakash, D. Phenolic contents and antioxidant activity of some food and medicinal plants. Int. J. Food Sci. Nutr. 2005, 56, 287–291. [Google Scholar] [CrossRef]
- Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol. 2004, 39, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.B.H.; Sghaier, R.; Guesmi, F.; Kaabi, B.; Mejri, M.; Attia, H.; Laouini, D.; Smaali, I. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia). Nat. Prod. Res. 2011, 25, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Naser, A.Y.; Qadus, S.; Alwafi, H.; Jarrar, Q.; Ayoub, R.; Jaradat, A.A.; Atiyah, R.M.; Alqaisy, A.I. Dexamethasone and diclofenac intramuscular mixture injection and risk of death: A case series study. Clin. Case Rep. 2021, 9, 2218–2221. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Maccioni, A.; Falconieri, D.; Porcedda, S.; Gonçalves, M.J.; Alves-Silva, J.M.; Silva, A.; Cruz, M.T.; Salgueiro, L.; Maxia, A. Chemical composition and biological activity of essential oil of Teucrium scordium L. subsp. scordioides (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy). Nat. Prod. Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Lu, X.-Q.; Tang, F.-D.; Wang, Y.; Zhao, T.; Bian, R.-L. Effect of Eucalyptus globulus oil on lipopolysaccharide-induced chronic bronchitis and mucin hypersecretion in rats. China J. Chin. Mater. Med. 2004, 29, 168–171. [Google Scholar]
- Silva, J.; Abebe, W.; Sousa, S.; Duarte, V.; Machado, M.; Matos, F. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Juergens, U.R.; Stöber, M.; Vetter, H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur. J. Med Res. 1998, 3, 508–510. [Google Scholar]
- Shao, J.; Yin, Z.; Wang, Y.; Yang, Y.; Tang, Q.; Zhang, M.; Jiao, J.; Liu, C.; Yang, M.; Zhen, L.; et al. Effects of Different Doses of Eucalyptus Oil From Eucalyptus globulus Labill on Respiratory Tract Immunity and Immune Function in Healthy Rats. Front. Pharmacol. 2020, 11, 1287–1294. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa, D.C.; Festa, C.N. Inflammasomes and dermatology. An. Bras. Dermatol. 2016, 91, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, Y.; Zhou, Y.; Follansbee, T.; Hwang, S.T. Immune mediators and therapies for pruritus in atopic dermatitis and psoriasis. J. Cutan. Immunol. Allergy 2019, 2, 4–14. [Google Scholar] [CrossRef]
- Schwingen, J.; Kaplan, M.; Kurschus, F.C. Review—Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int. J. Mol. Sci. 2020, 21, 699. [Google Scholar] [CrossRef] [Green Version]
- Chandorkar, N.; Tambe, S.; Amin, P.; Madankar, C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus 2021, 1, 100089. [Google Scholar] [CrossRef]
- Panikar, S.; Shoba, G.; Arun, M.; Sahayarayan, J.J.; Nanthini, A.U.R.; Chinnathambi, A.; Alharbi, S.A.; Nasif, O.; Kim, H.-J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J. Infect. Public Health 2021, 14, 601–610. [Google Scholar] [CrossRef]
- Tomen, I.; Guragac, F.T.; Keles, H.; Reunanen, M.; Kupeli-Akkol, E. Characterization and Wound Repair Potential of Essential Oil Eucalyptus Globulus Labill. Fresen. Environ. Bull. 2017, 26, 6390–6399. [Google Scholar]
- Hukkeri, V.I.; Karadi, R.; Akki, K.; Savadi, R.; Jaiprakash, B.; Kuppast, I.; Patil, M. Wound healing property of Eucalyptus globulus L. leaf extract’. Indian Drugs 2002, 39, 481–483. [Google Scholar]
- McCabe, M.C.; Hill, R.C.; Calderone, K.; Cui, Y.; Yan, Y.; Quan, T.; Fisher, G.J.; Hansen, K.C. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol. Plus 2020, 8, 100041. [Google Scholar] [CrossRef]
- Fisher, G.J.; Quan, T.; Purohit, T.; Shao, Y.; Cho, M.K.; He, T.; Varani, J.; Kang, S.; Voorhees, J.J. Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin. Am. J. Pathol. 2009, 174, 101–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.-W.; Kwon, S.-H.; Choi, J.-Y.; Na, J.-I.; Huh, C.-H.; Choi, H.-R.; Park, K.-C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, N.; Papismadov, N.; Solomonov, I.; Sagi, I.; Krizhanovsky, V. The ECM path of senescence in aging: Components and modifiers. FEBS J. 2020, 287, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. The role of cellular senescence in skin aging. J. Investig. Dermatol. Symp. Proc. 1998, 3, 1–5. [Google Scholar]
- Ezure, T.; Sugahara, M.; Amano, S. Senescent dermal fibroblasts negatively influence fibroblast extracellular matrix-related gene expression partly via secretion of complement factor D. BioFactors 2019, 45, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Weinmüllner, R.; Zbiral, B.; Becirovic, A.; Stelzer, E.M.; Nagelreiter, F.; Schosserer, M.; Lämmermann, I.; Liendl, L.; Lang, M.; Terlecki-Zaniewicz, L.; et al. Organotypic human skin culture models constructed with senescent fibroblasts show hallmarks of skin aging. NPJ Aging Mech. Dis. 2020, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Wlaschek, M.; Maity, P.; Makrantonaki, E.; Scharffetter-Kochanek, K. Connective Tissue and Fibroblast Senescence in Skin Aging. J. Investig. Dermatol. 2021, 141, 985–992. [Google Scholar] [CrossRef]
- Campisi, J.; di Fagagna, F.D. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef]
- Bemiller, P.M.; Lee, L.-H. Nucleolar changes in senescing WI-38 cells. Mech. Ageing Dev. 1978, 8, 417–427. [Google Scholar] [CrossRef]
- Fang, L.; Igarashi, M.; Leung, J.; Sugrue, M.M.; Lee, S.W.; Aaronson, S.A. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene 1999, 18, 2789–2797. [Google Scholar] [CrossRef] [Green Version]
- Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O.; et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, J.; Yoshida, H.; Ito, S.; Naoe, A.; Fujimura, T.; Kitahara, T.; Takema, Y.; Zerweck, C.; Grove, G.L. Dry skin in the winter is related to the ceramide profile in the stratum corneum and can be improved by treatment with a Eucalyptus extract. J. Cosmet. Dermatol. 2013, 12, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-M.; Kim, J.; Chang, K.-S.; Kim, B.-S.; Yang, Y.-J.; Kim, G.-H.; Shin, S.-C.; Park, I.-K. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med Èntomol. 2011, 48, 405–410. [Google Scholar] [CrossRef]
- Hwang, E.; Park, S.-Y.; Lee, H.J.; Lee, T.Y.; Sun, Z.-W.; Yi, T.H. Gallic Acid Regulates Skin Photoaging in UVB-exposed Fibroblast and Hairless Mice. Phytother. Res. 2014, 28, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Mária, J.; Ingrid, Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct. 2017, 8, 2394–2418. [Google Scholar] [CrossRef]
- Lim, H.; Park, H.; Kim, H.P. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem. Pharmacol. 2015, 96, 337–348. [Google Scholar] [CrossRef]
- Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010, 45, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.-Y.; Choi, J.-S.; Kang, S.-W.; Lee, Y.-J.; Park, J.; Kang, Y.-H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol. 2010, 19, e182–e190. [Google Scholar] [CrossRef]
- Alves, G.D.A.D.; De Souza, R.O.; Rogez, H.L.G.; Masaki, H.; Fonseca, M.J.V. Cecropia obtusa extract and chlorogenic acid exhibit anti aging effect in human fibroblasts and keratinocytes cells exposed to UV radiation. PLoS ONE 2019, 14, e0216501. [Google Scholar] [CrossRef]
- Sagiv, A.; Krizhanovsky, V. Immunosurveillance of senescent cells: The bright side of the senescence program. Biogerontology 2013, 14, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.-W.; Yevsa, T.; Woller, N.; Hoenicke, L.; Wuestefeld, T.; Dauch, D.; Hohmeyer, A.; Gereke, M.; Rudalska, R.; Potapova, A.; et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011, 479, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Geiger, H.; Rudolph, K.L. Immunoaging induced by hematopoietic stem cell aging. Curr. Opin. Immunol. 2011, 23, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.N.; Henson, S.M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 2011, 11, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.M.; Baker, D.J.; Van Deursen, J.M. Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases. Clin. Pharmacol. Ther. 2013, 93, 105–116. [Google Scholar] [CrossRef]
- Panich, U.; Tangsupa-A-Nan, V.; Onkoksoong, T.; Kongtaphan, K.; Kasetsinsombat, K.; Akarasereenont, P.; Wongkajornsilp, A. Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch. Pharmacal. Res. 2011, 34, 811–820. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Garcia, A.; Fulton, J.E. The Combination of Glycolic Acid and Hydroquinone or Kojic Acid for the Treatment of Melasma and Related Conditions. Dermatol. Surg. 1996, 22, 443–447. [Google Scholar] [CrossRef]
- Rendon, M.I.; Gaviria, J.I. Review of Skin-Lightening Agents. Dermatol. Surg. 2005, 31, 886–890, discussion 889. [Google Scholar] [CrossRef]
- Huang, H.-C.; Ho, Y.-C.; Lim, J.-M.; Chang, T.-Y.; Ho, C.-L.; Chang, T.-M. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition. Int. J. Mol. Sci. 2015, 16, 10470–10490. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Takano, F.; Takata, T.; Niiyama, M.; Ohta, T. Bioactive monoterpene glycosides conjugated with gallic acid from the leaves of Eucalyptus globulus. Phytochemistry 2008, 69, 747–753. [Google Scholar] [CrossRef] [PubMed]
- García-Gavín, J.; González-Vilas, D.; Fernández-Redondo, P.V.; Toribio, J. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermat. 2010, 62, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-L.; Liu, R.H.; Sheu, J.-N.; Chen, S.-T.; Sinchaikul, S.; Tsay, G.J. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J. Biomed. Sci. 2006, 14, 87–105. [Google Scholar] [CrossRef]
- Baliña, L.M.; Graupe, K. The Treatment of Melasma 20% Azelaic Acid versus 4% Hydroquinone Cream. Int. J. Dermatol. 1991, 30, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Ade, N.; Leon, F.; Pallardy, M.; Peiffer, J.L.; Kerdine-Romer, S.; Tissier, M.H.; Bonnet, P.A.; Fabre, I.; Ourlin, J.C. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: Role of the Keap1/Nrf2 pathway. Toxicol. Sci. 2009, 107, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Damjanović-Vratnica, B.; Đakov, T.; Šuković, D.; Damjanović, J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci. 2011, 29, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: Microscopic observations and chemical characterization of cymbopogon citratus. BMC Complement. Altern. Med. 2010, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In Vitro Activity of Twenty Commercially Available, Plant-Derived Essential Oils against Selected Dermatophyte Species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar] [CrossRef] [Green Version]
- Bakht, J.; Farid, S.; Iqbal, A.; Shafi, M. Impact of different solvent extracts from leaves and fruits of Eucalyptus globulus on growth of different bacteria and fungi. Pak. J. Pharm. Sci. 2018, 31, 1845–1852. [Google Scholar]
RIa | RIb | Compound * | % |
---|---|---|---|
928 | 1025 | α-Pinene | 9.4 |
940 | 1077 | Camphene | 0.1 |
944 | 1131 | Verbenene | t |
967 | 1113 | β-Pinene | 0.2 |
978 | 1156 | Myrcene | 0.1 |
994 | 1167 | α-Phellandrene | t |
1010 | 1269 | p-Cymene | 0.8 |
1017 | 1201 | Limonene | 2.3 |
1017 | 1213 | 1,8-Cineole | 72.3 |
1044 | 1248 | γ-Terpinene | 0.2 |
1056 | 1438 | cis-Linalool oxide | t |
1066 | 1466 | trans-Linalool oxide | t |
1068 | 1439 | Cymenene | 0.1 |
1074 | 1291 | Terpinolene | 0.1 |
1096 | 1574 | Fenchyl alcohol | 0.2 |
1103 | 1489 | α-Campholenal | 0.2 |
1118 | 1645 | E-Pinocarveol | 3.6 |
1133 | 1563 | Pinocarvone | 1.4 |
1143 | 1720 | Mentha-1,5-dien-8-ol | 0.3 |
1143 | 1698 | Borneol | 0.3 |
1156 | 1594 | Terpinene-4-ol | 0.3 |
1156 | 1842 | p-Cymene-8-ol | 0.1 |
1163 | 1879 | Z-p-mentha-1(7),8 diene-2-ol | 0.6 |
1167 | 1690 | α-Terpineol | 0.9 |
1177 | 1788 | Myrtenol | 0.1 |
1193 | 1828 | trans-Carveol | 0.2 |
1199 | 1879 | E-p-menth-1(7)8-dien-2-ol | 0.6 |
1212 | 1731 | Carvone | 0.1 |
1264 | 1574 | Bornyl acetate | t |
1326 | 1690 | α-Terpinyl acetate | 1.2 |
1403 | 1591 | E-Caryophyllene | 0.1 |
1424 | 1602 | Aromadendrene | 0.2 |
1443 | 1663 | α-Humulene | 0.1 |
1447 | 1636 | Alloaromadendrene | t |
1478 | 1720 | δ- Selinene | t |
1548 | 1916 | Palustrol | t |
1554 | 2110 | Spathulenol | t |
1557 | 1971 | Caryophyllene oxide | t |
1558 | 2062 | Globulol | 1.6 |
1568 | 2064 | Viridiflorol | 0.1 |
1594 | 2093 | 10-epi-γ-Eudesmol | 0.2 |
1617 | 2188 | α-Muurolol | 0.1 |
1623 | 2215 | β-Eudesmol | 0.1 |
1629 | 2218 | α-Cadinol | t |
Total identified | 98.7 |
Peak * | Rt (min) | λmax (nm) | HPLC-ESI-MSn [m/z (Relative Abundance, %)] | Attempt to Identify | ||
---|---|---|---|---|---|---|
Precursor Ion [M-H] | MS2 | MS3 | ||||
1 | 3.24 | 234sh, 238, 246, 257 | 633(100) | 301(100), 275 (16), 249 (15) | 284 (34), 257 (80), 229 (100), 201 (15), 185 (55), 173 (13) | HHDP galloyllglucose |
2 | 4.38 | 234sh, 238, 246, 270 | 169(100) | 125(100) | 125 (46), 107 (13), 97(100), 81 (96), 79 (28), 69 (12) | Gallic acid |
3 | 5.63 | 231sh, 234sh, 238, 246, 277 | 633(100) | 301(100) | 284 (61), 257(100), 229 (63), 213 (11), 201 (31), 185 (70) | HHDP galloyllglucose |
4 | 12.39 | 231sh, 238, 246, 265 | 783(100) | 935 (24), 765(100), 613 (12) | 721 (12), 613 (90), 597(100), 533 (13), 443 (11), 427 (29), 401 (20), 399 (17), 325 (19), 301 (58), 275 (63), 273(15), 231 (15), 229 (12) | bis-HHDP-glucose |
5 | 17.14 | 231sh, 238, 246sh, 256, 289sh | 353(100) | 233(100) | 205(100) | 3-Caffeoyl-quinic acid |
6 | 18.36 | 229sh, 238, 246sh, 252, 288sh, 299, 325 | 431(100) | 385(100), 223 (16) | 295 (11), 223(100), 205 (57), 161 (48), 153 (57), 151 (12) | Sinapoyl-hexoside |
7 | 18.93 | - | 191(100) | 173 (90), 127(100), 85(65) | 109(100), 85 (55) | Quinic acid |
8 | 18.93 | 231sh, 238, 246sh, 252, 292sh, 299sh, 325 | 353(100) | 191(100) | 127(100), 172 (60), 85(55) | 5-Caffeoyl-quinic acid |
9 | 20.03 | 232sh, 238, 246, 259, 330sh | 461(100) | 415(100) | 269(100), 247 (14), 161 (33) | Not identified |
10 | 21.13 | 234sh, 238, 246, 259, 368sh | 1085(100) | 783 (12), 765(100) | 613 (58), 597 (61), 595 (14), 427 (21), 399 (27), 383 (19), 301(100), 275 (51), 273 (14), 259 (10), 231 (14), 229 (21) | Cornusiin B or eucalbanin A |
11 | 21.52 | 232sh, 238, 246, 259, 371sh | 1085(100) | 1069 (25), 765(100), 755 (30), 451 (12) | - | Cornusiin B or eucalbanin A |
12 | 22.10 | 226sh, 234sh, 238, 246, 258sh, 265, 366sh | 451(100) | 313 (40), 271 (84), 211(100), 169 (92), 151 (13) | 168(100), 124 (12) | Galloyl-glucose ester |
13 | 22.68 | 233sh, 238, 246, 261, 299sh, 358sh | 1253(100) | 1074 (47), 971(100), 781 (39), 640 (79) | - | Punicalin derivative |
14 | 25.25 | 233sh, 238, 246, 257, 269sh, 309sh, 353sh, 362, 367sh | 565(100) | 550 (78), 549 (12), 519 (17), 419(100), 405 (60). 401 (44), 386 (28), 373 (21), 355 (11), 233 (18), 202 (21), 187 (19) | 404(100), 373 (25) | Not identified |
15 | 26.52 | 231sh, 234sh, 238, 246, 262, 292sh, 352sh | 275(100) | 257(100), 247 (13), 231 (14), 229 (31), 203 (21) | - | Not identified |
16 | 34.34 | 226sh, 234sh, 238, 243sh, 246sh, 258sh, 268, 356sh | 497(100) | 331(100), 169 (79) | 169(100), 125 (22) | Eucaglobulin |
17 | 35.48 | 231sh, 234sh, 238, 246sh, 255, 265sh, 346sh, 364, 380sh | 477(100) | 315(100), 300 (20) | 300(100) | Methylellagic acid hexose |
18 | 38.16 | 232sh, 234sh, 238, 246, 258, 265sh, 354, 381sh | 477(100) | 301(100) | 273 (15), 257 (12), 179(100), 151 (85) | Quercetin-O-glucuronide |
19 | 39.20 | 227sh, 238, 239sh, 242sh, 244sh, 246sh, 260, 266sh, 295sh, 354, 381sh | 609(100) | 301(100), 271 (35), 255 (12) | 273 (12), 239 (13), 179(100), 151 (79) | Quercetin 3-O-rutinoside |
20 | 43.08 | 234sh, 238, 246sh, 255, 267sh, 306sh, 351sh, 367, 382sh | 301(100) | 284 (55), 257 (84), 245 (13), 229(100), 201 (22), 185 (78) | 212 (13), 201 (69), 185(100), 173 (34), 157 (34), 145 (34) | Ellagic acid |
21 | 45.25 | 229sh, 232sh, 238, 241sh, 246sh, 257, 267sh, 301sh, 351, 381sh | 447(100) | 301(100) | 273 (19), 179(100), 151 (81) | Quercetin3-O-rhamnoside |
22 | 46.94 | 231sh, 234sh, 238, 242sh, 246sh, 257sh, 261, 346 267sh, 293sh, 357sh, 380sh, 412sh, 420sh, 446sh, 466sh, 486 | 461(100) | 285(100), 173 (14) | - | Luteolin 7-O-glucuronide |
Strains | EO | HRW | ||
---|---|---|---|---|
MIC a | MLC a | MIC b | MLC b | |
Candida albicans | 5 | 5 | >800 | >800 |
Candida krusei | 5 | 5 | >800 | >800 |
Candida guilliermondii | 2.5 | 5 | >800 | >800 |
Candida parapsilosis | 5 | 5 | >800 | >800 |
Cryptococcus neoformans | 2.5 | 5 | 400 | >800 |
Trichophyton mentagrophytes | 2.5 | 2.5 | 400 | 800 |
Trichophyton rubrum | 2.5 | 2.5 | 400 | 400 |
Trichophyton mentagrophytes var. interdigitale | 5 | 5 | 400 | 800 |
Trichophyton verrucosum | 2.5 | 2.5 | >800 | >800 |
Microsporum gypseum | 5 | 5 | 800 | >800 |
Microsporum canis | 2.5 | 2.5 | 200 | 200 |
Epidermophyton floccosum | 1.25 | 2.5 | 200 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C.; et al. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics 2022, 14, 561. https://doi.org/10.3390/pharmaceutics14030561
Moreira P, Sousa FJ, Matos P, Brites GS, Gonçalves MJ, Cavaleiro C, Figueirinha A, Salgueiro L, Batista MT, Branco PC, et al. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics. 2022; 14(3):561. https://doi.org/10.3390/pharmaceutics14030561
Chicago/Turabian StyleMoreira, Patrícia, Fábio Jesus Sousa, Patrícia Matos, Gonçalo Sousa Brites, Maria José Gonçalves, Carlos Cavaleiro, Artur Figueirinha, Lígia Salgueiro, Maria Teresa Batista, Pedro Costa Branco, and et al. 2022. "Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves" Pharmaceutics 14, no. 3: 561. https://doi.org/10.3390/pharmaceutics14030561
APA StyleMoreira, P., Sousa, F. J., Matos, P., Brites, G. S., Gonçalves, M. J., Cavaleiro, C., Figueirinha, A., Salgueiro, L., Batista, M. T., Branco, P. C., Cruz, M. T., & Pereira, C. F. (2022). Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics, 14(3), 561. https://doi.org/10.3390/pharmaceutics14030561