NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NVCL-Based Nanogels
2.3. Loading of Drugs into Nanogels
2.4. Loading of GNRDs into Nanogels
2.5. In Vitro Drug Release Profile of CDDP/DOX
3. Results
3.1. Preparation of PNVCL-Based Nanogels
3.2. Drug Loading and In Vitro Release Study
3.3. GNRDs Encapsulation and Photothermal Studies
3.4. NIR-Irradiation Triggered CDDP and DOX Release
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahdar, A.; Sayyadi, K.; Sayyadi, J.; Yaghobi, Z. Nanogels: A versatile nano-carrier platform for drug delivery systems: A mini review. Nanomed. Res. J. 2019, 4, 1–9. [Google Scholar]
- Jha, A.; Rama, A.; Ladani, B.; Verma, N.; Kannan, S.; Naha, A. Temperature and pH-responsive nanogels as intelligent drug delivery systems: A comprehensive review. J. Appl. Pharm. Sci. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Ahmed, S.; Alhareth, K.; Mignet, N. Advancement in nanogel formulations provides controlled drug release. Int. J. Pharm. 2020, 584, 119435. [Google Scholar] [CrossRef] [PubMed]
- Salahpour-Anarjan, F. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct. Nano-Objects 2019, 19, 100370. [Google Scholar] [CrossRef]
- Montane, X.; Bajek, A.; Roszkowski, K.; Montornes, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for cancer therapy. Molecules 2020, 25, 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhang, Q.; Yang, P.; Yu, X.; Huang, L.; Shen, S.; Cai, S. Manganese oxide-coated carbon nanotubes as dual-modality lymph mapping agents for photothermal therapy of tumor metastasis. ACS Appl. Mater. Interfaces 2016, 8, 3736–3743. [Google Scholar] [CrossRef]
- Ali, M.R.; Ali, H.R.; Rankin, C.R.; El-Sayed, M.A. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic phothermal therapy. Biomaterials 2016, 102, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Li, Z.; Li, L.; Saint-Cricq, P.; Li, C.; Lin, J.; Wang, C.; Su, Z.; Zink, J.I. Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-phothermal therapy. Angew. Chem. 2016, 128, 2158–2161. [Google Scholar] [CrossRef]
- Chen, Y.; Su, Y.; Hu, S.; Chen, S. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 2016, 105, 190–204. [Google Scholar] [CrossRef]
- Gao, J.; Wu, C.; Deng, D.; Wu, P.; Cai, C. Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Healthc. Mater. 2016, 5, 2437–2449. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Xiang, H.; Wang, Y.; Zhang, Q.; An, L.; Yang, S.; Ma, Y.; Wang, Y.; Liu, J. Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem. Commun. 2017, 53, 3253–3256. [Google Scholar] [CrossRef]
- Chen, W.H.; Xu, X.D.; Jia, H.Z.; Lei, Q.; Luo, G.F.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 2013, 34, 8798–8807. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yao, M.H.; Jin, R.M.; Zhao, D.H.; Zhao, Y.D.; Liu, B. Polypeptide-engineered hydrogel coated gold nanorods for targeted drug delivery and chemo-photothermal therapy. ACS Biomater. Sci. Eng. 2017, 3, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Penninckx, S.; Heuskin, A.C.; Michiels, C.; Lucas, S. Gold nanoparticles as a potent radiosensitizer: A transdisciplinary approach from physics to patient. Cancers 2020, 12, 2021. [Google Scholar] [CrossRef] [PubMed]
- Tremi, I.; Spyratou, E.; Souli, M.; Efstathopoulos, E.P.; Makropoulou, M.; Georgakilas, A.G.; Sihver, L. Requirements for designing an effective metallic nanoparticle (NP)-boosted radiation therapy (RT). Cancers 2021, 13, 3185. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Lemus, N.A.; Licea-Claverie, A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci. 2016, 53, 1–51. [Google Scholar] [CrossRef]
- Macchione, M.A.; Guerrero-Beltran, C.; Rosso, A.P.; Euti, E.M.; Martinelli, M.; Strumia, M.C.; Muñoz-Fernandez, M.A. Poly(N-vinylcaprolactam) nanogels with antiviral behavior against HIV-1 infection. Sci. Rep. 2019, 9, 5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Ayon, M.A.; Sañudo-Barajas, J.A.; Picos-Corrales, L.A.; Licea-Claverie, A. PNVCL-PEGMA nanohydrogels with tailored transition temperature for controlled delivery of 5-fluorouracil. J. Polym. Sci. A Polym. Chem. 2015, 53, 2662–2672. [Google Scholar] [CrossRef]
- Rejinold, N.S.; Baby, T.; Chennazhi, K.P.; Jayakumar, R. Multi drug loaded thermo-responsive fibrinogen-graft-poly(N-vinylcaprolactam) nanogels for breast cancer drug delivery. J. Biomed. Nanotechnol. 2015, 11, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, Y.; Chang, B.; Sun, Y.; Yang, W. Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules 2013, 14, 3034–3046. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.M.; Mallikarjuna, B.; Rao, K.S.V.K.; Siraj, S.; Rao, K.C.; Subha, M.C.S. Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf. B 2013, 102, 891–897. [Google Scholar]
- Lou, S.; Gao, S.; Wang, W.; Zhang, M.; Wang, C.; Li, C.; Kong, D.; Zhao, Q. Galactose-functionalized multiresponsive nanogels for hepatoma-targeted drug delivery. Nanoscale 2015, 7, 3137–3146. [Google Scholar] [CrossRef]
- González-Ayón, M.A.; Licea-Claverie, A.; Sañudo-Barajas, J.A. Different strategies for the preparation of galactose-functionalized thermos-responsive nanogels with potential as smart drug delivery systems. Polymers 2020, 12, 2150. [Google Scholar] [CrossRef]
- Paasonen, L.; Laaksonen, T.; Johans, C.; Yliperttula, M.; Kontturi, K.; Urtti, A. Gold nanoparticles enable selective light-induced contents release from liposomes. J. Control Release 2007, 122, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.B.; McCoy, R.S.; Ackerson, B.J.; Collins, G.J.; Ackerson, C.J. Radiofrequency heating pathways for gold nanoparticles. Nanoscale 2014, 6, 8459–8472. [Google Scholar] [CrossRef] [Green Version]
- Pantano, P.; Harrison, C.D.; Poulose, J.; Urrabazo, D.; Norman, T.Q.; Braun, E.I.; Draper, R.K.; Overzet, L.J. Factors affecting the 13.56-MHz radio-frequency-mediated heating of gold nanoparticles. Appl. Spectrosc. Rev. 2017, 52, 821–836. [Google Scholar] [CrossRef]
- Siirila, J.; Karesoja, M.; Pulkkinen, P.; Malho, J.M.; Tenhu, H. Soft poly(N-vinylcaprolactam) nanogels Surface-decorated with AuNPs. Response to temperature, light and RF-field. Eur. Polym. J. 2019, 115, 59–69. [Google Scholar] [CrossRef]
- Mukherjee, M.B.; Mullick, R.; Reddy, B.U.; Das, S.; Raichur, A.M. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis C infection. ACS Appl. Mater. 2020, 3, 7598–7610. [Google Scholar] [CrossRef] [PubMed]
- González-Ayón, M.A.; Licea-Claverie, A.; Valdez-Torres, J.B.; Picos-Corrales, L.A.; Velez-de la Rocha, R.; Contreras-Esquivel, J.C.; Labavitch, J.M.; Sañudo-Barajas, J.A. Enzyme-catalyzed production of potato galacto-oligosaccharides and its optimization by response Surface methodology. Materials 2019, 12, 1465. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.C.; Mornet, S.; Duget, E.; Jerome, C. Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared release. Polym. Chem. 2014, 5, 799–813. [Google Scholar] [CrossRef] [Green Version]
- DiazDuarte-Rodriguez, M.; Cortez-Lemus, N.A.; Licea-Claverie, A.; Licea-Rodriguez, J.; Mendez, E.R. Dual responsive polymersomes for gold nanorod and doxorrubicin encapsulation: Nanomaterials with potential use as Smart drug delivery systems. Polymers 2019, 11, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, S.; Tchounwoum, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta 2014, 1845, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Urias, A.; Zapata-Gonzalez, I.; Licea-Claverie, A.; Licea-Navarro, A.F.; Bernaldez-Sarabia, J.; Cervantes-Luevano, K. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Colloids Surf. B 2019, 182, 110365. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Smaldone, G.; Morelli, G.; Accardo, A. Peptide-based hydrogels and nanogels for delivery of doxorubicin. Int. J. Nanomed. 2021, 16, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Liao, L.C.; Lu, P.L.; Lo, C.L.; Tsai, H.C.; Huang, C.Y.; Wei, K.C.; Yen, T.C.; Hsiue, G.H. The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials 2012, 33, 4576–4588. [Google Scholar] [CrossRef] [PubMed]
- Judah, H.L.; Liu, P.; Zarbakhsh, A.; Resmini, M. Influence of buffers, ionic strength, and pH on the volume phase transition behavior of acrylamide-based nanogels. Polymers 2020, 12, 2590. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Z.; Xie, D.; Liu, D.; Chen, Z.; Li, K.; Li, Z.; Tichnell, B.; Liu, Z. Design and synthesis study of the thermos-sensitive poly (N-vinylpyrrolidone-b-N,N-diethylacrylamide). Des. Monomers Polym. 2018, 21, 43–54. [Google Scholar] [CrossRef]
- Yan, X.; Gemeinhart, R.A. Cisplatin delivery from poly(acrylic acid-co-methyl methacrylate) microparticles. J. Control Release 2005, 106, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Dibic, S.N.; Filipovic, J.M.; Tomic, S.L. Synthesis and characterization of poly(2-hydroxyethyl methacrylate/itaconic acid/poly(ethylene glycol) dimethacrylate) hydrogels. Chem. Eng. J. 2012, 179, 372–380. [Google Scholar] [CrossRef]
- Burrows, N.D.; Lin, W.; Hinman, J.G.; Dennison, J.M.; Vartanian, A.M.; Abadeer, N.S.; Grzincic, E.M.; Jacob, L.M.; Murphy, C.J. Surface chemistry of gold nanorods. Langmuir 2016, 32, 9905–9921. [Google Scholar] [CrossRef] [PubMed]
Nanogel | Product Composition (mol%) a | TVPT (°C) b | Yield (wt%) | |||||
---|---|---|---|---|---|---|---|---|
NVCL | PEGMA | GAL | VP | Water | pH 7.4 | pH 6 | ||
NG1 | 92 | 8 | 0 | 0 | 28 | 29 | 29 | 50 |
NG2 | 60 | 19 | 0 | 21 | 34 | 34 | 32 | 55 |
NG3 | 53 | 21 | 0 | 26 | 42 | 40 | 40 | 53 |
NG4 | 60 | 17 | Galp23 | 0 | 41 | 39 | 39 | 62 |
NG5 | 68 | 26 | LAMA6 | 0 | 32 | 32 | 31 | 60 |
NG6 | 81 | 8 | LAMA3 | 8 | 37.5 | 35 | 37 | 58 |
Nanogel | Conditions for Release a | First Order (k; r2) b | Higuchi (k; r2) c | Peppas (k; n; r2) d |
---|---|---|---|---|
NG1 | Healthy | 0.014; 0.99 | 0.207; 0.98 | 0.235; 0.39; 0.97 |
Cancer | 0.666; 0.98 | 0.516; 0.98 | 0.818; 0.03; 0.99 | |
NG2 | Healthy | 0.026; 0.98 | 0.031; 0.99 | 0.097; 0.29; 0.99 |
Cancer | 0.088; 0.99 | 0.081; 0.99 | 0.747; 0.29; 0.99 | |
NG3 | Healthy | 0.020; 0.99 | 0.062; 0.99 | 0.042; 0.33; 0.99 |
Cancer | 0.095; 0.98 | 0.262; 0.99 | 0.175; 0.34; 0.99 | |
NG4 | Healthy | 0.061; 0.99 | 0.123; 0.90 | 0.187; 0.38; 0.98 |
Cancer | 0.114; 0.98 | 0.195; 0.93 | 0.248; 0.33; 0.98 | |
NG5 | Healthy | 0.070; 0.99 | 0.141; 0.94 | 0.170; 0.36; 0.98 |
Cancer | 0.160; 0.99 | 0.255; 0.97 | 0.313; 0.36; 0.99 | |
NG6 | Healthy | 0.049; 0.99 | 0.118; 0.93 | 0.114; 0.39; 0.98 |
Cancer | 0.192; 0.97 | 0.277; 0.95 | 0.325; 0.37; 0.97 |
Nanogel | Conditions for Release a | First Order (k; r2) b | Higuchi (k; r2) c | Peppas (k; n; r2) d |
---|---|---|---|---|
NG3 | Healthy | 0.026; 0.86 | 0.078; 0.99 | 0.114; 0.17; 0.98 |
Cancer | 0.043; 0.99 | 0.166; 0.91 | 0.208; 0.36; 0.98 | |
NG4 | Healthy | 0.019; 0.96 | 0.056; 0.88 | 0.081; 0.37; 0.93 |
Cancer | 0.107; 0.92 | 0.208; 0.98 | 0.389; 0.17; 0.94 | |
NG5 | Healthy | 0.087; 0.91 | 0.054; 0.87 | 0.185; 0.10; 0.99 |
Cancer | 0.176; 0.92 | 0.215; 0.88 | 0.196; 0.41; 0.90 | |
NG6 | Healthy | 0.032; 0.99 | 0.069; 0.86 | 0.122; 0.39; 0.99 |
Cancer | 0.065; 0.98 | 0.126; 0.83 | 0.218; 0.30; 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ayón, M.A.; Licea-Rodriguez, J.; Méndez, E.R.; Licea-Claverie, A. NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics 2022, 14, 560. https://doi.org/10.3390/pharmaceutics14030560
González-Ayón MA, Licea-Rodriguez J, Méndez ER, Licea-Claverie A. NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics. 2022; 14(3):560. https://doi.org/10.3390/pharmaceutics14030560
Chicago/Turabian StyleGonzález-Ayón, Mirian A., Jacob Licea-Rodriguez, Eugenio R. Méndez, and Angel Licea-Claverie. 2022. "NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy" Pharmaceutics 14, no. 3: 560. https://doi.org/10.3390/pharmaceutics14030560
APA StyleGonzález-Ayón, M. A., Licea-Rodriguez, J., Méndez, E. R., & Licea-Claverie, A. (2022). NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics, 14(3), 560. https://doi.org/10.3390/pharmaceutics14030560