A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. HR-MAS Experiments
2.3. AFM Experiments
2.4. MRI Experiments
3. Results
3.1. HR-MAS NMR
3.2. MRI NMR Experiments
3.3. AFM Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mordor. Intelligence: Peptide Therapeutics Market—Growth, Trends, COVID-19 Impact, and Forecasts (2018–2023). Available online: https://www.mordorintelligence.com/industry-reports/europe-nutraceutical-market (accessed on 27 January 2022).
- De Herder, W.W. When and how to use somatostatin analogues. Endocrinol. Metab. Clin. 2018, 47, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef] [PubMed]
- De Herder, W.; Hofland, L.; van der Lely, A.-J.; Lamberts, S. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr. Relat. Cancer 2003, 10, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, D.T.; Van Genechten, D.; Megret, C.M.; Thanh, X.-M.T.T.; Hand, P.; Martin, W.A. Co-Creation of a Lanreotide Autogel/Depot Syringe for the Treatment of Acromegaly and Neuroendocrine Tumours Through Collaborative Human Factor Studies. Adv. Ther. 2019, 36, 3409–3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeanu, N.; Egbu, R.; Onyekuru, L.; Javaheri, H.; Tee Khaw, P.; Williams, G.R.; Brocchini, S.; Awwad, S. Injectables and depots to prolong drug action of proteins and peptides. J. Pharm. 2020, 12, 999. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lu, A.; Wang, X.; Belhadj, Z.; Wang, J.; Zhang, Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm. Sin. B 2021, 11, 2396–2415. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Chen, J.; Wu, Y.; Zhang, B.; Cai, X.; Zhang, Z.; Wang, Y.; Si, L.; Xu, H.; Zheng, Y. Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. J. Control. Release 2017, 249, 84–93. [Google Scholar] [CrossRef]
- Hoffman, A.S. The early days of PEG and PEGylation (1970s–1990s). Acta Biomater. 2016, 40, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.B.; Price, J.L. How PEGylation influences protein conformational stability. Curr. Opin. Chem. Biol. 2016, 34, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heise, T.; Mathieu, C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes. Metab. 2017, 19, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Sun, T.; Jiang, C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm. Sin. B 2018, 8, 34–50. [Google Scholar] [CrossRef]
- Duivelshof, B.L.; Murisier, A.; Camperi, J.; Fekete, S.; Beck, A.; Guillarme, D.; D’Atri, V. Therapeutic Fc-fusion proteins: Current analytical strategies. J. Sep. Sci. 2021, 44, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 2018, 9, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT: Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Hassett, B.; Singh, E.; Mahgoub, E.; O’Brien, J.; Vicik, S.M.; Fitzpatrick, B. Manufacturing history of etanercept (Enbrel®): Consistency of product quality through major process revisions. mAbs 2018, 10-1, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.W.; Evans, M.A.; Wang, L.L.-W.; Baugh, N.; Iyer, S.; Wu, D.; Zhao, Z.; Pusuluri, A.; Ukidve, A.; Pan, D.C. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 2020, 6, eaaz6579. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ukidve, A.; Gao, Y.; Kim, J.; Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 2019, 5, eaax9250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayer, M.; Klok, H.-A. Cell-mediated delivery of synthetic nano-and microparticles. J. Control. Release 2017, 259, 92–104. [Google Scholar] [CrossRef]
- Burness, C.B.; Dhillon, S.; Keam, S.J. Lanreotide Autogel®: A review of its use in the treatment of patients with acromegaly. J. Drugs 2014, 74, 1673–1691. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Toguchi, H. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 1995, 12, 1–99. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Otte, A.; Sharifi, F.; Garner, J.; Skidmore, S.; Park, H.; Jhon, Y.K.; Qin, B.; Wang, Y. Formulation composition, manufacturing process, and characterization of poly (lactide-co-glycolide) microparticles. J. Control. Release 2021, 329, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Walker, J.; Ackermann, R.; Olsen, K.; Hong, J.K.; Wang, Y.; Schwendeman, S.P. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. J. Mol. Pharm. 2020, 17, 1502–1515. [Google Scholar] [CrossRef] [PubMed]
- Barenholz, Y.C. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Mantripragada, S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog. Lipid Res. 2002, 41, 392–406. [Google Scholar] [CrossRef]
- Meyer, J.M. Converting oral to long-acting injectable antipsychotics: A guide for the perplexed–CORRIGENDUM. CNS Spectr. 2018, 23, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahnfeld, L.; Luciani, P. Injectable lipid-based depot formulations: Where do we stand? Pharmaceutics 2020, 12, 567. [Google Scholar] [CrossRef] [PubMed]
- Tien, Y.E.; Huang, W.C.; Kuo, H.Y.; Tai, L.; Uang, Y.S.; Chern, W.H.; Huang, J.D. Pharmacokinetics of dinalbuphine sebacate and nalbuphine in human after intramuscular injection of dinalbuphine sebacate in an extended-release formulation. Biopharm. Drug Dispos. 2017, 38, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, I.S.; Hu, H.; Yin, L.; He, W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int. J. Pharm. 2019, 562, 187–202. [Google Scholar] [CrossRef]
- Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release 2014, 183, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F.; He, Z.-D. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J. Control. Release 2016, 243, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tang, X.; Feng, F.; Xu, J.; Wu, C.; Dai, G.; Yue, W.; Zhong, W.; Xu, K. Molecular design of peptide amphiphiles for controlled self-assembly and drug release. J. Mater. Chem. B 2021, 9, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhang, X.; Cheng, X.; Zhang, Y.; Zan, X.; Zhang, L. Medical Applications Based on Supramolecular Self-Assembled Materials from Tannic Acid. Front. Chem. 2020, 8, 871. [Google Scholar] [CrossRef]
- Rymer, S.-J.; Tendler, S.J.; Bosquillon, C.; Washington, C.; Roberts, C.J. Self-assembling peptides and their potential applications in biomedicine. Ther. Deliv. 2011, 2, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J.; Remko, M.; Breza, M.; Madura, I.D.; Kaczmarek, K.; Zabrocki, J.; Wolf, W.M. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules 2020, 25, 1135. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, H.; Xu, B. Biological functions of supramolecular assemblies of small molecules in the cellular environment. RSC Chem. Biol. 2021, 2, 289–305. [Google Scholar] [CrossRef]
- Chen, L.; Deng, J.; Yu, A.; Hu, Y.; Jin, B.; Du, P.; Zhou, J.; Lei, L.; Wang, Y.; Vakal, S. Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioact. Mater. 2021, 10, 420–429. [Google Scholar] [CrossRef]
- Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620. [Google Scholar] [CrossRef] [PubMed]
- Valery, C.; Artzner, F.; Robert, B.; Gulick, T.; Keller, G.; Grabielle-Madelmont, C.; Torres, M.-L.; Cherif-Cheikh, R.; Paternostre, M. Self-association process of a peptide in solution: From β-sheet filaments to large embedded nanotubes. Biophys. J. 2004, 86, 2484–2501. [Google Scholar] [CrossRef] [Green Version]
- Rai, U.; Thrimawithana, T.R.; Dharmadana, D.; Valery, C.; Young, S.A. Release kinetics of somatostatin from self-assembled nanostructured hydrogels. Pept. Sci. 2018, 110, e23085. [Google Scholar] [CrossRef]
- Saif, M.W.; Fu, J.; Smith, M.H.; Weinstein, B.; Relias, V.; Daly, K.P. Treatment with lanreotide depot following octreotide long-acting release among patients with gastroenteropancreatic neuroendocrine tumors. J. Pancreat. Cancer 2018, 4, 64–71. [Google Scholar] [CrossRef]
- Öberg, K.; Lamberts, S.W. Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: Past, present and future. Endocr. Relat. Cancer 2016, 23, R551–R566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelfsema, F.; Biermasz, N.R.; Pereira, A.M.; Romijn, J.A. Therapeutic options in the management of acromegaly: Focus on lanreotide Autogel®. Biol. Targets Ther. 2008, 2, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, R.D.; Melmed, S. A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly. J. Clin. Endocrinol. Metab. 2008, 93, 2957–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarelli, A.; Daly, A.; Beckers, A. Lanreotide Autogel for acromegaly: A new addition to the treatment armamentarium. Treat. Endocrinol. 2004, 3, 77–81. [Google Scholar] [CrossRef]
- Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Migoń, D.; Kamysz, W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals 2020, 13, 442. [Google Scholar] [CrossRef]
- Johnsson, M.; Joabsson, F.; Nistor, C.; Thuresson, K.; Tiberg, F. Peptide Slow-Release Formulations. U.S. Patent US14/598,852, 16 January 2015. [Google Scholar]
- Apte, S. Excipient-API interactions in dry powder inhalers. J. Excip. Food Chem. 2012, 3, 129–142. [Google Scholar]
- Denzer, B.R.; Kulchar, R.J.; Huang, R.B.; Patterson, J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021, 7, 158. [Google Scholar] [CrossRef] [PubMed]
- Frederix, P.W.; Scott, G.G.; Abul-Haija, Y.M.; Kalafatovic, D.; Pappas, C.G.; Javid, N.; Hunt, N.T.; Ulijn, R.V.; Tuttle, T. Exploring the sequence space for (tri-) peptide self-assembly to design and discover new hydrogels. Nat. Chem. 2015, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, W.P. High-resolution magic angle spinning—enabling applications of NMR spectroscopy to semisolid phases. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 72, pp. 111–156. [Google Scholar]
- Claridge, T.D. Diffusion NMR spectroscopy. In Tetrahedron Organic Chemistry Series; Elsevier: Amsterdam, The Netherlands, 2009; Volume 27, pp. 303–334. [Google Scholar]
- Brand, T.; Cabrita, E.J.; Berger, S. Theory and application of NMR diffusion studies. In Modern Magnetic Resonance; Springer: Berlin/Heidelberg, Germany, 2008; pp. 135–143. [Google Scholar]
- Chang, K.-C.; Chiang, Y.-W.; Yang, C.-H.; Liou, J.-W. Atomic force microscopy in biology and biomedicine. Tzu Chi Med. J. 2012, 24, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Brusotti, G.; Calleri, E.; Colombo, R.; Massolini, G.; Rinaldi, F.; Temporini, C. Advances on size exclusion chromatography and applications on the analysis of protein biopharmaceuticals and protein aggregates: A mini review. Chromatographia 2018, 81, 3–23. [Google Scholar] [CrossRef]
- Berkowitz, S.A. Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J. 2006, 8, E590–E605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Pollastrini, J.; Jiang, Y. Separation and characterization of protein aggregates and particles by field flow fractionation. Curr. Pharm. Biotechnol. 2009, 10, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Chatani, E.; Inoue, R.; Imamura, H.; Sugiyama, M.; Kato, M.; Yamamoto, M.; Nishida, K.; Kanaya, T. Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pouget, E.; Fay, N.; Dujardin, E.; Jamin, N.; Berthault, P.; Perrin, L.; Pandit, A.; Rose, T.; Valéry, C.; Thomas, D. Elucidation of the self-assembly pathway of lanreotide octapeptide into β-sheet nanotubes: Role of two stable intermediates. J. Am. Chem. Soc. 2010, 132, 4230–4241. [Google Scholar] [CrossRef] [PubMed]
Sample | %AcOH | HRMAS D Values (m2/s) | −logD Values |
---|---|---|---|
Somatuline Autogel® | 1.24 × 10−10 | 9.90 | |
AK1841045 | 11.0% | 7.38 × 10−10 | 9.13 |
AK1841047 | 8.6% | 2.49 × 10−9 | 8.60 |
AK1841050 | Adjusted to 11.0% | 7.67 × 10−10 | 9.11 |
AK1841052 | 5.7% | 1.19 × 10−9 | 8.92 |
AK1841053 | Adjusted to 11.0% | 7.69 × 10−10 | 9.11 |
Sample | %AcOH | MRI D Values (m2/s) | −logD Values |
---|---|---|---|
Somatuline Autogel® | 11.5% | (4.04 ± 0.05) × 10−10 | 9.39 |
AK1841045 | 11.0% | (3.76 ± 0.02) × 10−10 | 9.42 |
AK1841047 | 8.6% | (4.27 ± 0.05) × 10−10 | 9.37 |
AK1841050 | Adjusted to 11.0% | (3.52 ± 0.02) × 10−10 | 9.45 |
AK1841052 | 5.7% | (3.75 ± 0.08) × 10−10 | 9.42 |
AK1841053 | Adjusted to 11.0% | (4.30 ± 0.01) × 10−10 | 9.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimaldi, M.; Santoro, A.; Buonocore, M.; Crivaro, C.; Funicello, N.; Sublimi Saponetti, M.; Ripoli, C.; Rodriquez, M.; De Pasquale, S.; Bobba, F.; et al. A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics 2022, 14, 681. https://doi.org/10.3390/pharmaceutics14030681
Grimaldi M, Santoro A, Buonocore M, Crivaro C, Funicello N, Sublimi Saponetti M, Ripoli C, Rodriquez M, De Pasquale S, Bobba F, et al. A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics. 2022; 14(3):681. https://doi.org/10.3390/pharmaceutics14030681
Chicago/Turabian StyleGrimaldi, Manuela, Angelo Santoro, Michela Buonocore, Claudio Crivaro, Nicola Funicello, Matilde Sublimi Saponetti, Cristina Ripoli, Manuela Rodriquez, Salvatore De Pasquale, Fabrizio Bobba, and et al. 2022. "A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel" Pharmaceutics 14, no. 3: 681. https://doi.org/10.3390/pharmaceutics14030681
APA StyleGrimaldi, M., Santoro, A., Buonocore, M., Crivaro, C., Funicello, N., Sublimi Saponetti, M., Ripoli, C., Rodriquez, M., De Pasquale, S., Bobba, F., Ferrazzano, L., Cabri, W., D’Ursi, A. M., & Ricci, A. (2022). A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics, 14(3), 681. https://doi.org/10.3390/pharmaceutics14030681