Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of CNPs
2.2.1. Synthesis of CNPs
2.2.2. Optimization of CNPs
2.2.3. Characterization of CNPs
2.3. Antioxidant Activity of CNPs
2.4. In Vivo Studies of CNPs
2.4.1. Animals
2.4.2. Treatment
2.4.3. Behavioral Studies
2.4.4. Biochemical Estimation
2.5. Statistical Analysis
3. Results
3.1. Development of CNPs
3.2. Anti-Oxidant Activity of CNPs
3.3. In Vivo Studies of CNPs
3.3.1. Behavioral Studies
3.3.2. Biochemical Estimation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dou, Y.; Zhao, D.; Yang, F.; Tang, Y.; Chang, J. Natural Phyto-Antioxidant Albumin Nanoagents to Treat Advanced Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2021, 13, 30373–30382. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J. Pharm. Sci. 2015, 104, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Dhas, N.; Mehta, T. Intranasal delivery of chitosan decorated PLGA core/shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021, 61, 102242. [Google Scholar] [CrossRef]
- Dutta, D.; Mukherjee, R.; Patra, M.; Banik, M.; Dasgupta, R.; Mukherjee, M.; Basu, T. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf. B Biointerfaces 2016, 147, 45–53. [Google Scholar] [CrossRef]
- Protective Effects of Cerium Oxide Nanoparticles in Non-Alcoholic Fatty Liver Disease (NAFLD) and Carbon Tetrachloride-Induced Liver Damage in Rats: Study on Intestine and Liver. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626579/ (accessed on 10 February 2022).
- Feng, Y.; Wang, X. Antioxidant Therapies for Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2012, 2012, 472932. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410354/ (accessed on 21 May 2021). [CrossRef] [Green Version]
- D’Angelo, B.; Santucci, S.; Benedetti, E.; Di Loreto, S.; Phani, R.; Falone, S.; Amicarelli, F.; Ceru, M.; Cimini, A. Cerium Oxide Nanoparticles Trigger Neuronal Survival in a Human Alzheimer Disease Model By Modulating BDNF Pathway. Curr. Nanosci. 2009, 5, 167–176. [Google Scholar] [CrossRef]
- Sundararajan, V.; Venkatasubbu, G.D.; Sheik Mohideen, S. Investigation of therapeutic potential of cerium oxide nanoparticles in Alzheimer’s disease using transgenic Drosophila. 3 Biotech 2021, 11, 159. [Google Scholar] [CrossRef]
- Naz, S.; Beach, J.; Heckert, B.; Tummala, T.; Pashchenko, O.; Banerjee, T.; Santra, S. Cerium oxide nanoparticles: A ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine 2017, 12, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Dowding, J.M.; Song, W.; Bossy, K.; Karakoti, A.; Kumar, A.; Kim, A.; Bossy, B.; Seal, S.; Ellisman, M.H.; Perkins, G.; et al. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014, 21, 1622–1632. [Google Scholar] [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420. [Google Scholar] [CrossRef]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 10, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Imran, M.; Kesharwani, P.; Khanna, K.; Karwasra, R.; Sharma, N.; Rawat, S.; Sharma, D.; Ahmad, F.J.; Jain, G.K.; et al. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 2021, 599, 120428. [Google Scholar] [CrossRef]
- Chen, W.; Lu, F.; Chen, C.C.V.; Mo, K.C.; Hung, Y.; Guo, Z.X.; Lin, C.H.; Lin, M.H.; Lin, Y.H.; Chang, C.; et al. Manganese-enhanced MRI of rat brain based on slow cerebral delivery of manganese(II) with silica-encapsulated MnxFe1–xO nanoparticles. NMR Biomed. 2013, 26, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Intranasal Pitavastatin Attenuates Seizures in Different Experimental Models of Epilepsy in Mice—Epilepsy & Behavior. Available online: https://www.epilepsybehavior.com/article/S1525-5050(17)30173-7/fulltext (accessed on 22 March 2022).
- Tang, Z.; Xiao, Y.; Kong, N.; Liu, C.; Chen, W.; Huang, X.; Xu, D.; Ouyang, J.; Feng, C.; Wang, C.; et al. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3447–3464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Chen, W.; Cheng, C.-A.; Deng, T.; Wang, R.; Zink, J.I. Chapter Three—Stimuli-Responsive Nanomachines and Caps for Drug Delivery. In The Enzymes; Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A; Tamanoi, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 43, pp. 31–65. Available online: https://www.sciencedirect.com/science/article/pii/S1874604718300040 (accessed on 22 March 2022).
- Bonferoni, M.C.; Rassu, G.; Gavini, E.; Sorrenti, M.; Catenacci, L.; Giunchedi, P. Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020, 12, 1246. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chang, H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf. Physicochem. Eng. Asp. 2004, 242, 61–69. [Google Scholar] [CrossRef]
- Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E Loaded Naringenin Nanoemulsion via Intranasal Delivery for the Management of Oxidative Stress in a 6-OHDA Parkinson’s Disease Model. BioMed Res. Int. 2019, 2019, 2382563. [Google Scholar] [CrossRef]
- Khan, U.A.; Parveen, U.; Hasan, N.; Ahmed, M.Z.; Saad, S.; Ahmad, F.J.; Jain, G.K. Parenteral Sustained Release Lipid Phase-Transition System of Ziprasidone: Fabrication and Evaluation for Schizophrenia Therapy. Drug Des. Devel. Ther. 2020, 14, 2237–2247. [Google Scholar] [CrossRef]
- Gacar, N.; Mutlu, O.; Utkan, T.; Komsuoglu Celikyurt, I.; Gocmez, S.S.; Ulak, G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol. Biochem. Behav. 2011, 99, 316–323. [Google Scholar] [CrossRef]
- Alisik, M.; Neselioglu, S.; Erel, O. A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. J. Lab. Med. 2019, 43, 269–277. [Google Scholar] [CrossRef]
- Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharm. 2019, 110, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Prabaharan, D.M.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, S. Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles. Mater. Res. 2016, 19, 478–482. [Google Scholar] [CrossRef]
- Huang, W.-J.; Zhang, X.; Chen, W.-W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar]
- Ciofani, G.; Genchi, G.G.; Mazzolai, B.; Mattoli, V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim. Biophys. Acta 2014, 1840, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Aykac, A.; Ozbeyli, D.; Uncu, M.; Ertaş, B.; Kılınc, O.; Şen, A.; Orun, O.; Sener, G. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019, 689, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Danion, J.-M.; Zimmermann, M.-A.; Willard-Schroeder, D.; Grangé, D.; Welsch, M.; Imbs, J.-L.; Singer, L. Effects of scopolamine, trimipramine and diazepam on explicit memory and repetition priming in healthy volunteers. Psychopharmacology 1990, 102, 422–424. [Google Scholar] [CrossRef]
- The Cellular and Molecular Processes Associated with Scopolamine-Induced Memory Deficit: A Model of Alzheimer’s Biomarkers. Available online: https://pubmed.ncbi.nlm.nih.gov/31351082/ (accessed on 22 March 2022).
- Adult Hippocampal Neurogenesis and Its Role in Alzheimer’s Disease. Available online: https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/1750-1326-6-85 (accessed on 22 March 2022).
- Jann, M.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy 2000, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
Formulation Code | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | |
CNP1 | 0.01 | 70 | 50 | 140.2 ± 3.50 | −10.2 ± 0.25 |
CNP2 | 0.01 | 45 | 70 | 155.4 ± 4.19 | −13.2 ± 0.35 |
CNP3 | 0.04 | 70 | 50 | 132.4 ± 3.31 | −22.6 ± 0.56 |
CNP4 | 0.025 | 70 | 70 | 160.2 ± 4.80 | −16.4 ± 0.49 |
CNP5 | 0.025 | 20 | 30 | 200.9 ± 6.42 | −17.4 ± 0.55 |
CNP6 | 0.025 | 20 | 70 | 183.4 ± 6.23 | −18.2 ± 0.61 |
CNP7 | 0.025 | 45 | 50 | 143.6 ± 4.73 | −15.8 ± 0.39 |
CNP8 | 0.025 | 45 | 50 | 143.1 ± 4.86 | −15.4 ± 0.40 |
CNP9 | 0.04 | 45 | 70 | 160.2 ± 6.08 | −23.4 ± 0.72 |
CNP10 | 0.025 | 70 | 30 | 176.4 ± 4.93 | −20.6 ± 0.57 |
CNP11 | 0.025 | 45 | 50 | 141.1 ± 4.37 | −15.6 ± 0.46 |
CNP12 | 0.01 | 20 | 50 | 157.5 ± 3.93 | −10.4 ± 0.26 |
CNP13 | 0.04 | 20 | 50 | 162.6 ± 4.87 | −25.2 ± 0.80 |
CNP14 | 0.025 | 45 | 50 | 142.8 ± 5.71 | −15.8 ± 0.42 |
CNP15 | 0.025 | 45 | 50 | 143.4 ± 3.87 | −14.2 ± 0.39 |
CNP16 | 0.01 | 45 | 30 | 172.6 ± 4.83 | −11.2 ± 0.32 |
CNP17 | 0.04 | 45 | 30 | 168.3 ± 5.38 | −26.2 ± 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danish, S.M.; Gupta, A.; Khan, U.A.; Hasan, N.; Ahmad, F.J.; Warsi, M.H.; Ali, A.M.A.; Zafar, A.; Jain, G.K. Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway. Pharmaceutics 2022, 14, 756. https://doi.org/10.3390/pharmaceutics14040756
Danish SM, Gupta A, Khan UA, Hasan N, Ahmad FJ, Warsi MH, Ali AMA, Zafar A, Jain GK. Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway. Pharmaceutics. 2022; 14(4):756. https://doi.org/10.3390/pharmaceutics14040756
Chicago/Turabian StyleDanish, Syed Mohammad, Anshul Gupta, Urooj Ahmad Khan, Nazeer Hasan, Farhan Jalees Ahmad, Musarrat Husain Warsi, Ahmed M. Abdelhaleem Ali, Ameeduzzafar Zafar, and Gaurav Kumar Jain. 2022. "Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway" Pharmaceutics 14, no. 4: 756. https://doi.org/10.3390/pharmaceutics14040756
APA StyleDanish, S. M., Gupta, A., Khan, U. A., Hasan, N., Ahmad, F. J., Warsi, M. H., Ali, A. M. A., Zafar, A., & Jain, G. K. (2022). Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway. Pharmaceutics, 14(4), 756. https://doi.org/10.3390/pharmaceutics14040756