Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment
Abstract
:1. Introduction
2. Status of Cardiovascular Inflammatory Diseases
2.1. Existing Methods of Diagnosis for Myocardial Injury Inflammatory Lesions
2.2. Current Treatment Methods for Myocardial Injury and Inflammatory Lesions
2.3. Problems That Need to Be Solved
2.3.1. Hydrogel
2.3.2. Nano-Enzyme
2.3.3. Extracellular Vesicles
2.3.4. Other Nanomaterials
3. Application of Nanomedicine Targeted to Cardiovascular Inflammatory Diseases
3.1. Nanomedicine Modulates the Microenvironment during Cardiovascular Inflammatory Diseases
3.2. Nanomedicine Boost Immunotherapy for Cardiovascular Inflammatory Diseases
4. Application of Functional Nanomaterials in the Visualization of Cardiovascular Injury
4.1. Nuclear Imaging
4.2. Optical Imaging
4.3. Contrast Ultrasound Imaging
4.4. Multimodal Imaging
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gangavelli, A.; Morris, A.A. Premature Cardiovascular Mortality in the United States: Who Will Protect the Most Vulnerable among US. Circulation 2021, 144, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.P.; Vaduganathan, M.; McCarthy, K.J.; Januzzi, J.L.; Bhatt, D.L.; McEvoy, J.W. Left Ventricular Thrombus after Acute Myocardial Infarction: Screening, Prevention, and Treatment. JAMA Cardiol. 2018, 7, 642–649. [Google Scholar] [CrossRef]
- Dauerman, H.L.; Ibanez, B. The Edge of Time in Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1871–1874. [Google Scholar] [CrossRef] [PubMed]
- Soysal, P.; Arik, F.; Smith, L.; Jackson, S.E.; Isik, A.T. Inflammation, Frailty and Cardiovascular Disease. Adv. Exp. Med. Biol. 2020, 1216, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-N.; Jin, J.-L.; Zhang, M.; Hong, L.-F.; Guo, Y.-L.; Wu, N.-Q.; Zhu, C.-G.; Dong, Q.; Li, J.-J. Differential leukocyte counts and cardiovascular mortality in very old patients with acute myocardial infarction: A Chinese cohort study. BMC Cardiovasc. Disord. 2020, 20, 465. [Google Scholar] [CrossRef] [PubMed]
- de Lemos, J.A.; Newby, L.K.; Mills, N.L. A Proposal for Modest Revision of the Definition of Type 1 and Type 2 Myocardial Infarction. Circulation 2019, 140, 1773–1775. [Google Scholar] [CrossRef]
- Zhang, S.; Weinberg, S.; DeBerge, M.; Gainullina, A.; Schipma, M.; Kinchen, J.M.; Ben-Sahra, I.; Gius, D.R.; Yvan-Charvet, L.; Chandel, N.S.; et al. Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metab. 2019, 29, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayado, N.; He, D.; Li, J.; Chen, H.; Li, L.; Li, J.; Long, X.; Du, T.; Tang, J.; et al. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front. Cardiovasc. Med. 2021, 8, 758050. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Zhang, P.; Li, Y. Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today 2019, 29, 100801. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, S.G.; Yang, J.; Liang, A.J.; Li, Y.S.; Zhuang, Q.X.; Gu, J.L. Nanoscale Zr-Based MOFs with Tailorable Size and Introduced Mesopore for Protein Delivery. Adv. Funct. Mater. 2017, 28, 16. [Google Scholar] [CrossRef]
- Krejci, J.; Mlejnek, D.; Sochorova, D.; Nemec, P. Inflammatory Cardiomyopathy: A Current View on the Pathophysiology, Diagnosis, and Treatment. Biomed. Res. Int. 2016, 2016, 4087632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Kiamanesh, O.; Toma, M. The State of the Heart Biopsy: A Clinical Review. CJC Open 2021, 3, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Buggey, J.; ElAmm, C.A. Myocarditis and cardiomyopathy. Curr. Opin. Cardiol. 2018, 33, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Marcolongo, R.; Basso, C.; Iliceto, S. Clinical presentation and diagnosis of myocarditis. Heart 2015, 101, 1332–1344. [Google Scholar] [CrossRef]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef] [PubMed]
- Tschope, C.; Cooper, L.T.; Torre-Amione, G.; Van Linthout, S. Management of Myocarditis-Related Cardiomyopathy in Adults. Circ. Res. 2019, 124, 1568–1583. [Google Scholar] [CrossRef] [PubMed]
- Putschoegl, A.; Auerbach, S. Diagnosis, Evaluation, and Treatment of Myocarditis in Children. Pediatr. Clin. N. Am. 2020, 67, 855–874. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- L’Heureux, M.; Sternberg, M.; Brath, L.; Turlington, J.; Kashiouris, M.G. Sepsis-Induced Cardiomyopathy: A Comprehensive Review. Curr. Cardiol. Rep. 2020, 22, 35. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.W.; Zhu, Y.F.; Zhang, R.; Zhang, M.; Ye, X.L.; Wei, J.R. Incidence, prognosis, and risk factors of sepsis -induced cardiomyopathy. World J. Clin. Cases 2021, 9, 9452–9468. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Marwick, T.H.; Ritchie, R.; Shaw, J.E.; Kaye, D. Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 71, 339–351. [Google Scholar] [CrossRef]
- Dillmann, W.H. Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.V.; Pandey, A.; de Lemos, J.A. Conceptual Framework for Addressing Residual Atherosclerotic Cardiovascular Disease Risk in the Era of Precision Medicine. Circulation 2018, 137, 2551–2553. [Google Scholar] [CrossRef] [PubMed]
- Saucerman, J.J.; Tan, P.M.; Buchholz, K.S.; McCulloch, A.D.; Omens, J.H. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 2019, 16, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, X.F.; Chen, H.Z.; Liu, D.P. Mitochondrial Sirtuins in cardiometabolic diseases. Clin. Sci. 2017, 131, 2063–2078. [Google Scholar] [CrossRef] [PubMed]
- Costantino, S.; Paneni, F.; Cosentino, F. Ageing, metabolism and cardiovascular disease. J. Physiol. 2016, 594, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Digby, J.E.; Cahill, T.J.; Tavare, A.N.; Corbin, A.L.; Saluja, S.; Dawkins, S.; Edgar, L.; Rawlings, N.; Ziberna, K.; et al. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2017, 2, e93344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Luo, Y.X.; Chen, H.Z.; Liu, D.P. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed]
- Eelen, G.; de Zeeuw, P.; Simons, M.; Carmeliet, P. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 2015, 116, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Fung, G.; Luo, H.; Qiu, Y.; Yang, D.; McManus, B. Myocarditis. Circ. Res. 2016, 118, 496–514. [Google Scholar] [CrossRef] [PubMed]
- Correa, S.; Grosskopf, A.K.; Lopez Hernandez, H.; Chan, D.; Yu, A.C.; Stapleton, L.M.; Appel, E.A. Translational Applications of Hydrogels. Chem. Rev. 2021, 121, 11385–11457. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Krishnan, N.; Heo, J.; Fang, R.H.; Zhang, L. Nanoparticle-hydrogel superstructures for biomedical applications. J. Control. Release 2020, 324, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Qi, X.; Shi, G.; Zhang, M.; Haick, H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano 2022, 16, 1708–1733. [Google Scholar] [CrossRef]
- Zhao, C.; Tian, S.; Liu, Q.; Xiu, K.; Lei, I.; Wang, Z.; Ma, P.X. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. Adv. Funct. Mater. 2020, 30, 2000776. [Google Scholar] [CrossRef]
- Ghanta, R.K.; Aghlara-Fotovat, S.; Pugazenthi, A.; Ryan, C.T.; Singh, V.P.; Mathison, M.; Jarvis, M.I.; Mukherjee, S.; Hernandez, A.; Veiseh, O. Immune-modulatory alginate protects mesenchymal stem cells for sustained delivery of reparative factors to ischemic myocardium. Biomater. Sci. 2020, 18, 5061–5070. [Google Scholar] [CrossRef]
- Li, H.; Yu, B.; Yang, P.; Zhan, J.; Fan, X.; Chen, P.; Liao, X.; Ou, C.; Cai, Y.; Chen, M. Injectable AuNP-HA matrix with localized stiffness enhances the formation of gap junction in engrafted human induced pluripotent stem cell-derived cardiomyocytes and promotes cardiac repair. Biomaterials 2021, 279, 121231. [Google Scholar] [CrossRef]
- Wu, J.J.X.; Wang, X.Y.; Wang, Q.; Lou, Z.P.; Li, S.R.; Zhu, Y.Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Wang, H.; Wan, K.; Shi, X. Recent Advances in Nanozyme Research. Adv. Mater. 2019, 31, e1805368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khalique, A.; Du, X.; Gao, Z.; Wu, J.; Zhang, X.; Zhang, R.; Sun, Z.; Liu, Q.; Xu, Z.; et al. Biomimetic Design of Mitochondria-Targeted Hybrid Nanozymes as Superoxide Scavengers. Adv. Mater. 2021, 33, e2006570. [Google Scholar] [CrossRef]
- Li, H.Y.; Yan, J.; Meng, D.J.; Cai, R.; Gao, X.S.; Ji, Y.L.; Wang, L.M.; Chen, C.Y.; Wu, X.C. Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS Nano 2020, 14, 12854–12865. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Bandu, R.; Oh, J.W.; Kim, K.P. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp. Mol. Med. 2019, 51, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Li, Z.; Liu, Y.; Yuan, L. Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets. Theranostics 2021, 11, 3996–4010. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Adamiak, M.; Mathiyalagan, P.; Kenneweg, F.; Kafert-Kasting, S.; Thum, T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases Roadmap to the Clinic. Circulation 2021, 143, 1426–1449. [Google Scholar] [CrossRef]
- Liu, C.; He, D.; Cen, H.; Chen, H.; Li, L.; Nie, G.; Zhong, Z.; He, Q.; Yang, X.; Guo, S.; et al. Nucleic acid functionalized extracellular vesicles as promising therapeutic systems for nanomedicine. Extracell. Vesicles Circ. Nucleic Acids 2022, 3, 14–30. [Google Scholar] [CrossRef]
- Anselmo, A.; Frank, D.; Papa, L.; Viviani Anselmi, C.; Di Pasquale, E.; Mazzola, M.; Panico, C.; Clemente, F.; Soldani, C.; Pagiatakis, C.; et al. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur. Heart J. 2021, 42, 2780–2792. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Nie, W.; Jiang, J.; Li, S.; Li, Z.; Tian, L.; Ma, X. Exosomes derived from cardiac progenitor cells attenuate CVB3-induced apoptosis via abrogating the proliferation of CVB3 and modulating the mTOR signaling pathways. Cell Death Dis. 2019, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Mulder, W.J.M.; Jaffer, F.A.; Fayad, Z.A.; Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 2014, 6, 239sr1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.; Huh, M.S.; Ryu, J.H.; Lee, D.E.; Sun, I.C.; Choi, K.; Kim, K.; Kwon, I.C. Nanoprobes for biomedical imaging in living systems. Nano Today 2011, 2, 204–220. [Google Scholar] [CrossRef]
- Ma, T.; Hou, Y.; Zeng, J.; Liu, C.; Zhang, P.; Jing, L.; Shangguan, D.; Gao, M. Dual-Ratiometric Target-Triggered Fluorescent Probe for Simultaneous Quantitative Visualization of Tumor Microenvironment Protease Activity and pH In Vivo. J. Am. Chem. Soc. 2018, 140, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Luo, W.; Hu, J.; Zuo, L.; Wang, J.; Hu, R.; Wang, B.; Xu, L.; Li, J.; Wu, M.; et al. Cardiomyocyte-targeted and 17 beta-estradiol-loaded acoustic nanoprobes as a theranostic platform for cardiac hypertrophy. J. Nanobiotechnol. 2018, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Solaiyappan, M.; Weiss, R.G.; Bottomley, P.A. Neural-network classification of cardiac disease from P-31 cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism. J. Cardiovasc. Magn. R 2019, 21, 49. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Zhou, S.Y.; Lu, S.; Tu, D.T.; Zheng, W.; Liu, Y.; Li, R.F.; Chen, X.Y. Lanthanide Metal-Organic Framework Nanoprobes for the In Vitro Detection of Cardiac Disease Markers. ACS Appl. Mater. Interfaces 2019, 11, 43989–43995. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, L.; Ma, Y.; Hu, K.; Wu, P.; Pan, L.; Chen, H.; Li, L.; Hu, H.; Zhang, J. Pulmonary circulation-mediated heart targeting for the prevention of heart failure by inhalation of intrinsically bioactive nanoparticles. Theranostics 2021, 11, 8550–8569. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; He, L.; Ma, B.; Chen, T. Facile Nanolization Strategy for Therapeutic Ganoderma Lucidum Spore Oil to Achieve Enhanced Protection against Radiation-Induced Heart Disease. Small 2019, 15, e1902642. [Google Scholar] [CrossRef]
- Tokutome, M.; Matoba, T.; Nakano, Y.; Okahara, A.; Fujiwara, M.; Koga, J.I.; Nakano, K.; Tsutsui, H.; Egashira, K. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc. Res. 2019, 115, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zeng, G.; Cheng, J.; Hu, J.; Zhang, M.; Li, Y. Engineered macrophage membrane-enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng. Transl. Med. 2020, 2, e10197. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Zhao, X.; Xian, Y.; Wu, W.; Zhang, X.; Zhao, N.; Xu, F.-J.; Wang, C. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. Adv. Sci. 2021, 8, e2100505. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Liu, R.; Qiao, C.; Lu, Z.; Shi, Y.; Fan, Z.; Zhang, Z.; Zhang, X. Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair Modulation of Macrophages. Theranostics 2017, 7, 4149–4167. [Google Scholar] [CrossRef]
- Richart, A.L.; Reddy, M.; Khalaji, M.; Natoli, A.L.; Heywood, S.E.; Siebel, A.L.; Lancaster, G.L.; Murphy, A.J.; Carey, A.L.; Drew, B.G.; et al. Apo AI Nanoparticles Delivered Post Myocardial Infarction Moderate Inflammation. Circ. Res. 2020, 127, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Najer, A.; Blakney, A.K.; McKay, P.F.; Bellahcene, M.; Winter, C.W.; Sintou, A.; Tang, J.; Keane, T.J.; Schneider, M.D.; et al. Neutrophils Enable Local and Non-Invasive Liposome Delivery to Inflamed Skeletal Muscle and Ischemic Heart. Adv. Mater. 2020, 32, e2003598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Z.; Song, Y.A.; Chen, J.; Li, Q.Y.; Gao, J.F.; Tan, H.P.; Zhu, Y.F.; Wang, Z.M.; Li, M.H.; Yang, H.B.; et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021, 276, 121028. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Huang, K.; Ma, H.; Liang, H.X.; Dinh, P.U.; Chen, J.; Shen, D.L.; Allen, T.A.; Qiao, L.; Li, Z.H.; et al. Platelet-Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Adv. Funct. Mater. 2019, 29, 1803567. [Google Scholar] [CrossRef]
- Wang, H.; Gao, P.; Jing, L.; Qin, X.; Sun, X. The heart-protective mechanism of nitronyl nitroxide radicals on murine viral myocarditis induced by CVB3. Biochimie 2012, 94, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef]
- Swirski, F.K.; Nahrendorf, M. Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 2018, 18, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Adrover, J.M.; Aroca-Crevillen, A.; Crainiciuc, G.; Ostos, F.; Rojas-Vega, Y.; Rubio-Ponce, A.; Cilloniz, C.; Bonzon-Kulichenko, E.; Calvo, E.; Rico, D.; et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 2020, 21, 135–144. [Google Scholar] [CrossRef]
- Doring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases Recent Experimental and Clinical Insights. Circ. Res. 2020, 126, 1228–1241. [Google Scholar] [CrossRef] [PubMed]
- Rurik, J.G.; Aghajanian, H.; Epstein, J.A. Immune Cells and Immunotherapy for Cardiac Injury and Repair. Circ. Res. 2021, 128, 1766–1779. [Google Scholar] [CrossRef] [PubMed]
- Bueno, H.; Moura, B.; Lancellotti, P.; Bauersachs, J. The year in cardiovascular medicine 2020: Heart failure and cardiomyopathies. Eur. Heart J. 2021, 42, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Schloss, M.J.; Swirski, F.K.; Nahrendorf, M. Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circ. Res. 2020, 126, 1242–1259. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.F.; Hua, A.; Plein, S.; D’Cruz, D.P.; Fernando, M.M.A.; Friedrich, M.G.; Zellweger, M.J.; Giorgetti, A.; Caobelli, F.; Haaf, P. The role of cardiovascular magnetic resonance in the evaluation of acute myocarditis and inflammatory cardiomyopathies in clinical practice—A comprehensive review. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Zaman, R.; Hamidzada, H.; Kantores, C.; Wong, A.; Dick, S.A.; Wang, Y.; Momen, A.; Aronoff, L.; Lin, J.; Razani, B.; et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 2021, 54, 2057–2071. [Google Scholar] [CrossRef]
- Ferraro, B.; Leoni, G.; Hinkel, R.; Ormanns, S.; Paulin, N.; Ortega-Gomez, A.; Viola, J.R.; de Jong, R.; Bongiovanni, D.; Bozoglu, T.; et al. Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. J. Am. Coll. Cardiol. 2019, 73, 2990–3002. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Song, S.; Li, H.; Yang, H.; Zhou, B.; Li, Y.; Yue, Z.; Lian, H.; Liu, L.; et al. gp130 Controls Cardiomyocyte Proliferation and Heart Regeneration. Circulation 2020, 142, 967–982. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.R.; Mohan, J.; Kopecky, B.J.; Guo, S.; Du, L.; Leid, J.; Feng, G.; Lokshina, I.; Dmytrenko, O.; Luehmann, H.; et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 2021, 54, 2072–2088. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, F.; Nahrendorf, M. Novel functions of macrophages in the heart: Insights into electrical conduction, stress, and diastolic dysfunction. Eur. Heart J. 2020, 41, 989–994. [Google Scholar] [CrossRef]
- Xiong, T.; Yang, X.Q.; Wang, D.X. Macrophage: Beyond cardiac structural remodelling. Eur. Heart J. 2019, 40, 1013. [Google Scholar] [CrossRef] [PubMed]
- Li, M.O.; Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 2016, 16, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, F.; Jaccard, A.; Romero, P.; Yu, Y.R.; Ho, P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020, 2, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Desdin-Mico, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabande-Rodriguez, E.; Blanco, E.M.; Alfranca, A.; Cusso, L.; Desco, M.; et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wang, L.; Qiu, S.; Yao, Y.; Yan, C.; Xiong, X.; Chen, X.; Ji, Q.; Cao, J.; et al. NAD(+) supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell Rep. 2021, 36, 109516. [Google Scholar] [CrossRef]
- Nacarelli, T.; Lau, L.; Fukumoto, T.; Zundell, J.; Fatkhutdinov, N.; Wu, S.; Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Schultz, D.; et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 2019, 21, 397–407. [Google Scholar] [CrossRef]
- Tschope, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hubner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.T.; Chen, Y.H.; Li, K.; Zhan, R.; Zhao, M.M.; Xu, Y.K.; Lin, Z.Y.; Fu, Y.; He, Q.H.; Tang, P.C.; et al. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur. Heart J. 2021, 42, 4373–4385. [Google Scholar] [CrossRef]
- Ferreira, M.P.A.; Ranjan, S.; Kinnunen, S.; Correia, A.; Talman, V.; Makila, E.; Barrios-Lopez, B.; Kemell, M.; Balasubramanian, V.; Salonen, J.; et al. Drug-Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small 2017, 13, 1701276. [Google Scholar] [CrossRef]
- Ueno, T.; Dutta, P.; Keliher, E.; Leuschner, F.; Majmudar, M.; Marinelli, B.; Iwamoto, Y.; Figueiredo, J.-L.; Christen, T.; Swirski, F.K.; et al. Nanoparticle PET-CT detects rejection and immunomodulation in cardiac allografts. Circ. Cardiovasc. Imaging 2013, 6, 568–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keliher, E.J.; Ye, Y.-X.; Wojtkiewicz, G.R.; Aguirre, A.D.; Tricot, B.; Senders, M.L.; Groenen, H.; Fay, F.; Perez-Medina, C.; Calcagno, C.; et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 2017, 8, 14064. [Google Scholar] [CrossRef] [PubMed]
- Stockhofe, K.; Postema, J.M.; Schieferstein, H.; Ross, T.L. Radiolabeling of Nanoparticles and Polymers for PET Imaging. Pharmaceuticals 2014, 7, 392–418. [Google Scholar] [CrossRef]
- Park, C.; Park, E.H.; Kang, J.; Zaheer, J.; Lee, H.G.; Lee, C.H.; Chang, K.; Hong, K.S. MR Assessment of Acute Pathologic Process after Myocardial Infarction in a Permanent Ligation Mouse Model: Role of Magnetic Nanoparticle-Contrasted MRI. Contrast Media Mol. Imaging 2017, 2017, 2870802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuadrado, I.; Piedras, M.J.G.M.; Herruzo, I.; Turpin, M.D.; Castejon, B.; Reventun, P.; Martin, A.; Saura, M.; Zamorano, J.L.; Zaragoza, C. EMMPRIN-Targeted Magnetic Nanoparticles for In Vivo Visualization and Regression of Acute Myocardial Infarction. Theranostics 2016, 6, 545–557. [Google Scholar] [CrossRef]
- Lu, K.-Y.; Lin, P.-Y.; Chuang, E.-Y.; Shih, C.-M.; Cheng, T.-M.; Lin, T.-Y.; Sung, H.-W.; Mi, F.-L. HO-Depleting and O-Generating Selenium Nanoparticles for Fluorescence Imaging and Photodynamic Treatment of Proinflammatory-Activated Macrophages. ACS Appl. Mater. Interfaces 2017, 9, 5158–5172. [Google Scholar] [CrossRef] [PubMed]
- Kosuge, H.; Sherlock, S.P.; Kitagawa, T.; Dash, R.; Robinson, J.T.; Dai, H.; McConnell, M.V. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J. Am. Heart Assoc. 2012, 1, e002568. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, M.; Xu, X.; Yap, M.L.; Hu, H.; Zhang, J.; Peter, K. A Self-Assembled Fluorescent Nanoprobe for Imaging and Therapy of Cardiac Ischemia/Reperfusion Injury. Adv. Ther. 2019, 2, 1800133. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Zhang, X.; Qi, M.; Zhang, Z.; Zhang, X.-E.; Cui, Z. In Vivo Targeting and Imaging of Atherosclerosis Using Multifunctional Virus-Like Particles of Simian Virus 40. Nano Lett. 2016, 16, 6164–6171. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Chen, H.; Yang, H.; Wu, H.; Zhao, X.; Wang, H.; Chour, T.; Neofytou, E.; Ding, D.; Daldrup-Link, H.; et al. Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles. Adv. Funct. Mater. 2018, 28, 1704939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Chen, X.J.; Liu, L.J.; Tian, J.; Hao, L.; Ran, H.T. Photoacoustic Imaging of Myocardial Infarction Region Using Non-Invasive Fibrin-Targeted Nanoparticles in a Rat Myocardial Ischemia-Reperfusion Model. Int. J. Nanomed. 2021, 16, 1331–1344. [Google Scholar] [CrossRef]
- Zhao, P.; Li, B.; Li, Y.; Chen, L.; Wang, H.; Ye, L. DNA-Templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction. J. Colloid. Interface Sci. 2022, 615, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gifani, M.; Eddins, D.J.; Kosuge, H.; Zhang, Y.; Paluri, S.L.A.; Larson, T.; Leeper, N.; Herzenberg, L.A.; Gambhir, S.S.; McConnell, M.V.; et al. Ultra-selective carbon nanotubes for photoacoustic imaging of inflamed atherosclerotic plaques. Adv. Funct. Mater. 2021, 31, 2101005. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Zhang, H.; Zhang, L.; Liu, L.; Cao, Y.; Ran, H.; Tian, J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J. Nanobiotechnol. 2021, 19, 82. [Google Scholar] [CrossRef] [PubMed]
Nanocarrier | Size | Effective Constituent | Cargo Loading | Model | Type of Disease | Clinical Outcomes | Ref. | |
---|---|---|---|---|---|---|---|---|
Nanofibrous gelling microspheres (NF-GMS) | 60–90 μm | Human embryonic stem cell derived cardiomyocytes (hESC-CMs) | Coincubation | Myocardial infarction rat model | Myocardial infarction | achieve the highest reported engraftment of CMs to date, reduce infarct size, enhance integration of transplanted CMs, stimulate vascularization in the infarct zone, and leads to a substantial recovery of cardiac function | [36] | |
Triazole-(triazole-thiomorpholine dioxide [TMTD] alginate) | 1.5 mm | Mesenchymal stem cells (MSCs) | Coincubation | Myocardial infarction rat model | Acute myocardial infarction | demonstrated in vivo therapeutic application of TMTD-alginate MSC capsules for improvement of ventricular functioning and remodelling in a post-MI rat model | [37] | |
Gold nanoparticle -hyaluronic acid (AuNP-HA) hydrogel | - | Human induced pluripotent stem cells cardiomyocytes (hiPS-CMs) | Coincubation | Myocardial infarction mouse model | Myocardial infarction | ameliorated the electrical conduction block of the ventricle, augment the angiogenic capacity, contribute to improved heart function and reduce ventricular remodeling after MI | [38] | |
Recombinant human ferritin nanocage (FTn) | 12 nm | Manganese (Mn) metal nanoparticle | In situ synthesis | cardiac ischemia–reperfusion mouse model | Cardiac ischemia–reperfusion | alleviate of mitochondrial oxidative injury and enhance the recovery of heart functionality | [42] | |
Nitric oxide synthase (NOS)-like nanoplatform (NanoNOS) | 130 ± 2.3 nm | Noble metal nanoparticle | The modified seed-Mediated method | HUVEC (human umbilical vein endothelial cells) and THP-1 (human acute monocytic leukemia) | Cardiovascular diseases | enhanced the intracellular NO production, greatly diminished injury-induced monocyte-endothelial cell adhesion and help prevent cardiovascular disease | [43] | |
Cardiomyocyte (CM)-derived CD172aþ EVs | - | 0.1–0.5 μm | CM-derived CD172aþ EVs | - | Hypoxic human-induced pluripotent stem cell-derived cardiomyocytes | Cardiovascular diseases | represent a new class of biomarker for myocardial diseases, especially aortic stenosis | [49] |
Cardiac progenitor cells-derived exosomes (CPCs-Ex) | 30–100 nm | CPCs-Ex | - | Viral myocarditis rat modal | Viral myocarditis | attenuate cardiomyocyte apoptosis, repair the cardiomyocyte function | [50] | |
Primary cardiomyocyte-conjugated and 17β-estradiol-loaded perfluorocarbon nanoprobes (PCM-E2/PFPs) | 418 ± 11 nm | Primary cardiomyocyte and 17β-estradiol | Click chemistry | Cardiac hypertrophy rat model | Cardiac hypertrophy | promises to be a potential clinical tool for off-target therapeutics delivery as well as ultrasound contrast Enhancers for theranostics on myocardial pathophysiology | [54] | |
Lanthanide metal-organic framework nanoprobes (Eu−QPTCA) | 150–250 nm | Europium (Eu) metal nanoparticle | Reaction | - | Acute myocardial infarction | Show superior selectivity and reliability toward the practical detection of creatine kinase activity in human serum, indicating the great significance in the early diagnosis of acute myocardial infarction | [56] | |
Reactive oxygen species -scavenging material nanoparticles (TPCD NP) | 101 nm | Reactive oxygen species-scavenging material | Nanoprecipitation/self assembly method | DOX-induced heart failure mouse model | Heart failure | Efficaciously ameliorate DOX-induced heart failure largely by site-specific attenuation of oxidative stress in the heart | [57] | |
Ganoderma lucidum spore oil (GLSO) @P188/PEG400 nanosystem | 90 nm | Ganoderma lucidum spore oil (GLSO) | Homogenization method | X-ray irradiation mouse | Radiation-induced heart disease | Shield the heart from X-rays in vivo, as evidenced by attenuating cardiac dysfunction and fibrosis, accompanied by significant alleviation of X-ray-induced necrosis | [58] | |
Poly (lactic acid/glycolic acid) nanoparticle | 223 nm | Pioglitazone | - | Mouse and porcine myocardial IR injury model and MI model | Myocardial infarctionandCardiac ischemia–reperfusion | Protected the heart from IR injury and cardiac remodeling by antagonizingmonocyte/macrophage-mediated acute inflammation and promoting cardiac healing afterAMI | [59] | |
Macrophagemembrane coated nanoparticles (MMNPs) | - | microRNA199a-3p | Extrusion | Myocardial infarction mouse model | Myocardial infarction | Ameliorate left ventricular remodelingand cardiac functions, and protect against MI | [60] | |
Melanin nanoparticles (MNPs)/alginate (Alg) hydrogels | - | Melanin nanoparticles | Divalent cations (Ca2+) cross-linking method | Myocardial infarction rat model | Myocardial infarction | Regulate ROS and the immune MI microenvironment for cardiac repair | [61] | |
MIONs loaded NPs (PP/PS@MIONs) | 50–80 nm | PP/PS@MIONs | The thin-film dispersion method | Myocardial infarction rat model | Myocardial infarction | Show good inflammation-resolving effects and imaging ability, significantly improve the treatment efficacy of MI at an early stage | [62] | |
Human apolipoprotein A-I nanoparticles (n-apoA-I) | - | apoA-I | - | Preclinical mouse model of myocardial infarction | Myocardial infarction | Reduce the systemic and cardiac inflammatory response through direct actions on both the ischemic myocardium and leukocytes | [63] | |
Liposomes | 100 nm | Methotrexate | - | Lipopolysaccharide-injury skeletal muscle mouse model and myocardial ischemia reperfusion injury mouse model | Chronic inflammatory diseases | Demonstrated that the drug-loaded liposomes would be released when neutrophils migrate to the inflamed tissue | [64] | |
FH peptide-modified neutrophil-mimicking membranes on mesoporous silicon nanoparticles (FNLM-miR) | 170 nm | mRNAs | Coextrusion | Cardiac ischemia–reperfusion mouse model | Cardiac ischemia–reperfusion | Induce cardiac reprogramming efficiently, leading to improved cardiac function and mitigated fibrosis after myocardial I/R injury | [65] | |
Prostaglandin E2-platelet-inspired nanocell (PEG2-PINC) | 195 nm | Cardiac stem/stromal cells (CSCs) | Double emulsion method | Cardiac ischemia–reperfusion mouse model | Cardiac ischemia–reperfusion | Can achieve targeted delivery of therapeutic payloads to the injured heart, augment cardiac function and mitigate heart remodeling | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Fan, Z.; He, D.; Chen, H.; Zhang, S.; Guo, S.; Zheng, B.; Cen, H.; Zhao, Y.; Liu, H.; et al. Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics 2022, 14, 758. https://doi.org/10.3390/pharmaceutics14040758
Liu C, Fan Z, He D, Chen H, Zhang S, Guo S, Zheng B, Cen H, Zhao Y, Liu H, et al. Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics. 2022; 14(4):758. https://doi.org/10.3390/pharmaceutics14040758
Chicago/Turabian StyleLiu, Chunping, Zhijin Fan, Dongyue He, Huiqi Chen, Shihui Zhang, Sien Guo, Bojun Zheng, Huan Cen, Yunxuan Zhao, Hongxing Liu, and et al. 2022. "Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment" Pharmaceutics 14, no. 4: 758. https://doi.org/10.3390/pharmaceutics14040758
APA StyleLiu, C., Fan, Z., He, D., Chen, H., Zhang, S., Guo, S., Zheng, B., Cen, H., Zhao, Y., Liu, H., & Wang, L. (2022). Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics, 14(4), 758. https://doi.org/10.3390/pharmaceutics14040758