Comparative Study of Powder Carriers Physical and Structural Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Particle Size
2.2.2. Scanning Electron Microscope (SEM)
2.2.3. Specific Surface Area
2.2.4. True Density and Porosity
2.2.5. Moisture Content
2.2.6. Hygroscopicity
2.2.7. pH Leaching
2.2.8. Flow Properties
2.2.9. Angle of Slide
2.2.10. Shear Cell Experiment
3. Results and Discussion
3.1. Particle Size
3.2. Scanning Electron Microscopy (SEM)
3.3. Specific Surface Area (SSA)
3.4. True Density and Porosity
3.5. Moisture Content, Hygroscopicity, and pH Leaching
3.6. Flow Properties
3.7. Angle of Slide
3.8. Shear Cell Experiments
3.9. Graphical Visualization of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009, 117, 1–9. [Google Scholar] [CrossRef]
- Ahuja, G.; Pathak, K. Porous carriers for controlled/modulated drug delivery. Indian J. Pharm. Sci. 2009, 71, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, P.; Ingavle, G.; Ponratham, S.; Pawar, A.P. Low density porous carrier: Drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm. 2007, 331, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Shivanand, P.; Sprockel, O.L. A controlled porosity drug delivery system. Int. J. Pharm. 1998, 167, 83–96. [Google Scholar] [CrossRef]
- Vraníková, B.; Gajdziok, J.; Vetchý, D.; Kratochvíl, B.; Seilerová, L. Systémy kapalina v pevné fázi jako moderní trend zvyšování biologické dostupnosti léčiva. Chemické Listy 2013, 107, 681–687. [Google Scholar]
- Kostelanská, K.; Gajdziok, J.; Vetchý, D. Porézní nosiče ve farmaceutické technologii. Chemické Listy 2018, 112, 840–847. [Google Scholar]
- Gurny, R.; Doelker, E.; Peppas, N.A. Modeling sustained release of water-soluble drugs from porous hydrophobic polymers. Biomaterials 1982, 3, 27–32. [Google Scholar] [CrossRef]
- Civan, F. Scale effect on porosity and permeability. AIChE J. 2001, 47, 271–287. [Google Scholar] [CrossRef]
- El-Gizawy, S.A. Effect of formulation additives in the dissolution of Meloxicam from Liquid solid tablets. Egypt. J. Biomed. Sci. 2007, 25, 143–158. [Google Scholar]
- Jadhav, N.R.; Irny, P.V.; Patil, U.S. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J. Drug Deliv. Sci. Technol. 2017, 38, 97–106. [Google Scholar] [CrossRef]
- Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Enayati-Fard, R.; Sar-Reshteh-dar, S.; Soleymani, A. Enhancement of dissolution rate of indomethacin: Using liquisolid compacts. Iran. J. Pharm. Res. 2011, 10, 25. [Google Scholar] [PubMed]
- Schiermeier, S.; Schmidt, P.C. Fast dispersible ibuprofen tablets. Eur. J. Pharm. Sci. 2002, 15, 295–305. [Google Scholar] [CrossRef]
- Chella, N.; Shastri, N.; Tadikonda, R.R. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm. Sin. B 2012, 2, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Komala, D.R.; Janga, K.Y.; Jukanti, R.; Bandari, S.; Vijayagopal, M. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J. Drug Deliv. Sci. Technol. 2015, 30, 232–241. [Google Scholar] [CrossRef]
- Hentzschel, C.M.; Sakmann, A.; Leopold, C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm. 2011, 37, 1200–1207. [Google Scholar] [CrossRef]
- Sheth, A.; Jarowski, C.I. Use of powdered solutions to improve the dissolution rate of polythiazide tablets. Drug Dev. Ind. Pharm. 1990, 16, 769–777. [Google Scholar] [CrossRef]
- Zheng, J.P.; Luan, L.; Wang, H.Y.; Xi, L.F.; Yao, K.D. Study of ibuprofen/montmorillonite intercalation composites as drug release system. Appl. Clay Sci. 2007, 36, 297–301. [Google Scholar] [CrossRef]
- Shah, N.H.; Carvajal, M.T.; Patel, C.I.; Infeld, M.H.; Malick, A.W. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 1994, 106, 15–23. [Google Scholar] [CrossRef]
- Patel, S.; Jani, G.; Patel, M. Development of self-emulsifying formulation of ionizable water insoluble BCS class-II drug: Rosuvastatin calcium. Invent. Impact Pharm. Tech. 2013, 3, 711–713. [Google Scholar]
- Yi, T.; Wan, J.; Xu, H.; Yang, X. Controlled poorly soluble drug release from solid self-microemulsifying fomrulations with high viscosity hydroxypropylmethylcellulose. Eur. J. Pharm. Sci. 2008, 34, 274–280. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Kamel, R.; Basha, M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, D.A.; Souza, J.I.D. Formulation and evaluation of solid self micro emulsifying drug delivery system using aerosol 200 as solid carrier. Int. Curr. Pharm. J. 2012, 1, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Gumaste, S.G.; Pawlak, S.A.; Dalrymple, D.M.; Nider, C.J.; Trombetta, L.D.; Serajuddin, A.T. Development of solid SEDDS, IV: Effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm. Res. 2013, 30, 3170–3185. [Google Scholar] [CrossRef] [Green Version]
- D90, D50, D10, and SPAN—For DLS? Available online: https://www.materials-talks.com/blog/2016/08/25/d90-d50-d10-and-span-for-dls/ (accessed on 22 May 2020).
- Wang, Y.; Li, W.; Liu, T.; Xu, L.; Guo, Y.; Ke, J.; Li, S.; Li, H. Desing and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mater. Sci. Eng. C 2019, 103, 109737. [Google Scholar] [CrossRef] [PubMed]
- Palmer, H.K.; Rowe, R.C. The application of mercury porosimetry to porous polymer powders. Powder Technol. 1974, 9, 181–186. [Google Scholar] [CrossRef]
- European Pharmacopoeia (Ph. Eur. MMXVII), 9th ed.; European Pharmacopoeia Commision: Strasbourg, France, 2017.
- Vraníková, B.; Gajdziok, J.; Vetchý, D. Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods. BioMed. Res. Int. 2015, 2015, 608435. [Google Scholar] [CrossRef]
- FT4 Manual Shear Test; Technology Freeman: Worcesteshire, UK, 2011.
- Jenike, A.W. Storage and flow of solids. Bull. Utah Univ. 1964, 53, 207. [Google Scholar]
- Ghazavi, M.; Hosseini, M.; Mollanouri, M. A comparison between angle of repose and friction angle of sand. In Proceedings of the IACMAG, Goa, India, 1–6 October 2008. [Google Scholar]
- Peschl, I.A.S.Z. New rotational shear-testing technique. J. Powder Bulk Solids Technol. 1977, 1, 55. [Google Scholar]
- Komárek, P.; Rabišková, M. Technologie Léků: Galenika, 3. Přeprac. a Dop. Vyd., 3rd ed.; Galén: Praha, Czech Republic, 2006. [Google Scholar]
- Muselík, J.; Franc, A.; Doležel, P.; Goněc, R.; Krondlová, A.; Lukášová, I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharmaceut. 2014, 64, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Gorączko, A.; Topoliński, S. Particle size distribution of natural clayey soils: A discussion on the use of laser diffraction analysis (LDA). Geosciences 2020, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Material Safety Data Sheet-Avicel® PH Microcrystalline Cellulose. Available online: http://msdsviewer.fmc.com/private/document.aspx?prd=9004-34-6-B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~AVICEL%C2%AE%20PH%20MICROCRYSTALLINE%20CELLULOSE~~ (accessed on 24 October 2019).
- Using Methocel Cellulose Ethers for Controlled Release of Drug in Hydrophilic Matrix Systems. Available online: https://www.colorcon.com/products-formulation/all-products/download/677/2063/34?method=view (accessed on 24 October 2019).
- Aerosil®: Fumed Silica—Hydrophili and Hydrophobic. Available online: https://www.l-i.co.uk/products/aerosil-fumed-silica (accessed on 24 October 2019).
- Eisenlauer, J.; Killmann, E. Stability of colloidal silica (aerosil) hydrosols. I. Preparation and characterization of silica (aerosil) hydrosols. J. Colloid Interface Sci. 1980, 74, 108–119. [Google Scholar] [CrossRef]
- FujisilTM the Next Generation of Porous Silica. Available online: http://fujihealthscience.com/products/excipients/ (accessed on 16 June 2020).
- Sipernat® 22S. Available online: https://products-re.evonik.com/www2/uploads/productfinder/SIPERNAT-22-S-EN.pdf (accessed on 13 October 2020).
- Technical Information: Syloid® FP and XDP Silica Pharmaceutical Excipients—Multifuncional Excipients for the Pharmaceutical Industry. Available online: https://grace.com/pharma-and-biotech/en-us/Documents/Syloid/DOC013%20SYLOID%20FP%20XDP_m309.pdf (accessed on 17 September 2020).
- The Specialty Excipient Neusilin®. Available online: http://www.fujichemical.co.jp/english/medical/medicine/neusilin/neusilin_brochure.pdf (accessed on 14 November 2019).
- Battista, O.A.; Smith, P.A. Microcrystalline cellulose—The oldest polymer finds new industrial uses. Ind. Eng. Chem. 1962, 54, 20–29. [Google Scholar] [CrossRef]
- Dolan, T.F.; Humphrey, M.J.; Nichols, D.J. Pharmaceutical Formulations Containing Darifenacin. U.S. Patent 6,106,864, 22 August 2000. [Google Scholar]
- Reuzel, P.G.J.; Bruijntjes, J.B.; Feron, V.J.; Woutersen, R.A. Subchronic inhalation toxicity of amorphous silicas and quarz dust in rats. Food Chem. Toxicol. 1991, 29, 341–354. [Google Scholar] [CrossRef]
- Broms, B.B.; Bennermark, H. Stability of clay at vertical openings. J. Soil. Mech. Found. Div. 1967, 93, 71–94. [Google Scholar] [CrossRef]
- Lu, M.; Xing, H.; Jiang, J.; Chen, X.; Yang, T.; Wang, D.; Ding, P. Liquisolid technique and its applications in pharmaceutics. Asian J. Pharm. Sci. 2017, 12, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliman, A.S.; Anderson, R.J.; Elkordy, A.A. Narfloxacin as a model hydrophobic drug with unique release from liquisolid formulations prepared with PEG200 and Synperonic PE/L-61 non-volatile liquid vehicles. Powder Technol. 2014, 257, 156–167. [Google Scholar] [CrossRef]
- Van Speybroeck, M.; Barillaro, V.; Do Thi, T.; Mellaerts, R.; Martens, J.; Van Humbeeck, J.; Vermant, J.; Annaert, P.; Van Den Mooter, G.; Augustijns, P. Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. J. Pharm. Sci. 2009, 98, 2648–2658. [Google Scholar] [CrossRef]
- Westermarck, S.; Juppo, A.M.; Kervinen, L.; Yliruusi, J. Pore structure and surface area of mannitol powder, granules and tablets determined with mercury porosimetry and nitrogen adsorption. Eur. J. Pharm. Biopharm. 1998, 46, 61–68. [Google Scholar] [CrossRef]
- Kuentz, M.; Leuenberger, H. A new theoretical approach to tablet strength of binary mixture consisting of a well and a poorly compactable substance. Eur. J. Pharm. Biopharm. 2000, 49, 151–159. [Google Scholar] [CrossRef]
- Sun, C.C. True density of microcrystalline cellulose. J. Pharm. Sci. 2005, 94, 2132–2134. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Juillerat, F.; Galleto, P.; Bowen, P.; Borkovec, M. Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir 2005, 21, 5761–5769. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Holm, P.; Schultz, K. Process characteristics and compaction of spray-dried emulsion containing a drug dissolved in lipid. Int. J. Pharm. 2004, 287, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Lowell, S.; Shields, J.E. Powder Surface Area and Porosity, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Roškar, R.; Kmetec, V. Evaluation of the moisture sorption behaviour of several excipients by BET, GAB and microcalorimetric approaches. Chem. Pharm. Bull. 2005, 53, 662–665. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.C.; Sheskey, P.J.; Owen, S.C. Handbook of Pharmaceutical Excipients, 6th ed.; American Pharmacists Association: Chicago, IL, USA; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Simchi, A. The role of particle size on the laser sintering of iron powder. Metall. Mater. Trans. B 2004, 35, 937–948. [Google Scholar] [CrossRef]
- Callahan, J.C.; Cleary, G.W.; Elefant, M.; Kaplan, G.; Kensler, T.; Nash, R.A. Equilibrium moisture content of pharmaceutical excipients. Drug Dev. Ind. Pharm. 1982, 8, 355–369. [Google Scholar] [CrossRef]
- Chen, C.; Ren, T.; Hu, K.; Li, B.; Wang, Y. Estimation of soil clay content using hygroscopic water content at an arbitrary humidity. Soil Sci. Soc. Am. J. 2014, 78, 119–124. [Google Scholar] [CrossRef]
- Gupta, M.K.; Vanwert, A.; Bogner, R.H. Fomartion of physically stable amorphous drugs by milling with Neusilin. J. Pharm. Sci. 2003, 92, 536–551. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R.; Koch, D.; Houben, G. The pH of aqueous bentonite suspensions. Clays Clay Miner. 2008, 56, 338–343. [Google Scholar] [CrossRef]
- Hou, H.; Sun, C.C. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J. Pharm. Sci. 2008, 97, 4030–4039. [Google Scholar] [CrossRef]
- Morin, G.; Briens, L. The effect of lubricants on powder flowability for pharmaceutical application. AAPS Pharm. Sci. Tech. 2013, 14, 1158–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajir, S.; Sahu, V.; Ghuge, N.; Bakde, B.V. Liquisolid compact: A new technique for enhancement of drug dissolution. Int. J. Pharm. Chem. Sci. 2012, 4, 302–306. [Google Scholar]
- Krupa, A.; Majda, D.; Jachowicz, R.; Mozgawa, W. Solid-state interaction of ibuprofen and Neusilin US2. Thermochim. Acta 2010, 509, 12–17. [Google Scholar] [CrossRef]
- Spireas, S.S.; Jarowski, C.I.; Rohera, B.D. Powdered solution technology: Principles and mechanism. Pharm. Res. 1992, 9, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Brei, V.V. 29 Si solid-state NMR study of the surface structure of aerosol silica. J. Chem. Soc. Faraday Trans. 1994, 90, 2961–2964. [Google Scholar] [CrossRef]
- Schulze, D. Powders and Bulk Solids: Behaviour, Characterization, Storage and Flow; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ruppel, J.; Müller, A.K.; Althaus, G.; Drexel, C.P.; Zimmermann, I. The modified outflow funnel—A device to assess the flow characteristics of powders. Powder Technol. 2009, 193, 87–92. [Google Scholar] [CrossRef]
MPS a (µm) | D10 (µm) | D50 b (µm) | D90 (µm) | Span | |
---|---|---|---|---|---|
CELLULOSES | |||||
Avicel® PH 101 | 57.4 | 21.0 | 52.5 | 97.2 | 1.45 |
Methocel® E4M | 153.8 | 54.6 | 142.8 | 269.6 | 1.51 |
Methocel® K100LV | 89.3 | 36.4 | 74.3 | 166.7 | 1.75 |
SILICAS and SILICATES | |||||
Aerosil® 200 | 53.4 | 23.9 | 44.3 | 92.2 | 1.54 |
FujiSil® | 86.4 | 20.6 | 76.5 | 125.8 | 1.86 |
Neusilin® NS2N | 71.8 | 11.1 | 63.0 | 145.8 | 2.14 |
Neusilin® S2 | 170.6 | 46.8 | 117.5 | 281.8 | 2.00 |
Neusilin® UFL2 | 6.2 | 2.1 | 3.5 | 6.5 | 1.26 |
Neusilin® US2 | 110.8 | 33.2 | 108.4 | 187.5 | 1.42 |
Sipernat® 22S | 19.7 | 7.6 | 13.3 | 27.7 | 1.51 |
Syloid® 244FP | 2.5 | 1.5 | 2.4 | 3.5 | 0.82 |
Syloid® XDP 3050 | 59.4 | 12.3 | 60.7 | 93.7 | 1.34 |
CLAY MINERALS | |||||
Bentonite | 11.9 | 9.8 | 11.8 | 14.2 | 0.38 |
Vermiculite | 66.0 | 15.1 | 68.0 | 99.6 | 1.24 |
SSA a (m2/g) | Mesopores Radius (nm) | Micropore Radius (nm) | Pore Volume/ (cm3/g) | |
---|---|---|---|---|
CELLULOSES | ||||
Avicel® PH 101 | NA b | NA b | NA b | NA b |
Methocel® E4M | NA b | NA b | NA b | NA b |
Methocel® K100LV | NA b | NA b | NA b | NA b |
SILICAS and SILICATES | ||||
Aerosil® 200 | 190.48 ± 1.74 | 7.04 | 0.50 | 0.24 |
FujiSil® | 374.55 ± 4.48 | 9.33 | 0.41 | 0.46 |
Neusilin® NS2N | 323.56 ± 2.14 | 5.90 | 0.46 | 0.67 |
Neusilin® S2 | 168.82 ± 1.04 | 5.01 | 0.46 | 0.30 |
Neusilin® UFL2 | 350.33 ± 2.88 | 7.62 | 0.45 | 0.73 |
Neusilin® US2 | 342.16 ± 2.72 | 7.99 | 0.44 | 0.69 |
Sipernat® 22S | 188.92 ± 2.06 | 9.70 | 0.48 | 0.24 |
Syloid® 244FP | 358.73 ± 3.26 | 10.66 | 0.50 | 0.63 |
Syloid® XDP 3050 | 289.32 ± 2.29 | 10.58 | 0.50 | 0.58 |
CLAY MINERALS | ||||
Bentonite | 85.72 ± 1.37 | 2.23 | 0.39 | 0.07 |
Vermiculite | 15.88 ± 0.30 | 3.34 | 0.38 | 0.02 |
DT a (g/cm3) | Porosity (%) | |
---|---|---|
CELLULOSES | ||
Avicel® PH 101 | 1.58 ± 0.00 | 77.85 |
Methocel® E4M | 1.29 ± 0.00 | 65.11 |
Methocel® K100LV | 1.33 ± 0.00 | 75.94 |
SILICAS and SILICATES | ||
Aerosil® 200 | 2.66 ± 0.02 | 98.87 |
FujiSil® | 2.27 ± 0.02 | 92.51 |
Neusilin® NS2N | 2.14 ± 0.02 | 89.25 |
Neusilin® S2 | 2.16 ± 0.01 | 84.26 |
Neusilin® UFL2 | 2.34 ± 0.01 | 96.15 |
Neusilin® US2 | 2.29 ± 0.02 | 92.58 |
Sipernat® 22S | 2.25 ± 0.02 | 96.44 |
Syloid® 244FP | 2.44 ± 0.02 | 97.13 |
Syloid® XDP 3050 | 2.27 ± 0.02 | 89.43 |
CLAY MINERALS | ||
Bentonite | 2.42 ± 0.00 | 68.60 |
Vermiculite | 2.64 ± 0.00 | 64.02 |
MC a (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 0.25 h | 0.5 h | 1 h | 3 h | 8 h | 24 h | 72 h | 120 h | 168 h | 720 h | |
CELLULOSES | |||||||||||
Avicel® PH 101 | 2.9 | 4.6 | 4.5 | 5.1 | 5.6 | 5.7 | 5.7 | 5.7 | 5.8 | 6.2 | 7.3 |
Methocel® E4M | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.8 | 4.0 | 4.8 | 4.9 | 5.4 | 7.7 |
Methocel® K100LV | 4.7 | 4.5 | 4.6 | 4.7 | 5.0 | 5.1 | 5.1 | 5.2 | 7.1 | 7.7 | 8.2 |
SILICAS and SILICATES | |||||||||||
Aerosil® 200 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 2.4 | 2.4 | 2.7 | 3.0 |
FujiSil® | 4.0 | 4.1 | 4.3 | 4.8 | 4.8 | 4.9 | 5.0 | 5.0 | 5.6 | 6.0 | 7.8 |
Neusilin® NS2N | 6.6 | 7.0 | 7.7 | 7.7 | 7.8 | 7.9 | 8.4 | 8.5 | 8.9 | 9.5 | 9.8 |
Neusilin® S2 | 7.2 | 7.4 | 7.7 | 7.7 | 7.9 | 8.5 | 8.6 | 8.6 | 9.2 | 9.2 | 11.2 |
Neusilin® UFL2 | 8.2 | 8.2 | 8.4 | 8.5 | 8.5 | 8.6 | 9.0 | 9.3 | 10.7 | 12.6 | 13.8 |
Neusilin® US2 | 4.6 | 8.1 | 8.5 | 8.7 | 8.9 | 8.9 | 9.2 | 9.4 | 9.6 | 10.6 | 14.9 |
Sipernat® 22S | 5.3 | 5.5 | 5.6 | 5.6 | 5.7 | 5.9 | 6.0 | 6.5 | 5.6 | 7.2 | 7.5 |
Syloid® 244FP | 3.6 | 4.2 | 4.2 | 4.3 | 4.7 | 4.8 | 4.9 | 5.0 | 5.0 | 5.5 | 8.6 |
Syloid® XDP 3050 | 3.4 | 4.1 | 4.4 | 4.4 | 4.4 | 4.5 | 4.8 | 5.2 | 5.8 | 6.0 | 6.2 |
CLAY MINERALS | |||||||||||
Bentonite | 7.2 | 7.2 | 7.3 | 7.4 | 7.7 | 7.8 | 7.9 | 8.0 | 8.2 | 8.6 | 9.5 |
Vermiculite | 4.5 | 4.5 | 4.6 | 4.8 | 4.9 | 4.9 | 4.9 | 5.3 | 5.4 | 5.4 | 4.9 |
pH | |
---|---|
CELLULOSES | |
Avicel® PH 101 | 7.3 |
Methocel® E4M | 7.2 |
Methocel® K100LV | 8.8 |
SILICAS and SILICATES | |
Aerosil® 200 | 6.3 |
FujiSil® | 7.2 |
Neusilin® NS2N | 8.3 |
Neusilin® S2 | 9.4 |
Neusilin® UFL2 | 6.9 |
Neusilin® US2 | 6.9 |
Sipernat® 22S | 7.4 |
Syloid® 244FP | 7.2 |
Syloid® XDP 3050 | 7.3 |
CLAY MINERALS | |
Bentonite | 9.5 |
Vermiculite | 9.4 |
Fw a (s) | DB b (g/cm3) | DT c (g/cm3) | HR d | CI e | |
---|---|---|---|---|---|
CELLULOSES | |||||
Avicel® PH 101 | 3.4 ± 0.4 | 0.35 | 0.45 | 1.25 | 19.7 |
Methocel® E4M | 3.2 ± 0.4 | 0.45 | 0.62 | 1.37 | 27.1 |
Methocel® K100LV | 9.0 ± 0.6 | 0.32 | 0.49 | 1.48 | 32.3 |
SILICAS and SILICATES | |||||
Aerosil® 200 | ∞ f | 0.03 | 0.04 | 1.36 | 26.7 |
FujiSil® | 1.5 ± 0.1 | 0.17 | 0.21 | 1.23 | 18.9 |
Neusilin® NS2N | 11.5 ± 0.2 | 0.23 | 0.29 | 1.21 | 17.1 |
Neusilin® S2 | 4.4 ± 0.2 | 0.34 | 0.40 | 1.15 | 12.8 |
Neusilin® UFL2 | ∞ f | 0.09 | 0.13 | 1.35 | 25.9 |
Neusilin® US2 | 11.8 ± 1.0 | 0.17 | 0.20 | 1.19 | 15.6 |
Sipernat® 22S | ∞ f | 0.08 | 0.10 | 1.21 | 17.6 |
Syloid® 244FP | ∞ f | 0.07 | 0.09 | 1.19 | 15.9 |
Syloid® XDP 3050 | 100.3 ± 2.5 | 0.24 | 0.30 | 1.23 | 18.6 |
CLAY MINERALS | |||||
Bentonite | ∞ f | 0.76 | 1.03 | 1.35 | 26.0 |
Vermiculite | 2.9 ± 0.2 | 0.95 | 1.13 | 1.18 | 15.4 |
θs a (°) | |
---|---|
CELLULOSES | |
Avicel® PH 101 | 43.0 ± 3.0 |
Methocel® E4M | 44.7 ± 1.5 |
Methocel® K100LV | 44.7 ± 0.6 |
SILICAS and SILICATES | |
Aerosil® 200 | 53.3 ± 0.6 |
FujiSil® | 37.3 ± 0.6 |
Neusilin® NS2N | 39.3 ± 2.5 |
Neusilin® S2 | 36.3 ± 1.2 |
Neusilin® UFL2 | 43.3 ± 2.5 |
Neusilin® US2 | 39.3 ± 1.5 |
Sipernat® 22S | 44.7 ± 0.6 |
Syloid® 244FP | 41.7 ± 1.2 |
Syloid® XDP 3050 | 48.3 ± 1.5 |
CLAY MINERALS | |
Bentonite | 42.7 ± 0.6 |
Vermiculite | 38.0 ± 1.7 |
Cohesion (kPa) | FFc a | AIF b (°) | Relf c | |
---|---|---|---|---|
CELLULOSES | ||||
Avicel® PH 101 | 0.204 | 20 | 36.7 | 15 |
Methocel® E4M | 0.193 | 24 | 36.2 | 18 |
Methocel® K100LV | 0.324 | 16 | 45.0 | 13 |
SILICAS and SILICATES | ||||
Aerosil® 200 | 0.271 | 16 | 27.9 | 11 |
FujiSil® | NA d | NA d | NA d | NA d |
Neusilin® NS2N | 0.078 | 58 | 19.2 | 29 |
Neusilin® S2 | NA d | NA d | NA d | NA d |
Neusilin® UFL2 | 0.681 | 6 | 32.6 | 5 |
Neusilin® US2 | NA d | NA d | NA d | NA d |
Sipernat® 22S | 0.712 | 6 | 32.5 | 5 |
Syloid® 244FP | 0.115 | 38 | 37.1 | 28 |
Syloid® XDP 3050 | NA d | NA d | NA d | NA d |
CLAY MINERALS | ||||
Bentonite | 1.030 | 4 | 30.4 | 3 |
Vermiculite | 1.440 | 5 | 35.2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostelanská, K.; Prudilová, B.B.; Holešová, S.; Vlček, J.; Vetchý, D.; Gajdziok, J. Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics 2022, 14, 818. https://doi.org/10.3390/pharmaceutics14040818
Kostelanská K, Prudilová BB, Holešová S, Vlček J, Vetchý D, Gajdziok J. Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics. 2022; 14(4):818. https://doi.org/10.3390/pharmaceutics14040818
Chicago/Turabian StyleKostelanská, Klára, Barbora Blahová Prudilová, Sylva Holešová, Jakub Vlček, David Vetchý, and Jan Gajdziok. 2022. "Comparative Study of Powder Carriers Physical and Structural Properties" Pharmaceutics 14, no. 4: 818. https://doi.org/10.3390/pharmaceutics14040818
APA StyleKostelanská, K., Prudilová, B. B., Holešová, S., Vlček, J., Vetchý, D., & Gajdziok, J. (2022). Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics, 14(4), 818. https://doi.org/10.3390/pharmaceutics14040818