Indirect SPECT Imaging Evaluation for Possible Nose-to-Brain Drug Delivery Using a Compound with Poor Blood–Brain Barrier Permeability in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Labeling of [125/123I]IBZM
2.3. Animals
2.4. Biological Distribution Study after an Intravenous Dose of [125I]IBZM with an Intranasal Domperidone or Saline Dose
2.5. SPECT Imaging after an Intravenous Dose of [123I]IBZM with an Intranasal or Intravenous Dose of Domperidone
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013, 36, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 2016, 13, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Taylor, E.M. Neotrofin is transported out of brain by a saturable mechanism: Possible involvement of multidrug resistance and monocarboxylic acid transporters. Drug Metab Dispos. 2002, 30, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Bittner, G.C.; Van de Bittner, K.C.; Wey, H.-Y.; Rowe, W.; Dharanipragada, R.; Ying, X.; Hurst, W.; Giovanni, A.; Alving, K.; Gupta, A.; et al. Positron emission tomography assessment of the intranasal delivery route for Orexin A. ACS Chem. Neurosci. 2018, 9, 358–368. [Google Scholar] [CrossRef]
- Saccone, P.A.; Lindsey, A.M.; Koeppe, R.A.; Zelenock, K.A.; Shao, X.; Sherman, P.; Quesada, C.A.; Woods, J.H.; Scott, P.J.H. Intranasal opioid administration in rhesus monkeys: PET Imaging and Antinociception. J. Pharmacol. Exp. Ther. 2016, 359, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Hirvonen, J.; Lovró, Z.; Ekblad, L.; Kaasinen, V.; Rajasilta, O.; Helin, S.; Tuisku, J.; Sirén, S.; Pennanen, M.; et al. Intranasal naloxone rapidly occupies brain mu-opioid receptors in human subjects. Neuropsychopharmacology 2019, 44, 1667–1673. [Google Scholar] [CrossRef]
- Suzuki, T.; Ohmuro, A.; Miyata, M.; Furuishi, T.; Hidaka, S.; Kugawa, F.; Fukami, T.; Tomono, K. Involvement of an influx transporter in the blood-brain barrier transport of naloxone. Biopharm. Drug Dispos. 2010, 31, 243–252. [Google Scholar] [CrossRef]
- Suzuki, T.; Miyata, M.; Zaima, C.; Furuishi, T.; Fukami, T.; Kugawa, F.; Tomono, K. Blood-brain barrier transport of naloxone does not involve P-glycoprotein-mediated efflux. J. Pharm. Sci. 2010, 99, 413–421. [Google Scholar] [CrossRef]
- Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; Van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996, 97, 2517–2524. [Google Scholar] [CrossRef]
- Ieiri, I. Functional significance of genetic polymorphisms in Pglycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab. Pharmacokinet. 2012, 27, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Kung, H.F.; Billings, J.J.; Guo, Y.Z.; Blau, M.; Ackerhalt, R. Preparation and biodistribution of [125I]IBZM: A potential CNS D-2 dopamine receptor imaging agent. Int. J. Rad. Appl. Instrum. B 1988, 15, 195–201. [Google Scholar] [CrossRef]
- Hirai, S.; Yashiki, T.; Matsuzawa, T.; Mima, H. Absorption of drugs from the nasal mucosa of rat. Int. J. Pharm. 1981, 7, 317–325. [Google Scholar]
- Ito, H.; Hietala, J.; Blomqvist, G.; Halldin, C.; Farde, L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J. Cereb. Blood Flow Metab. 1998, 18, 941–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerfen, C.R.; Engber, T.M.; Mahan, L.C.; Susel, Z.; Chase, T.N.; Monsma, F.J., Jr.; Sibley, D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990, 250, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Murakami, H.; Koyabu, N.; Ohtani, H.; Sawada, Y. Distribution of domperidone into the rat brain is increased by brain ischaemia or treatment with the P-glycoprotein inhibitor verapamil. J. Pharm. Pharmacol. 2002, 54, 729–733. [Google Scholar] [CrossRef]
- Kandimalla, K.K.; Donovan, M.D. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: Implications on nose-to-brain transport. J. Pharm. Sci. 2005, 94, 613–624. [Google Scholar] [CrossRef]
- Bors, L.A.; Bajza, Á.; Mándoki, M.; Tasi, B.J.; Cserey, G.; Imre, T.; Szabó, P.; Erdó, F. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res. Bull. 2020, 160, 65–73. [Google Scholar] [CrossRef]
- Thorne, R.G.; Pronk, G.J.; Frey, W.H., 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004, 127, 481–496. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, G.; Tsang, W.C.; Schätzlein, A.G.; Uchegbu, I.F. Nose-to-Brain Delivery. J. Pharmacol. Exp. Ther. 2019, 370, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Jansson, B.; Björk, E. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J. Drug Target. 2002, 10, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; Wola, D.J.; Pizzo, M.E.; Thorne, R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab. 2015, 35, 371–381. [Google Scholar] [CrossRef] [PubMed]
Accumulation After [125I]IBZM Administration (%ID/g) | ||||
---|---|---|---|---|
Organ | Control Group | IN Groups | ||
0 min | 15 min | 30 min | ||
Blood | 2.03 ± 0.28 | 1.22 ± 0.16 | 1.69 ± 0.31 | 1.67 ± 0.21 |
Olfactory bulb | 5.02 ± 1.00 | 3.56 ± 0.56 | 3.87 ± 0.70 | 4.63 ± 1.19 |
Cerebral cortex | 5.07 ± 1.10 | 4.72 ± 0.57 | 4.54 ± 0.35 | 4.59 ± 1.02 |
Striatum | 11.06 ± 3.33 | 9.27 ± 1.26 | 6.87 ± 1.95 * | 9.92 ± 2.01 |
Hippocampus | 4.37 ± 1.12 | 4.04 ± 0.54 | 3.47 ± 0.36 | 3.83 ± 0.94 |
Cerebellum | 2.97 ± 0.19 | 3.00 ± 0.14 | 3.52 ± 0.42 | 2.90 ± 0.86 |
BP | %RO | |
---|---|---|
Control | 1.27 ± 0.16 | |
IV group | 1.08 ± 0.11 | −4.38 ± 10.95 |
IN group | 0.67 ± 0.08 * | 35.63 ± 7.35 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizutani, A.; Kobayashi, M.; Ohuchi, M.; Sasaki, K.; Muranaka, Y.; Torikai, Y.; Fukakusa, S.; Suzuki, C.; Nishii, R.; Haruta, S.; et al. Indirect SPECT Imaging Evaluation for Possible Nose-to-Brain Drug Delivery Using a Compound with Poor Blood–Brain Barrier Permeability in Mice. Pharmaceutics 2022, 14, 1026. https://doi.org/10.3390/pharmaceutics14051026
Mizutani A, Kobayashi M, Ohuchi M, Sasaki K, Muranaka Y, Torikai Y, Fukakusa S, Suzuki C, Nishii R, Haruta S, et al. Indirect SPECT Imaging Evaluation for Possible Nose-to-Brain Drug Delivery Using a Compound with Poor Blood–Brain Barrier Permeability in Mice. Pharmaceutics. 2022; 14(5):1026. https://doi.org/10.3390/pharmaceutics14051026
Chicago/Turabian StyleMizutani, Asuka, Masato Kobayashi, Makoto Ohuchi, Keita Sasaki, Yuka Muranaka, Yusuke Torikai, Shota Fukakusa, Chie Suzuki, Ryuichi Nishii, Shunji Haruta, and et al. 2022. "Indirect SPECT Imaging Evaluation for Possible Nose-to-Brain Drug Delivery Using a Compound with Poor Blood–Brain Barrier Permeability in Mice" Pharmaceutics 14, no. 5: 1026. https://doi.org/10.3390/pharmaceutics14051026
APA StyleMizutani, A., Kobayashi, M., Ohuchi, M., Sasaki, K., Muranaka, Y., Torikai, Y., Fukakusa, S., Suzuki, C., Nishii, R., Haruta, S., Magata, Y., & Kawai, K. (2022). Indirect SPECT Imaging Evaluation for Possible Nose-to-Brain Drug Delivery Using a Compound with Poor Blood–Brain Barrier Permeability in Mice. Pharmaceutics, 14(5), 1026. https://doi.org/10.3390/pharmaceutics14051026