In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dermatophyte Strains
2.3. In Vitro Antifungal Susceptibility Tests
2.4. Interactions between Antifungal Drugs and Organoselenium Compounds
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez-Rossi, N.M.; Peres, N.T.A.; Bitencourt, T.A.; Martins, M.P.; Rossi, A. State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J. Fungi 2021, 7, 629. [Google Scholar] [CrossRef]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Dyląg, M. Intrinsic Resistance to Terbinafine among Human and Animal Isolates of Trichophyton mentagrophytes Related to Amino Acid Substitution in the Squalene Epoxidase. Infection 2020, 48, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2017, 182, 127–141. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Osińska, M.; Kopiński, Ł. Population Differentiation, Antifungal Susceptibility, and Host Range of Trichophyton mentagrophytes Isolates Causing Recalcitrant Infections in Humans and Animals. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2099–2113. [Google Scholar] [CrossRef] [PubMed]
- Bontems, O.; Fratti, M.; Salamin, K.; Guenova, E.; Monod, M. Epidemiology of Dermatophytoses in Switzerland According to a Survey of Dermatophytes Isolated in Lausanne between 2001 and 2018. J. Fungi 2020, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Petrucelli, M.F.; de Abreu, M.H.; Cantelli, B.A.M.; Segura, G.G.; Nishimura, F.G.; Bitencourt, T.A.; Marins, M.; Fachin, A.L. Epidemiology and Diagnostic Perspectives of Dermatophytoses. J. Fungi 2020, 6, 310. [Google Scholar] [CrossRef] [PubMed]
- Czaika, V.A.; Lam, P.A. Trichophyton mentagrophytes Cause Underestimated Contagious Zoophilic Fungal Infection. Mycoses 2013, 56, 33–37. [Google Scholar] [CrossRef]
- Ozkutuk, A.; Ergon, C.; Yulug, N. Species Distribution and Antifungal Susceptibilities of Dermatophytes during a One Year Period at a University Hospital in Turkey. Mycoses 2007, 50, 125–129. [Google Scholar] [CrossRef]
- Ilhan, Z.; Karaca, M.; Ekin, I.H.; Solmaz, H.; Akkan, H.A.; Tutuncu, M. Detection of Seasonal Asymptomatic Dermatophytes in Van Cats. Brazilian J. Microbiol. 2016, 47, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Zięba, P. Tinea Corporis by Microsporum canis in Mycological Laboratory Staff: Unexpected Results of Epidemiological Investigation. Mycoses 2018, 61, 945–953. [Google Scholar] [CrossRef]
- Pasquetti, M.; Min, A.R.M.; Scacchetti, S.; Dogliero, A.; Peano, A. Infection by Microsporum Canis in Paediatric Patients: A Veterinary Perspective. Vet. Sci. 2017, 4, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunte, D.; Pereiro-Ferreirós, M.; Rodríguez-Cerdeira, C.; Sergeev, A.; Arabatzis, M.; Prohić, A.; Piraccini, B.; Lecerf, P.; Nenoff, P.; Kotrekhova, L.; et al. Emerging antifungal treatment failure of dermatophytosis in Europe: Take care or it may become endemic. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Sardana, K.; Chowdhary, A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet. Biol. 2019, 132, 103255. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Łagowski, D.; Dyląg, M.; Zielinski, J.; Studziński, M.; Nowakiewicz, A. Cold Atmospheric Pressure Plasma (CAPP) as a New Alternative Treatment Method for Onychomycosis Caused by Trichophyton verrucosum: In Vitro Studies. Infection 2021, 49, 1233–1240. [Google Scholar] [CrossRef]
- Hiruma, J.; Noguchi, H.; Hase, M.; Tokuhisa, Y.; Shimizu, T.; Ogawa, T.; Hiruma, M.; Harada, K.; Kano, R. Epidemiological study of terbinafine-resistant dermatophytes isolated from Japanese patients. J. Dermatol. 2021, 48, 564–567. [Google Scholar] [CrossRef]
- Wall, G.; Lopez-Ribot, J.L. Current Antimycotics, New Prospects, and Future Approaches to Antifungal Therapy. Antibiotics 2020, 9, 445. [Google Scholar] [CrossRef]
- Pereira, F.d.O. A Review of Recent Research on Antifungal Agents against Dermatophyte Biofilms. Med. Mycol. 2021, 59, 313–326. [Google Scholar] [CrossRef]
- Wiederhold, N.P. The Antifungal Arsenal: Alternative Drugs and Future Targets. Int. J. Antimicrob. Agents 2018, 51, 333–339. [Google Scholar] [CrossRef]
- Lipner, S.R. Pharmacotherapy for Onychomycosis: New and Emerging Treatments. Expert Opin. Pharmacother. 2019, 20, 725–735. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Chan, J.M.; Darke, A.K.; Penney, K.L.; Tangen, C.M.; Goodman, P.J.; Lee, G.-S.M.; Sun, T.; Peisch, S.; Tinianow, A.M.; Rae, J.M.; et al. Selenium- or Vitamin E-Related Gene Variants, Interaction with Supplementation, and Risk of High-Grade Prostate Cancer in SELECT. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2016, 25, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Loreto, É.S.; Nunes Mario, D.A.; Santurio, J.M.; Alves, S.H.; Nogueira, C.W.; Zeni, G. In Vitro Antifungal Evaluation and Structure–Activity Relationship of Diphenyl Diselenide and Synthetic Analogues. Mycoses 2011, 54, e572–e576. [Google Scholar] [CrossRef] [PubMed]
- Benelli, J.L.; Poester, V.R.; Munhoz, L.S.; Melo, A.M.; Trápaga, M.R.; Stevens, D.A.; Xavier, M.O. Ebselen and Diphenyl Diselenide against Fungal Pathogens: A Systematic Review. Med. Mycol. 2021, 59, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Giurg, M.; Gołąb, A.; Suchodolski, J.; Kaleta, R.; Krasowska, A.; Piasecki, E.; Piętka-Ottlik, M. Reaction of Bis[(2-Chlorocarbonyl)Phenyl] Diselenide with Phenols, Aminophenols, and Other Amines towards Diphenyl Diselenides with Antimicrobial and Antiviral Properties. Molecules 2017, 22, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, H.C.; Yu, J.-J.; Guentzel, M.N.; Chambers, J.P.; Cap, A.P.; Arulanandam, B.P. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front. Microbiol. 2018, 9, 336. [Google Scholar] [CrossRef]
- Wójtowicz, H.; Chojnacka, M.; Młochowski, J.; Palus, J.; Syper, L.; Hudecova, D.; Uher, M.; Piasecki, E.; Rybka, M. Functionalized Alkyl and Aryl Diselenides as Antimicrobial and Antiviral Agents: Synthesis and Properties. Il Farmaco 2003, 58, 1235–1242. [Google Scholar] [CrossRef]
- Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; et al. A Safe Lithium Mimetic for Bipolar Disorder. Nat. Commun. 2013, 4, 1332. [Google Scholar] [CrossRef] [Green Version]
- Felli Kubiça, T.; Bedin Denardi, L.; Silva de Loreto, É.; Zeni, G.; Weiblen, C.; Oliveira, V.; Morais Santurio, J.; Hartz Alves, S. In Vitro Activity of Diphenyl Diselenide and Ebselen Alone and in Combination with Antifungal Agents against Trichosporon asahii. Mycoses 2019, 62, 428–433. [Google Scholar] [CrossRef]
- Jaromin, A.; Zarnowski, R.; Piętka-Ottlik, M.; Andes, D.R.; Gubernator, J. Topical Delivery of Ebselen Encapsulated in Biopolymeric Nanocapsules: Drug Repurposing Enhanced Antifungal Activity. Nanomedicine 2018, 13, 1139–1155. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, H.C.; Monteiro, M.C.; Rossi, S.A.; Pemán, J.; Ruiz-Gaitán, A.; Mendes-Giannini, M.J.S.; Mellado, E.; Zaragoza, O. Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Front. Cell. Infect. Microbiol. 2019, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Rossato, L.; Loreto, E.S.; Venturini, T.P.; de Azevedo, M.I.; Al-Hatmi, A.M.S.; Santurio, J.M.; Alves, S.H. In Vitro Combination between Antifungals and Diphenyl Diselenide against Cryptococcus Species. Mycoses 2019, 62, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Poester, V.R.; Mattei, A.S.; Mendes, J.F.; Klafke, G.B.; Ramis, I.B.; Sanchotene, K.O.; Xavier, M.O. Antifungal Activity of Diphenyl Diselenide Alone and in Combination with Itraconazole against Sporothrix brasiliensis. Med. Mycol. 2019, 57, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; ISBN 1562388304. [Google Scholar]
- Leber, A.L. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods. Clin. Microbiol. Proc. Handb. 2016, 5.16.1–5.16.23. [Google Scholar]
- Kieliszek, M.; Błażejak, S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [Green Version]
- Denardi, L.B.; Mario, D.A.N.; de Loreto, É.S.; Nogueira, C.W.; Santurio, J.M.; Alves, S.H. Antifungal Activities of Diphenyl Diselenide Alone and in Combination with Fluconazole or Amphotericin B against Candida glabrata. Mycopathologia 2013, 176, 165–169. [Google Scholar] [CrossRef]
- Marshall, A.C.; Kidd, S.E.; Lamont-Friedrich, S.J.; Arentz, G.; Hoffmann, P.; Coad, B.R.; Bruning, J.B. Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob. Agents Chemother. 2019, 63, e02281-18. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.M.; Poester, V.R.; Trapaga, M.; Nogueira, C.W.; Zeni, G.; Martinez, M.; Sass, G.; Stevens, D.A.; Xavier, M.O. Diphenyl Diselenide and Its Interaction with Antifungals against Aspergillus spp. Med. Mycol. 2021, 59, 528–536. [Google Scholar] [CrossRef]
- Hainer, B.L. Dermatophyte Infections. Am. Fam. Phys. 2003, 67, 101–108. [Google Scholar] [CrossRef]
- Venturini, T.P.; Chassot, F.; Loreto, É.S.; Keller, J.T.; Azevedo, M.I.; Zeni, G.; Santurio, J.M.; Alves, S.H. Antifungal Activities of Diphenyl Diselenide and Ebselen Alone and in Combination with Antifungal Agents against Fusarium spp. Med. Mycol. 2016, 54, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.X.; Shrestha, S.K.; Garneau-Tsodikova, S. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity. ChemMedChem 2016, 11, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Wall, G.; Chaturvedi, A.K.; Wormley, F.L.; Wiederhold, N.P.; Patterson, H.P.; Patterson, T.F.; Lopez-Ribot, J.L. Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. Antimicrob. Agents Chemother. 2018, 62, e01084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, C.W.; Rocha, J.B.T. Toxicology and Pharmacology of Selenium: Emphasis on Synthetic Organoselenium Compounds. Arch. Toxicol. 2011, 85, 1313–1359. [Google Scholar] [CrossRef] [PubMed]
- Billack, B.; Pietka-Ottlik, M.; Santoro, M.; Nicholson, S.; Mlochowski, J.; Lau-Cam, C. Evaluation of the antifungal and plasma membrane H +-ATPase inhibitory action of ebselen and two ebselen analogs in S. cerevisiae cultures. J. Enzyme Inhib. Med. Chem. 2010, 25, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Chan, G.; Hardej, D.; Santoro, M.; Lau-Cam, C.; Billack, B. Evaluation of the antimicrobial activity of ebselen: Role of the yeast plasma membrane H +-ATPase. J. Biochem. Mol. Toxicol. 2007, 21, 252–264. [Google Scholar] [CrossRef]
- Azad, G.K.; Singh, V.; Mandal, P.; Singh, P.; Golla, U.; Baranwal, S.; Chauhan, S.; Tomar, R.S. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 2014, 4, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Thangamani, S.; Eldesouky, H.E.; Mohammad, H.; Pascuzzi, P.E.; Avramova, L.; Hazbun, T.R.; Seleem, M.N. Ebselen Exerts Antifungal Activity by Regulating Glutathione (GSH) and Reactive Oxygen Species (ROS) Production in Fungal Cells. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 3002–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, S.L.; Colombo, A.L.; de Almeida Junior, J.D. Fungal Cell Wall: Emerging Antifungals and Drug Resistance. Front. Microbiol. 2019, 10, 2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meotti, F.C.; Borges, V.C.; Zeni, G.; Rocha, J.B.; Nogueira, C.W. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and ebselen for rats and mice. Toxicol. Lett. 2003, 143, 9–16. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Meotti, F.C.; Curte, E.; Pilissão, C.; Zeni, G.; Rocha, J.B.T. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 2003, 183, 29. [Google Scholar] [CrossRef]
Host | Isolates | Accession Number of ITS Sequences | Isolation Source | Sex | Age | Contact with Animals | |
---|---|---|---|---|---|---|---|
Human | TMH1/20 | MT106055 | tinea capitis | M | 71 | + | Cat |
TMH3/20 | MT106057 | tinea capitis | M | 68 | + | Cat | |
TMH4/20 | MT106058 | tinea capitis | M | 20 | + | Dog | |
TMH7/20 | MT106061 | tinea unguium | F | 65 | + | Cat | |
TMH8/20 | OM574776 | tinea capitis | M | 19 | + | Chinchilla | |
TMH9/20 | OM574777 | tinea corporis | F | 43 | + | Guinea pig | |
TMH10/20 | OM574778 | tinea corporis | F | 37 | + | Dog | |
TMH1/19 | OM574779 | tinea capitis | F | 36 | + | Guinea pig | |
TMH3/19 | OM574780 | tinea corporis | M | 21 | + | Ferret | |
TMH4/19 | OM574781 | tinea unguium | F | 74 | + | Chinchilla | |
TMH5/19 | OM574782 | tinea capitis | M | 54 | + | Cat | |
TMH6/19 | OM574783 | tinea capitis | M | 27 | + | Ferret | |
TMH7/19 | OM574784 | tinea capitis | F | 69 | + | Ferret | |
TMH10/19 | OM574785 | tinea capitis | F | 64 | + | Guinea pig | |
TMH11/19 | OM574786 | tinea capitis | M | 22 | + | Guinea pig | |
TMH12/19 | OM574787 | tinea capitis | M | 26 | + | Rabbit | |
TMH13/19 | OM574788 | tinea capitis | F | 68 | + | Ferret | |
Guinea pig | TMA13/20 | MT106066 | torso | M | 4 | N/A | |
TMA14/20 | MT106067 | multiple | F | 4 | N/A | ||
TMA15/20 | MT106075 | multiple | F | 6 | N/A | ||
TMA16/20 | MT106076 | multiple | F | 7 | N/A | ||
TMA6/19 | OM574798 | head | M | 8 | N/A | ||
TMA7/19 | OM574799 | neck | F | 5 | N/A | ||
TMA16/19 | OM574800 | multiple | M | 5 | N/A | ||
Rabbit | TMA1/19 | OM574923 | head | M | 5 | N/A | |
TMA28/17 | OM574924 | head, neck | F | 7 | N/A | ||
TMA18/19 | OM574925 | head, neck | F | 7 | N/A | ||
TMA19/19 | OM574926 | multiple | F | 3 | N/A | ||
Hamster | TMA21/17 | OM574921 | abdomen | F | 1 | N/A | |
TMA31/18 | OM574922 | torso | M | 3 | N/A | ||
Dog | TMA23/17 | OM575020 | head | M | 7 | N/A | |
TMA24/17 | OM575021 | multiple | F | 2 | N/A | ||
TMA12/19 | MT106084 | neck | F | 4 | N/A | ||
TMA13/19 | OM575022 | multiple | M | 5 | N/A | ||
Cat | TMA25/17 | OM574918 | torso | M | 8 | N/A | |
TMA9/19 | OM574919 | head, neck | F | 4 | N/A | ||
TMA10/19 | OM574920 | torso | M | 7 | N/A |
Host | Isolates | Antifungals (µg/mL) | Organoselenium Compounds (µg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRB | ITC | EBS | DPDS | ||||||||||
MIC | MIC50 MIC90 GM | Range Mode | MIC | MIC50 MIC90 GM | Range Mode | MIC | MIC50 MIC90 GM | Range Mode | MIC | MIC50 MIC90 GM | Range Mode | ||
Human | TMH1/20 | 0.004 | 0.008 0.016 0.01 | 0.004–0.032 0.008 | 0.125 | 0.25 0.5 0.261 | 0.125–0.5 0.5 | 0.25 | 0.5 1 0.442 | 0.125–1 0.5 | 32 | 32 64 17.36 | 4–64 32 |
TMH3/20 | 0.008 | 0.125 | 0.25 | 32 | |||||||||
TMH4/20 | 0.004 | 0.25 | 0.25 | 8 | |||||||||
TMH7/20 | 0.016 | 0.5 | 0.5 | 64 | |||||||||
TMH8/20 | 0.016 | 0.5 | 0.5 | 64 | |||||||||
TMH9/20 | 0.008 | 0.125 | 0.125 | 16 | |||||||||
TMH10/20 | 0.008 | 0.25 | 0.5 | 32 | |||||||||
TMH1/19 | 0.008 | 0.25 | 0.5 | 16 | |||||||||
TMH3/19 | 0.016 | 0.064 | 0.25 | 8 | |||||||||
TMH4/19 | 0.032 | 0.25 | 0.5 | 16 | |||||||||
TMH5/19 | 0.016 | 0.5 | 1 | 32 | |||||||||
TMH6/19 | 0.004 | 0.5 | 1 | 32 | |||||||||
TMH7/19 | 0.016 | 0.125 | 1 | 8 | |||||||||
TMH10/19 | 0.008 | 0.25 | 0.125 | 8 | |||||||||
TMH11/19 | 0.032 | 0.5 | 1 | 4 | |||||||||
TMH12/19 | 0.004 | 0.5 | 1 | 4 | |||||||||
TMH13/19 | 0.008 | 0.5 | 0.5 | 32 | |||||||||
Guinea pig | TMA13/20 | 0.016 | 0.016 0.032 0.019 | 0.008–0.064 0.016 | 0.064 | 0.125 0.25 0.135 | 0.032–0.5 0.125 | 0.25 | 0.5 1 0.518 | 0.125–2 1 | 8 | 8 32 13.45 | 4–64 8 |
TMA14/20 | 0.032 | 0.064 | 0.125 | 8 | |||||||||
TMA15/20 | 0.064 | 0.125 | 0.125 | 32 | |||||||||
TMA16/20 | 0.064 | 0.25 | 0.5 | 32 | |||||||||
TMA6/19 | 0.016 | 0.125 | 0.5 | 4 | |||||||||
TMA7/19 | 0.008 | 0.5 | 1 | 64 | |||||||||
TMA16/19 | 0.064 | 0.064 | 1 | 32 | |||||||||
Rabbit | TMA1/19 | 0.016 | 0.125 | 1 | 8 | ||||||||
TMA28/17 | 0.032 | 0.25 | 0.5 | 8 | |||||||||
TMA18/19 | 0.016 | 0.032 | 2 | 16 | |||||||||
TMA19/19 | 0.064 | 0.5 | 2 | 64 | |||||||||
Hamster | TMA21/17 | 0.008 | 0.125 | 1 | 8 | ||||||||
TMA31/18 | 0.016 | 0.125 | 0.5 | 16 | |||||||||
Dog | TMA23/17 | 0.008 | 0.064 | 0.5 | 4 | ||||||||
TMA24/17 | 0.008 | 0.064 | 1 | 8 | |||||||||
TMA12/19 | 0.016 | 0.25 | 0.125 | 16 | |||||||||
TMA13/19 | 0.032 | 0.5 | 0.25 | 32 | |||||||||
Cat | TMA25/17 | 0.016 | 0.125 | 0.25 | 16 | ||||||||
TMA9/19 | 0.008 | 0.064 | 1 | 4 | |||||||||
TMA10/19 | 0.008 | 0.25 | 0.5 | 8 |
Drug Combination | FICIGM | Interaction (%) | ||
---|---|---|---|---|
Synergism | Indifference | Antagonism | ||
TRB + EBS | 1.05 | 10.82 | 81.08 | 8.1 |
TRB + DPDS | 1.37 | 18.92 | 67.57 | 13.51 |
ITC + EBS | 8.25 * | 0 | 18.92 | 81.08 |
ITC + DPDS | 1.91 | 5.4 | 75.68 | 18.92 |
EBS + DPDS | 2.31 | 0 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnat, S.; Łagowski, D.; Dyląg, M.; Jóźwiak, G.; Trościańczyk, A.; Nowakiewicz, A. In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains. Pharmaceutics 2022, 14, 1158. https://doi.org/10.3390/pharmaceutics14061158
Gnat S, Łagowski D, Dyląg M, Jóźwiak G, Trościańczyk A, Nowakiewicz A. In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains. Pharmaceutics. 2022; 14(6):1158. https://doi.org/10.3390/pharmaceutics14061158
Chicago/Turabian StyleGnat, Sebastian, Dominik Łagowski, Mariusz Dyląg, Grzegorz Jóźwiak, Aleksandra Trościańczyk, and Aneta Nowakiewicz. 2022. "In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains" Pharmaceutics 14, no. 6: 1158. https://doi.org/10.3390/pharmaceutics14061158
APA StyleGnat, S., Łagowski, D., Dyląg, M., Jóźwiak, G., Trościańczyk, A., & Nowakiewicz, A. (2022). In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains. Pharmaceutics, 14(6), 1158. https://doi.org/10.3390/pharmaceutics14061158