Glucose-Lowering Therapy beyond Insulin in Type 1 Diabetes: A Narrative Review on Existing Evidence from Randomized Controlled Trials and Clinical Perspective
Abstract
:1. Introduction
Non-Insulin Glucose-Lowering Therapies Selected for This Review
2. Non-Insulin-Based Glucose-Lowering Agents and Randomized Controlled Trials in Type 1 Diabetes
2.1. Sulfonylurea
2.2. Metformin
2.3. Thiazolidinediones (TZD)
2.4. Alpha-Glucosidase Inhibitors (AGIs)
2.5. DPP4 Inhibitors
2.6. GLP1-Receptor Agonists
2.7. SGLT1/2 Inhibitors
3. Discussion
Clinical Perspective: What Do the Available Data on Adjunct Therapy in People with T1D Teach Us for Clinical Practice?
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Fard, H.H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Wander, P.L.; Zhang, X.; Li, X.; Karuranga, S.; Chen, H.; Sun, H.; Xie, Y.; Oram, R.A.; Magliano, D.J.; et al. The incidence of adult-onset type 1 diabetes: A systematic review from 32 countries and regions. Diabetes Care 2022, 45, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.C.; Dahlquist, G.G.; Gyürüs, E.; Green, A.; Soltész, G.; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–2020: A multicentre prospective registration study. Lancet 2009, 373, 2027–2033. [Google Scholar] [CrossRef]
- Rewers, M.; Ludvigsson, J. Environmental risk factors for type 1 diabetes. Lancet 2016, 387, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Clements, R.S., Jr.; Vourganti, B. Fatal diabetic ketoacidosis: Major causes and approaches to their prevention. Diabetes Care 1978, 1, 314–325. [Google Scholar] [CrossRef]
- Miller, R.G.; Secrest, A.M.; Sharma, R.K.; Songer, T.J.; Orchard, T.J. Improvements in the life expectancy of type 1 diabetes: The pittsburgh epidemiology of diabetes complications study cohort. Diabetes 2012, 61, 2987–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, D.; Lung, T.W.C.; Rawshani, A.; Palmer, A.J.; Svensson, A.-M.; Eliasson, B.; Clarke, P. Recent trends in life expectancy for people with type 1 diabetes in Sweden. Diabetologia 2016, 59, 1167–1176. [Google Scholar] [CrossRef] [Green Version]
- Holman, N.; Wild, S.H.; Gregg, E.W.; Valabhji, J.; Sattar, N.; Khunti, K.; Knighton, P.; O’Keefe, J.; Patel, K.; Hanif, W.; et al. Comparison of mortality in people with type 1 and type 2 diabetes by age of diagnosis: An incident population-based study in England and Wales. Lancet Diabetes Endocrinol. 2021, 10, 95–97. [Google Scholar] [CrossRef]
- Libman, I.M.; Pietropaolo, M.; Arslanian, S.A.; LaPorte, R.E.; Becker, D.J. Changing prevalence of overweight children and adolescents at onset of insulin-treated diabetes. Diabetes Care 2003, 26, 2871–2875. [Google Scholar] [CrossRef] [Green Version]
- Polsky, S.; Ellis, S.L. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 277–282. [Google Scholar] [CrossRef]
- DuBose, S.N.; Hermann, J.M.; Tamborlane, W.V.; Beck, R.W.; Dost, A.; DiMeglio, L.A.; Schwab, K.O.; Holl, R.W.; Hofer, S.E.; Maahs, D.M.; et al. Obesity in youth with type 1 diabetes in Germany, Austria, and the United States. J. Pediatr. 2015, 167, 627–632.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.L.; Lawrence, J.; Davis, C.; Liese, A.D.; Pettitt, D.J.; Pihoker, C.; Dabelea, D.; Hamman, R.; Waitzfelder, B.; Kahn, H.; et al. Prevalence of overweight and obesity in youth with diabetes in USA: The SEARCH for Diabetes in Youth Study. Pediatr. Diabetes 2010, 11, 4–11. [Google Scholar] [CrossRef]
- Wilkin, T.J. Diabetes: 1 and 2, or one and the same? Progress with the accelerator hypothesis. Pediatr. Diabetes 2008, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Purnell, J.Q.; Zinman, B.; Brunzell, J.D.; DCCT/EDIC Research Group. The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: Results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation 2013, 127, 180–187. [Google Scholar]
- Pop, A.; Clenciu, D.; Anghel, M.; Radu, S.; Socea, B.; Mota, E.; Mota, M.; Panduru, N.M. Insulin resistance is associated with all chronic complications in type 1 diabetes. J. Diabetes 2015, 8, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Krochik, A.G.; Botto, M.; Bravo, M.; Hepner, M.; Frontroth, J.P.; Miranda, M.; Mazza, C. Association between insulin resistance and risk of complications in children and adolescents with type 1 diabetes. Diabetes Metab. Syndr. 2014, 9, 14–18. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernández, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef]
- Orchard, T.J.; Olson, J.C.; Erbey, J.R.; Williams, K.; Forrest, K.Y.-Z.; Kinder, L.S. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the pittsburgh epidemiology of diabetes complications study. Diabetes Care 2003, 26, 1374–1379. [Google Scholar] [CrossRef] [Green Version]
- Schauer, I.E.; Snell-Bergeon, J.K.; Bergman, B.C.; Maahs, D.M.; Kretowski, A.; Eckel, R.H.; Rewers, M. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes. 2011, 60, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.J. Cardiovascular disease in type 1 diabetes: A continuing challenge. Lancet Diabetes Endocrinol. 2021, 9, 548–549. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [Green Version]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Mosenzon, O.; Del Prato, S.; Schechter, M.; Leiter, L.A.; Ceriello, A.; DeFronzo, R.A.; Raz, I. From glucose lowering agents to disease/diabetes modifying drugs: A “SIMPLE” approach for the treatment of type 2 diabetes. Cardiovasc. Diabetol. 2021, 20, 92. [Google Scholar] [CrossRef]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Avgerinos, I.; Manolopoulos, A.; Michailidis, T.; Kitsios, K.; Liakos, A.; Karagiannis, T.; Dimitrakopoulos, K.; Matthews, D.R.; Tsapas, A.; Bekiari, E. Comparative efficacy and safety of glucose-lowering drugs as adjunctive therapy for adults with type 1 diabetes: A systematic review and network meta-analysis. Diabetes Obes. Metab. 2020, 23, 822–831. [Google Scholar] [CrossRef]
- Burke, B.J.; Hartog, M.; Waterfield, M.R. Improved diabetic control in insulin-dependent diabetics treated with insulin and glibenclamide. Acta Endocrinol. 1984, 107, 70–77. [Google Scholar] [CrossRef]
- Bieger, W.P.; Dlugosch, R.; Rettenmeier, A.; Holler, H.D.; Bert, H.; Schwarz, W.; Fiehn, W.; Merkt, J.; Weicker, H. Trial of sulfonylurea in combination with insulin in the therapy of diabetes type I and II. Evidence against a primary extrapancreatic receptor effect. Klin. Wochenschr. 1984, 62, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.; Tamayo, R.C.; Whitehouse, F.W.; Kahkonen, D.M. Effect of glyburide on metabolic control and insulin binding in insulin-dependent diabetes mellitus. Diabetes Care 1984, 7 (Suppl. 1), 106–112. [Google Scholar] [PubMed]
- Gums, J.G.; Curry, R.W.; De Oca, G.M.; Skluth, H.A.; Reynolds, L.R. Treatment of type I diabetes with a combination of glyburide and insulin. Ann. Pharmacother. 1992, 26, 757–762. [Google Scholar] [CrossRef]
- McCoy, S.; Kabadi, M.; Kabadi, U.; Birkenholz, M. More uniform diurnal blood glucose control and a reduction in daily insulin dosage on addition of glibenclamide to insulin in type 1 diabetes mellitus: Role of enhanced insulin sensitivity. Diabet. Med. 1995, 12, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L.; Bohme, P.; Delbachian, I.; Lehert, P.; Cugnardey, N.; Drouin, P.; Guerci, B. The benefits of metformin therapy during continuous subcutaneous insulin infusion treatment of type 1 diabetic patients. Diabetes Care 2002, 25, 2153–2158. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.A.; McLoughney, C.R.; Ahmed, A.B. The effect of metformin on blood glucose control in overweight patients with Type 1 diabetes. Diabet. Med. 2006, 23, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Lund, S.S.; Tarnow, L.; Astrup, A.S.; Hovind, P.; Jacobsen, P.K.; Alibegovic, A.C.; Parving, I.; Pietraszek, L.; Frandsen, M.; Rossing, P.; et al. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLoS ONE 2008, 3, e3363. [Google Scholar] [CrossRef]
- Jacobsen, I.B.; Henriksen, J.E.; Beck-Nielsen, H. The effect of metformin in overweight patients with type 1 diabetes and poor metabolic control. Basic Clin. Pharmacol. Toxicol. 2009, 105, 145–149. [Google Scholar] [CrossRef]
- Burchardt, P.; Zawada, A.; Tabaczewski, P.; Naskręt, D.; Kaczmarek, J.; Marcinkaniec, J.; Wierusz-Wysocka, B.; Wysocki, H. Metformin added to intensive insulin therapy reduces plasma levels of glycated but not oxidized low-density lipoprotein in young patients with type 1 diabetes and obesity in comparison with insulin alone: A pilot study. Pol. Arch. Intern. Med. 2013, 123, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Pitocco, D.; Zaccardi, F.; Tarzia, P.; Milo, M.; Scavone, G.; Rizzo, P.; Pagliaccia, F.; Nerla, R.; Di Franco, A.; Manto, A.; et al. Metformin improves endothelial function in type 1 diabetic subjects: A pilot, placebo-controlled randomized study. Diabetes Obes. Metab. 2012, 15, 427–431. [Google Scholar] [CrossRef]
- Petrie, J.R.; Chaturvedi, N.; Ford, I.; Brouwers, M.C.G.J.; Greenlaw, N.; Tillin, T.; Hramiak, I.; Hughes, A.D.; Jenkins, A.J.; Klein, B.E.K.; et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): A double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Lunder, M.; Janić, M.; Japelj, M.; Juretič, A.; Janež, A.; Šabovič, M. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc. Diabetol. 2018, 17, 153. [Google Scholar] [CrossRef] [PubMed]
- Marena, S.; Tagliaferro, V.; Cavallero, G.; Paganiy, A.; Montegrosso, G.; Bianchi, W.; Zaccarini, P.; Pagano, G. Double-blind crossover study of acarbose in type 1 diabetic patients. Diabet. Med. 1991, 8, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Hollander, P.; Pi-Sunyer, X.; Coniff, R.F. Acarbose in the treatment of type I diabetes. Diabetes Care 1997, 20, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, G.; Giacco, R.; Parillo, M.; Turco, S.; Rivellese, A.A.; Ventura, M.R.; Contadini, S.; Marra, G.; Monteduro, M.; Santeusanio, F.; et al. Efficacy and safety of acarbose in the treatment of Type 1 diabetes mellitus: A placebo-controlled, double-blind, multicentre study. Diabet. Med. 1999, 16, 228–232. [Google Scholar] [CrossRef]
- Hillman, R.J.; Scott, M.; Gray, R.S. Effect of alpha-glucosidase inhibition on glucose profiles in insulin dependent diabetes. Diabetes Res. 1989, 10, 81–84. [Google Scholar]
- Strowig, S.M.; Raskin, P. The effect of rosiglitazone on overweight subjects with type 1 diabetes. Diabetes Care 2005, 28, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Guclu, M.; Gul, O.O.; Cander, S.; Unal, O.; Ozkaya, G.; Sarandol, E.; Ersoy, C. Effect of rosiglitazone and insulin combination therapy on inflammation parameters and adipocytokine levels in patients with type 1 DM. J. Diabetes Res. 2015, 2015, 807891. [Google Scholar] [CrossRef] [Green Version]
- Zdravkovic, V.; Hamilton, J.K.; Daneman, D.; Cummings, E. Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J. Pediatr. 2006, 149, 845–849.e1. [Google Scholar] [CrossRef]
- Bhat, R.; Bhansali, A.; Bhadada, S.; Sialy, R. Effect of pioglitazone therapy in lean type1 diabetes mellitus. Diabetes Res. Clin. Pract. 2007, 78, 349–354. [Google Scholar] [CrossRef]
- Sue, T.K.; Ahmed, G.M.; Harry, L.A.; Allen, W.T.; Tafuri, K.S.; Godil, M.A.; Lane, A.H.; Wilson, T.A. Effect of pioglitazone on the course of new-onset type 1 diabetes mellitus. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Farngren, J.; Persson, M.; Schweizer, A.; Foley, J.E.; Ahrén, B. Vildagliptin reduces glucagon during hyperglycemia and sustains glucagon counterregulation during hypoglycemia in type 1 diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 3799–3806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, S.K.; Moser, E.G.; Bode, B.W.; Klaff, L.J.; Hiatt, W.R.; Beatson, C.; Snell-Bergeon, J.K. Effect of sitagliptin on post-prandial glucagon and glp-1 levels in patients with type 1 diabetes: Investigator-initiated, double-blind, randomized, placebo-controlled trial. Endocr. Pract. 2013, 19, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Hari Kumar, K.V.; Shaikh, A.; Prusty, P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: A randomized, open label study. Diabetes Res. Clin. Pract. 2013, 100, e55–e58. [Google Scholar] [CrossRef]
- Schopman, J.E.; Hoekstra, J.B.L.; Frier, B.M.; Ackermans, M.T.; De Sonnaville, J.J.J.; Stades, A.M.; Zwertbroek, R.; Hartmann, B.; Holst, J.J.; Knop, F.K.; et al. Effects of sitagliptin on counter-regulatory and incretin hormones during acute hypoglycaemia in patients with type 1 diabetes: A randomized double-blind placebo-controlled crossover study. Diabetes Obes. Metab. 2015, 17, 546–553. [Google Scholar] [CrossRef]
- George, P.S.; McCrimmon, R.J. Saxagliptin co-therapy in C-peptide negative Type 1 diabetes does not improve counter-regulatory responses to hypoglycaemia. Diabet. Med. 2015, 33, 1283–1290. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.-L.; Wang, S.-Q.; Ding, B.; Zhu, J.; Jing, T.; Ye, L.; Lee, K.-O.; Wu, J.-D.; Ma, J.-H. The effects of add-on exenatide to insulin on glycemic variability and hypoglycemia in patients with type 1 diabetes mellitus. J. Endocrinol. Investig. 2017, 41, 539–547. [Google Scholar] [CrossRef]
- Van Meijel, L.A.; Rooijackers, H.M.; Tack, C.J.; de Galan, B.E. Effect of the GLP-1 receptor agonist exenatide on impaired awareness of hypoglycemia in type 1 diabetes; a randomized controlled trial. J. Clin. Endocrinol. Metab. 2019, 104, 4143–4150. [Google Scholar] [CrossRef]
- Johansen, N.J.; Dejgaard, T.F.; Lund, A.; Schlüntz, C.; Larsen, E.L.; Poulsen, H.E.; Goetze, J.P.; Møller, H.J.; Vilsbøll, T.; Andersen, H.U.; et al. Effect of short-acting exenatide administered three times daily on markers of cardiovascular disease in type 1 diabetes: A randomized double-blind placebo-controlled trial. Diabetes Obes. Metab. 2020, 22, 1639–1647. [Google Scholar] [CrossRef]
- Pieber, T.R.; Deller, S.; Korsatko, S.; Jensen, L.; Christiansen, E.; Heller, S.; Madsen, J. Counter-regulatory hormone responses to hypoglycaemia in people with type 1 diabetes after 4 weeks of treatment with liraglutide adjunct to insulin: A randomized, placebo-controlled, double-blind, crossover trial. Diabetes Obes. Metab. 2015, 17, 742–750. [Google Scholar] [CrossRef]
- Frandsen, C.S.; Dejgaard, T.F.; Holst, J.J.; Andersen, H.U.; Thorsteinsson, B.; Madsbad, S. Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: A randomized, placebo-controlled, double-blind parallel study. Diabetes Care 2015, 38, 2250–2257. [Google Scholar] [CrossRef] [Green Version]
- Ahrén, B.; Hirsch, I.B.; Pieber, T.R.; Mathieu, C.; Gómez-Peralta, F.; Hansen, T.K.; Philotheou, A.; Birch, S.; Christiansen, E.; Jensen, T.J.; et al. Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: The adjunct two randomized trial. Diabetes Care 2016, 39, 1693–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieu, C.; Zinman, B.; Hemmingsson, J.U.; Woo, V.; Colman, P.; Christiansen, E.; Linder, M.; Bode, B. For the adjunct one investigators efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: The adjunct one treat-to-target randomized trial. Diabetes Care 2016, 39, 1702–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhadiya, N.D.; Dhindsa, S.; Ghanim, H.; Mehta, A.; Makdissi, A.; Batra, M.; Sandhu, S.; Hejna, J.; Green, K.; Bellini, N.; et al. Addition of liraglutide to insulin in patients with type 1 diabetes: A randomized placebo-controlled clinical trial of 12 weeks. Diabetes Care 2016, 39, 1027–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dube, M.C.; D’Amours, M.; Weisnagel, S.J. Beyond glycaemic control: A cross-over, double-blinded, 24-week intervention with liraglutide in type 1 diabetes. Diabetes Obes. Metab. 2018, 20, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dejgaard, T.F.; Frandsen, C.; Kielgast, U.; Andersen, H.U.; Thorsteinsson, B.; Krarup, T. Liraglutide preserved insulin secretion in adults with newly diagnosed type 1 diabetes: The NewLira trial: [Meeting Abstract]. Diabetologia 2019, S75. [Google Scholar]
- Brock, C.; Hansen, C.S.; Karmisholt, J.; Møller, H.J.; Juhl, A.; Farmer, A.D.; Drewes, A.; Riahi, S.; Lervang, H.H.; Jakobsen, P.E.; et al. Liraglutide treatment reduced interleukin-6 in adults with type 1 diabetes but did not improve established autonomic or polyneuropathy. Br. J. Clin. Pharmacol. 2019, 85, 2512–2523. [Google Scholar] [CrossRef] [Green Version]
- Dejgaard, T.F.; Schmidt, S.; Frandsen, C.S.; Vistisen, D.; Madsbad, S.; Andersen, H.U.; Nørgaard, K. Liraglutide reduces hyperglycaemia and body weight in overweight, dysregulated insulin-pump-treated patients with type 1 diabetes: The Lira Pump trial-a randomized, double-blinded, placebo-controlled trial. Diabetes Obes Metab. 2020, 22, 492–500. [Google Scholar] [CrossRef]
- Dejgaard, T.F.; von Scholten, B.J.; Christiansen, E.; Kreiner, F.F.; Bardtrum, L.; von Herrath, M.; Mathieu, C.; Madsbad, S. Adjunct one and adjunct two investigators efficacy and safety of liraglutide in type 1 diabetes by baseline characteristics in the adjunct one and adjunct two randomized controlled trials. Diabetes Obes. Metab. 2021, 23, 2752–2762. [Google Scholar] [CrossRef]
- Von Herrath, M.; Bain, S.C.; Bode, B.; Hukkanen, J.; Lahtela, J.; Niskanen, L.; Wolnik, B. Anti-interleukin-21 antibody and liraglutide for the preservation of beta-cell function in adults with recent-onset type 1 diabetes: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2021, 9, 212–224. [Google Scholar] [CrossRef]
- Pozzilli, P.; Bosi, E.; Cirkel, D.; Harris, J.; Leech, N.; Tinahones, F.J.; Vantyghem, M.-C.; Vlasakakis, G.; Ziegler, A.-G.; Janmohamed, S. Randomized 52-week phase 2 trial of albiglutide versus placebo in adult patients with newly diagnosed type 1 diabetes. J. Clin. Endocrinol. Metab. 2020, 105, e2192–e2206. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.R.; Thakkar, P.; Tong, C.; Polidori, D.; Alba, M. Efficacy and safety of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 2015, 38, 2258–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieber, T.R.; Famulla, S.; Eilbracht, J.; Cescutti, J.; Soleymanlou, N.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Kaspers, S. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: A 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes. Metab. 2015, 17, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Marquard, J.; Laffel, L.M.; Neubacher, D.; Kaspers, S.; Cherney, D.Z.; Zinman, B.; Skyler, J.S.; George, J.; Soleymanlou, N.; et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: The EASE trials. Diabetes Care 2018, 41, 2560–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, A.; Hanafusa, T.; Yasui, A.; Lee, G.; Taneda, Y.; Sarashina, A.; Shiki, K.; George, J.; Soleymanlou, N.; Marquard, J. Empagliflozin as adjunct to insulin in Japanese participants with type 1 diabetes: Results of a 4-week, double-blind, randomized, placebo-controlled phase 2 trial. Diabetes Obes. Metab. 2018, 20, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Tirado, J.F.; Farhy, L.; Nass, R.; Kollar, M.L.; Clancy-Oliveri, M.; Basu, R.; Kovatchev, B.; Basu, A. Automated insulin delivery with SGLT2i combination therapy in type 1 diabetes. Diabetes Technol. Ther. 2022. [Google Scholar] [CrossRef]
- Dandona, P.; Mathieu, C.; Phillip, M.; Hansen, L.; Griffen, S.C.; Tschöpe, D.; Thorén, F.; Xu, J.; Langkilde, A.M.; Proietto, J.; et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 864–876. [Google Scholar] [CrossRef]
- Mathieu, C.; Dandona, P.; Gillard, P.; Senior, P.; Hasslacher, C.; Araki, E.; Lind, M.; Bain, S.C.; Jabbour, S.; Arya, N.; et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24-week results from a randomized controlled trial. Diabetes Care 2018, 41, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K.; Isaka, H.; Sakatani, T.; Toyoshima, J. Efficacy and safety of ipragliflozin add-on therapy to insulin in Japanese patients with type 1 diabetes mellitus: A randomized, double-blind, phase 3 trial. Diabetes Obes Metab. 2019, 21, 2284–2293. [Google Scholar] [CrossRef] [Green Version]
- Sands, A.T.; Zambrowicz, B.P.; Rosenstock, J.; Lapuerta, P.; Bode, B.W.; Garg, S.K.; Buse, J.B.; Banks, P.; Heptulla, R.; Rendell, M.; et al. Sotagliflozin, a Dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 2015, 38, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.K.; Henry, R.R.; Banks, P.; Buse, J.; Davies, M.; Fulcher, G.R.; Pozzilli, P.; Gesty-Palmer, D.; Lapuerta, P.; Simó, R.; et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 2017, 377, 2337–2348. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Garg, S.K.; Rosenstock, J.; Bailey, T.S.; Banks, P.; Bode, B.W.; Danne, T.; Kushner, J.A.; Lane, W.S.; Lapuerta, P.; et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: The North American intandem 1 study. Diabetes Care 2018, 41, 1970–1980. [Google Scholar] [CrossRef] [Green Version]
- Danne, T.; Cariou, B.; Banks, P.; Brandle, M.; Brath, H.; Franek, E.; Kushner, J.A.; Lapuerta, P.; McGuire, D.K.; Peters, A.L.; et al. HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: The european intandem 2 study. Diabetes Care 2018, 41, 1981–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.; Wason, S.; Banks, P.; Sawhney, S.; Chang, A.; Danne, T.; Gesty-Palmer, D.; Kushner, J.A.; McGuire, D.K.; Mikell, F.; et al. Dose-dependent glycometabolic effects of sotagliflozin on type 1 diabetes over 12 weeks: The intandem 4 trial. Diabetes Obes. Metab. 2019, 21, 2440–2449. [Google Scholar] [CrossRef]
- Bode, B.W.; Cengiz, E.; Wadwa, R.P.; Banks, P.; Danne, T.; Kushner, J.A.; McGuire, D.K.; Peters, A.L.; Strumph, P.; Sawhney, S. Effects of sotagliflozin combined with intensive insulin therapy in young adults with poorly controlled type 1 diabetes: The JDRF sotagliflozin study. Diabetes Technol. Ther. 2021, 23, 59–69. [Google Scholar] [CrossRef]
- Pernet, A.; Trimble, E.R.; Kuntschen, F.; Assal, J.-P.; Hahn, C.; Renold, A.E. Sulfonylureas in insulin-dependent (Type I) diabetes: Evidence for an extrapancreatic effect in vivo. J. Clin. Endocrinol. Metab. 1985, 61, 247–251. [Google Scholar] [CrossRef]
- American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S111–S124. [Google Scholar] [CrossRef]
- Kooy, A.; De Jager, J.; Lehert, P.; Bets, D.; Wulffelé, M.G.; Donker, A.J.M.; Stehouwer, C.D.A. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch. Intern. Med. 2009, 169, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wu, D.; Zheng, X.; Li, P.; Li, L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: A meta-analysis. Diabetes Technol. Ther. 2015, 17, 142–148. [Google Scholar] [CrossRef]
- Lund, S.S.; Tarnow, L.; Astrup, A.S.; Hovind, P.; Jacobsen, P.K.; Alibegovic, A.C.; Parving, I.; Pietraszek, L.; Frandsen, M.; Rossing, P.; et al. Effect of adjunct metformin treatment on levels of plasma lipids in patients with type 1 diabetes. Diabetes Obes. Metab. 2009, 11, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, D.; Xu, P.; Yang, S.; Zhang, Q.; Wu, Y.; Yuan, F. Metformin improves glycemic variability in adults with type 1 diabetes mellitus: An open-label randomized control trial. Endocr. Connect. 2021, 10, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Staels, F.; Moyson, C.; Mathieu, C. Metformin as add-on to intensive insulin therapy in type 1 diabetes mellitus. Diabetes Obes. Metab. 2017, 19, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.G.; Greenlaw, N.; Boyle, J.G.; Chaturvedi, N.; Ford, I.; Brouwers, M.C.G.J.; Tillin, T.; Hramiak, I.; Hughes, A.D.; Jenkins, A.J.; et al. Metformin and carotid intima-media thickness in never-smokers with type 1 diabetes: The REMOVAL trial. Diabetes Obes. Metab. 2021, 23, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Hauner, H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev. 2002, 18 (Suppl. 2), S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diabetes Rep. 2019, 19, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet 2006, 368, 1096–1105. [Google Scholar] [CrossRef] [Green Version]
- Defronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Gastaldelli, A.; Henry, R.R.; Kitabchi, A.E.; et al. Prevention of diabetes with pioglitazone in ACT NOW: Physiologic correlates. Diabetes 2013, 62, 3920–3926. [Google Scholar] [CrossRef] [Green Version]
- Dormandy, J.A.; Charbonnel, B.; Eckland, D.J.A.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.K.; Skene, A.M.; Tan, M.H.; Lefèbvre, P.J.; Murray, G.D.; et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005, 366, 1279–1289. [Google Scholar] [CrossRef]
- Chiasson, E.A.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M.; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. JAMA 2003, 290, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Hanefeld, M.; Cagatay, M.; Petrowitsch, T.; Neuser, D.; Petzinna, D.; Rupp, M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: Meta-analysis of seven long-term studies. Eur. Heart J. 2004, 25, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.R.; Coleman, R.L.; Chan, J.; Chiasson, J.-L.; Feng, H.; Ge, J.; Gerstein, H.; Gray, R.; Huo, Y.; Lang, Z.; et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.B.; Bethel, M.A.; Armstrong, P.; Buse, J.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [Green Version]
- White, W.B.; Cannon, C.P.; Heller, S.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 2013, 369, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The carmelina randomized clinical trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- Rosenstock, J.; Kahn, S.E.; Johansen, O.E.; Zinman, B.; Espeland, M.A.; Woerle, H.J.; Pfarr, E.; Keller, A.; Mattheus, M.; Baanstra, D.; et al. Effect of Linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: The carolina randomized clinical trial. JAMA 2019, 322, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Penaforte-Saboia, J.G.; Couri, C.E.B.; Albuquerque, N.V.; Silva, V.L.L.; da Cunha Olegario, N.B.; Fernandes, V.O.; Junior, R.M. Emerging roles of dipeptidyl peptidase-4 inhibitors in delaying the progression of type 1 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2021, 14, 565–573. [Google Scholar] [CrossRef]
- Ellis, S.L.; Moser, E.G.; Rodionova, A.S.; Hazenfield, R.M.; Snell-Bergeon, J.K.; Garg, S.K. Effect of sitagliptin on glucose control in adult patients with Type 1 diabetes: A pilot, double-blind, randomized, crossover trial. Diabet. Med. 2011, 28, 1176–1181. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Dejgaard, T.F.; Johansen, N.B.; Frandsen, C.S.; Asmar, A.; Tarnow, L.; Knop, F.K.; Madsbad, S.; Andersen, H.U. Effects of liraglutide on cardiovascular risk factors in patients with type 1 diabetes. Diabetes Obes. Metab. 2016, 19, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Batra, M.; Green, K.; Abuaysheh, S.; Hejna, J.; Makdissi, A.; Borowski, R.; Kuhadiya, N.D.; Chaudhuri, A.; Dandona, P. Liraglutide treatment in overweight and obese patients with type 1 diabetes: A 26-week randomized controlled trial; mechanisms of weight loss. Diabetes Obes. Metab. 2020, 22, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Johansen, N.J.; Dejgaard, T.F.; Lund, A.; Schlüntz, C.; Frandsen, C.S.; Forman, J.L.; Albrechtsen, N.J.W.; Holst, J.J.; Pedersen-Bjergaard, U.; Madsbad, S.; et al. Efficacy and safety of meal-time administration of short-acting exenatide for glycaemic control in type 1 diabetes (MAG1C): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 313–324. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Sabatine, M.S. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. Reply. N. Engl. J. Med. 2019, 380, 1881–1882. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; DeMets, D.L.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Langkilde, A.M.; Martinez, F.A.; Bengtsson, O.; Ponikowski, P.; Sabatine, M.S.; et al. A trial to evaluate the effect of the sodium–glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur. J. Heart Fail. 2019, 21, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Packer, M.; Butler, J.; Filippatos, G.S.; Jamal, W.; Salsali, A.; Schnee, J.; Kimura, K.; Zeller, C.; George, J.; Brueckmann, M.; et al. Evaluation of the effect of sodium–glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: Rationale for and design of the EMPEROR-Reduced trial. Eur. J. Heart Fail. 2019, 21, 1270–1278. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Mathieu, C.; Rudofsky, G.; Phillip, M.; Araki, E.; Lind, M.; Arya, N.; Thorén, F.; Scheerer, M.F.; Iqbal, N.; Dandona, P. Long-term efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 52-week results from a randomized controlled trial. Diabetes Obes. Metab. 2020, 22, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Groop, P.-H.; Dandona, P.; Phillip, M.; Gillard, P.; Edelman, S.; Jendle, J.; Xu, J.; Scheerer, M.F.; Thoren, F.; Iqbal, N.; et al. Effect of dapagliflozin as an adjunct to insulin over 52 weeks in individuals with type 1 diabetes: Post-hoc renal analysis of the DEPICT randomised controlled trials. Lancet Diabetes Endocrinol. 2020, 8, 845–854. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Z.; Wei, Y. Efficacy and safety of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: A meta-analysis of randomized controlled trials. Exp. Ther. Med. 2021, 21, 382. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, D. Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 2017, 19, S25–S37. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Peters, A.L.; Slee, A.; Cao, A.; Traina, S.B.; Alba, M. The effect of canagliflozin, a sodium glucose cotransporter 2 inhibitor, on glycemic end points assessed by continuous glucose monitoring and patient-reported outcomes among people with type 1 diabetes. Diabetes Care 2016, 40, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K.; Isaka, H.; Sakatani, T.; Toyoshima, J. Long-term (52-week) efficacy and safety of ipragliflozin add-on therapy to insulin in Japanese patients with type 1 diabetes mellitus: An uncontrolled, open-label extension of a phase III study. J. Diabetes Investig. 2020, 11, 662–671. [Google Scholar] [CrossRef]
- Cefalo, C.M.A.; Cinti, F.; Moffa, S.; Impronta, F.; Sorice, G.P.; Mezza, T.; Pontecorvi, A.; Giaccari, A. Sotagliflozin, the first dual SGLT inhibitor: Current outlook and perspectives. Cardiovasc. Diabetol. 2019, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Danne, T.; Edelman, S.; Frias, J.P.; Ampudia-Blasco, F.J.; Banks, P.; Jiang, W.; Davies, M.J.; Sawhney, S. Efficacy and safety of adding sotagliflozin, a dual sodium-glucose co-transporter (SGLT)1 and SGLT2 inhibitor, to optimized insulin therapy in adults with type 1 diabetes and baseline body mass index ≥ 27 kg/m2. Diabetes Obes Metab. 2021, 23, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Fährmann, E.R.; Adkins, L.; Loader, C.J.; Han, H.; Rice, K.; Denvir, J.; Driscoll, H.K. Severe hypoglycemia and coronary artery calcification during the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Res. Clin. Pract. 2015, 107, 280–289. [Google Scholar] [CrossRef]
- Lind, M.; Svensson, A.-M.; Kosiborod, M.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic control and excess mortality in type 1 diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef]
- Lee, A.S.; Twigg, S.M.; Flack, J.R. Metabolic syndrome in type 1 diabetes and its association with diabetes complications. Diabet. Med. 2020, 38, e14376. [Google Scholar] [CrossRef]
- Food and Drug Administration: Approval of Symlin (Pramlintide Acetate) Injection. 2005. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21-332_Symlin.cfm#:~:text=Approval%20Date%3A%203%2F16%2F2005 (accessed on 4 April 2022).
- GOV.UK. Dapagliflozin (Forxiga): No Longer Authorised for Treatment of Type 1 Diabetes Mellitus. 2021. Available online: https://www.gov.uk/drug-safety-update/dapagliflozin-forxiga-no-longer-authorised-for-treatment-of-type-1-diabetes-mellitus#:~:text=On%2025%20October%202021%2C%20the,inform%20them%20of%20the%20withdrawal (accessed on 4 April 2022).
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; et al. State of type 1 diabetes management and outcomes from the t1d exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, R.; on behalf of The REMOVAL Study Team; Boyle, J.G.; Petrie, J.R. REMOVAL Study Team. A new perspective on metformin therapy in type 1 diabetes. Diabetologia 2017, 60, 1594–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, G.; Sircana, A.; Saba, F.; Cassader, M.; Gambino, R. Assessing the risk of ketoacidosis due to sodium-glucose cotransporter (SGLT)-2 inhibitors in patients with type 1 diabetes: A meta-analysis and meta-regression. PLoS Med. 2020, 17, e1003461. [Google Scholar] [CrossRef] [PubMed]
Agent | Number of RCTs | Total Number of Participants | Number of Participants Receiving Treatment | Number of Participants Receiving Placebo | Years of Publication and References to the Publications |
---|---|---|---|---|---|
Sulfonylurea | 5 | ||||
Glibenclamide | 5 | 119 | 65 | 73 | 1984 (3×) [30,31,32], 1992 [33], 1995 [34] |
Metformin | 8 | 719 | 378 | 356 | 2002 [35], 2006 [36], 2008 [37], 2009 [38], 2013(2×) [39,40], 2017 [41], 2018 [42] |
AGI | 4 | ||||
Acarbose | 3 | 352 | 185 | 195 | 1991 [43], 1997 [44], 1999 [45] |
Miglitol | 1 | 13 | 13 | 13 | 1989 [46] |
TZD | 5 | ||||
Rosiglitazone | 2 | 111 | 55 | 56 | 2005 [47], 2015 [48] |
Pioglitazone | 3 | 130 | 66 | 64 | 2006 [49], 2007 [50], 2013 [51] |
DPP4-inhbitors | 5 | ||||
Vildagliptin | 1 | 28 | 28 | 28 | 2012 [52] |
Sitagliptin | 3 | 153 | 85 | 84 | 2013 (2×) [53,54], 2015 [55] |
Saxagliptin | 1 | 14 | 14 | 14 | 2016 [56] |
GLP1-RA | 17 | ||||
Exenatide | 4 | 156 | 83 | 83 | 2013 [54], 2018 [57], 2019 [58], 2020 [59] |
Liraglutide | 12 | 2824 | 2015 | 869 | 2015 (2×) [60,61], 2016 (3×) [62,63,64], 2018 (2×) [65], 2019 (2×) [66,67], 2020 [68], 2021(2×) [69,70] |
Albiglutide | 1 | 67 | 50 | 17 | 2020 [71] |
SGLT(1)2- inhibitors | 16 | ||||
Canagliflozin | 1 | 351 | 234 | 117 | 2015 [72] |
Empagliflozin | 6 | 1861 | 1328 | 533 | 2015 [73], 2018 (4×) [42,74,75], 2022 [76] |
Dapagliflozin | 2 | 1336 | 798 | 538 | 2017 [77], 2018 [78] |
Ipragliflozin | 1 | 174 | 115 | 59 | 2019 [79] |
Sotagliflozin | 6 | 3236 | 1912 | 1324 | 2015 [80], 2017 [81], 2018 (2×) [82,83], 2019 [84], 2021 [85] |
HbA1c | Total Insulin Dose | Weight | Systolic Blood Pressure | LDL-Cholesterol | DKA Risk | Severe Hypoglycemia | Gastrointestinal side Effects | Treatment Discontinuation due to Adverse Event | |
---|---|---|---|---|---|---|---|---|---|
Glibenclamide | |||||||||
Metformin | |||||||||
Miglitol | |||||||||
Acarbose | |||||||||
Rosiglitazone | |||||||||
Pioglitazone * | |||||||||
Liraglutide | |||||||||
Exenatide | |||||||||
Albiglutide | |||||||||
Sitagliptin | |||||||||
Saxagliptin | |||||||||
Vildagliptin | |||||||||
Empagliflozin | |||||||||
Dapagliflozin | |||||||||
Canagliflozin | |||||||||
Sotagliflozin | |||||||||
Ipragliflozin | |||||||||
Data derived from meta-analyses | Beneficially changed by intervention | Unchanged by intervention | Adversely changed by intervention | No sufficient evidence available | |||||
Data derived from single studies | Beneficially changed by intervention | Unchanged by intervention | Adversely changed by intervention | No sufficient evidence available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aberer, F.; Pieber, T.R.; Eckstein, M.L.; Sourij, H.; Moser, O. Glucose-Lowering Therapy beyond Insulin in Type 1 Diabetes: A Narrative Review on Existing Evidence from Randomized Controlled Trials and Clinical Perspective. Pharmaceutics 2022, 14, 1180. https://doi.org/10.3390/pharmaceutics14061180
Aberer F, Pieber TR, Eckstein ML, Sourij H, Moser O. Glucose-Lowering Therapy beyond Insulin in Type 1 Diabetes: A Narrative Review on Existing Evidence from Randomized Controlled Trials and Clinical Perspective. Pharmaceutics. 2022; 14(6):1180. https://doi.org/10.3390/pharmaceutics14061180
Chicago/Turabian StyleAberer, Felix, Thomas R. Pieber, Max L. Eckstein, Harald Sourij, and Othmar Moser. 2022. "Glucose-Lowering Therapy beyond Insulin in Type 1 Diabetes: A Narrative Review on Existing Evidence from Randomized Controlled Trials and Clinical Perspective" Pharmaceutics 14, no. 6: 1180. https://doi.org/10.3390/pharmaceutics14061180
APA StyleAberer, F., Pieber, T. R., Eckstein, M. L., Sourij, H., & Moser, O. (2022). Glucose-Lowering Therapy beyond Insulin in Type 1 Diabetes: A Narrative Review on Existing Evidence from Randomized Controlled Trials and Clinical Perspective. Pharmaceutics, 14(6), 1180. https://doi.org/10.3390/pharmaceutics14061180