Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case
Abstract
:1. Introduction
- A defined endpoint.
- An unambiguous algorithm.
- A defined domain of applicability.
- Appropriate measures of goodness-of-fit, robustness, and predictivity.
- A mechanistic interpretation, if possible [21].
2. Materials and Methods
2.1. Training Dataset
2.2. Test Dataset
2.3. Model
2.4. Model Metrics
3. Results
3.1. Test Dataset
3.2. Model
3.3. Compliance with OECD Principles
3.3.1. Defined Endpoint
3.3.2. Unambiguous Algorithm
3.3.3. Applicability Domain
3.3.4. Measures of Goodness-of-Fit, Robustness, and Predictivity
3.3.5. Mechanistic Interpretation
Shapley Additive Explanations (SHAP)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 2019, 20, 521. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharm. 2018, 9, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015, 14, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Berdigaliyev, N.; Aljofan, M. An overview of drug discovery and development. Future Med. Chem. 2020, 12, 939–947. [Google Scholar] [CrossRef]
- Fleming, N. How artificial intelligence is changing drug discovery. Nature 2018, 557, S55–S57. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Linnankoski, J.; Mäkelä, J.M.; Ranta, V.P.; Urtti, A.; Yliperttula, M. Computational prediction of oral drug absorption based on absorption rate constants in humans. J. Med. Chem. 2006, 49, 3674–3681. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R. Prediction of Elimination of Compounds Using Artificial Intelligence Techniques. In Proceedings of the International Conference on Bioinformatics and Systems Biology (BSB), Allahabad, India, 26–28 October 2018; pp. 123–127. [Google Scholar] [CrossRef]
- Lombardo, F.; Obach, R.S.; Shalaeva, M.Y.; Gao, F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J. Med. Chem. 2002, 45, 2867–2876. [Google Scholar] [CrossRef]
- Balaji, B.; Ramanathan, M. Prediction of estrogen receptor β ligands potency and selectivity by docking and MM-GBSA scoring methods using three different scaffolds. J. Enzym. Inhib. Med. Chem. 2012, 27, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Lenselink, E.B.; Louvel, J.; Forti, A.F.; Van Veldhoven, J.P.D.; De Vries, H.; Mulder-Krieger, T.; McRobb, F.M.; Negri, A.; Goose, J.; Abel, R.; et al. Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation. ACS Omega 2016, 1, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Waller, C.L.; Juma, B.W.; Gray, L.E., Jr.; Kelce, W.R. Three-dimensional quantitative structure--activity relationships for androgen receptor ligands. Toxicol. Appl. Pharmacol. 1996, 137, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Muster, W.; Breidenbach, A.; Fischer, H.; Kirchner, S.; Müller, L.; Pähler, A. Computational toxicology in drug development. Drug Discov. Today 2008, 13, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Brown, H.S.; Houston, J.B. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br. J. Clin. Pharmacol. 2004, 57, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Lai, L.; Pei, J. Computational Chemical Synthesis Analysis and Pathway Design. Front. Chem. 2018, 6, 199. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- OECD. Available online: https://www.oecd.org/ (accessed on 8 November 2021).
- Hulzebos, E.; Sijm, D.; Traas, T.; Posthumus, R.; Maslankiewicz, L. Validity and validation of expert (Q)SAR systems, SAR QSAR. Environ. Res. 2005, 16, 385–401. [Google Scholar] [CrossRef]
- OECD Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure-Activity Relationship Models. Available online: https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm (accessed on 8 November 2021).
- Czub, N.; Pacławski, A.; Szlęk, J.; Mendyk, A. Curated Database and Preliminary AutoML QSAR Model for 5-HT1A Receptor. Pharmaceutics 2021, 13, 1711. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Nutt, D.J. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol. 2017, 31, 1091–1120. [Google Scholar] [CrossRef] [Green Version]
- Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: Rationale and current status of research. CNS Drugs 2013, 27, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2016, 26, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorino, F.; Severino, B.; Magli, E.; Ciano, A.; Caliendo, G.; Santagada, V.; Frecentese, F.; Perissutti, E. 5-HT1A Receptor: An Old Target as a New Attractive Tool in Drug Discovery from Central Nervous System to Cancer. J. Med. Chem. 2014, 57, 4407–4426. [Google Scholar] [CrossRef]
- Lacivita, E.; Di Pilato, P.; de Giorgio, P.; Colabufo, N.A.; Berardi, F.; Perrone, R.; Leopoldo, M. The therapeutic potential of 5-HT1A receptors: A patent review. Expert Opin. Ther. Pat. 2012, 22, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Shoichet, B.K. ZINC—A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; de Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- GLASS: GPCR-Ligand Association Database. Available online: https://zhanggroup.org/GLASS/ (accessed on 30 September 2021).
- AutoML: Automatic Machine Learning. Available online: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (accessed on 14 April 2021).
- Szlęk, J. H2O_AutoML_Python, Python Script for AutoML in h2o. 2021. Available online: https://github.com/jszlek/h2o_AutoML_Python (accessed on 10 April 2021).
- The H2O Python Module. Available online: https://docs.h2o.ai/h2o/latest-stable/h2o-py/docs/intro.html (accessed on 15 May 2022).
- Scikit-Learn Linear Regression. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html (accessed on 10 April 2022).
- Strelow, J.M. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discov. 2017, 22, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Carro, L.; Torrado, M.; Raviña, E.; Masaguer, C.F.; Lage, S.; Brea, J.; Loza, M.I. Synthesis and biological evaluation of a series of aminoalkyl-tetralones and tetralols as dual dopamine/serotonin ligands. Eur. J. Med. Chem. 2014, 71, 237–249. [Google Scholar] [CrossRef]
- Dvorak, C.A.; Rudolph, D.A.; Nepomuceno, D.; Dvorak, L.; Lord, B.; Fraser, I.; Bonaventure, P.; Lovenberg, T.; Carruthers, N.I. Discovery and SAR studies of 2-alkyl-3-phenyl-2,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepines as 5-HT7/2 inhibitors leading to the identification of a clinical candidate. Bioorg. Med. Chem. Lett. 2021, 31, 127669. [Google Scholar] [CrossRef]
- Franchini, S.; Sorbi, C.; Linciano, P.; Carnevale, G.; Tait, A.; Ronsisvalle, S.; Buccioni, M.; Del Bello, F.; Cilia, A.; Pirona, L.; et al. 1,3-Dioxane as a scaffold for potent and selective 5-HT1AR agonist with in-vivo anxiolytic, anti-depressant and anti-nociceptive activity. Eur. J. Med. Chem. 2019, 176, 310–325. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Truss, M.; Pagare, P.P.; Essandoh, M.A.; Zhang, Y.; Williams, D.A. Structure activity relationship exploration of 5-hydroxy-2-(3-phenylpropyl)chromones as a unique 5-HT2B receptor antagonist scaffold. Bioorg. Med. Chem. Lett. 2020, 30, 127511. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhang, M.; Zhang, X.; Wang, F.; Lei, M. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors. J. Mol. Graph. Model. 2015, 57, 143–155. [Google Scholar] [CrossRef]
- Coleman, R.A.; Woodrooffe, A.J.; Clark, K.L.; Toris, C.B.; Fan, S.; Wang, J.W.; Woodward, D.F. The affinity, intrinsic activity and selectivity of a structurally novel EP2 receptor agonist at human prostanoid receptors. Br. J. Pharmacol. 2019, 176, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, C.; Yang, P.; Kuc, R.E.; Nyimanu, D.; Williams, T.L.; Glen, R.C.; Holt, L.J.; Arulanantham, H.; Smart, A.; Davenport, A.P.; et al. Apelin peptides linked to anti-serum albumin domain antibodies retain affinity in vitro and are efficacious receptor agonists in vivo. Basic Clin. Pharmacol. Toxicol. 2020, 126, 96–103. [Google Scholar] [CrossRef]
- Romeo, G.; Salerno, L.; Pittalà, V.; Modica, M.N.; Siracusa, M.A.; Materia, L.; Buccioni, M.; Marucci, G.; Minneman, K.P. High affinity ligands and potent antagonists for the α1D-adrenergic receptor. Novel 3,8-disubstituted [1]benzothieno[3,2-d]pyrimidine derivatives. Eur. J. Med. Chem. 2014, 83, 419–432. [Google Scholar] [CrossRef]
- Konieczny, A.; Braun, D.; Wifling, D.; Bernhardt, G.; Keller, M. Oligopeptides as Neuropeptide Y Y4 Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. J. Med. Chem. 2020, 63, 8198–8215. [Google Scholar] [CrossRef]
- Rescifina, A.; Floresta, G.; Marrazzo, A.; Parenti, C.; Prezzavento, O.; Nastasi, G.; Dichiara, M.; Amata, E. Development of a Sigma-2 Receptor affinity filter through a Monte Carlo based QSAR analysis. Eur. J. Pharm. Sci. 2017, 106, 94–101. [Google Scholar] [CrossRef]
- Descriptor List. Available online: https://mordred-descriptor.github.io/documentation/master/descriptors.html (accessed on 30 July 2021).
- Czub, N. 5-HT1A Affinity Prediction Model. Available online: https://github.com/nczub/5-HT1A_affinity_prediction_model (accessed on 6 May 2022).
- Getting Started with the RDKit in Python. Available online: https://www.rdkit.org/docs/GettingStartedInPython.html (accessed on 15 July 2021).
- Lundberg, S. SHAP (SHapley Additive exPlanations). Available online: https://github.com/slundberg/shap (accessed on 20 April 2022).
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Szlęk, J. Model Interpretation. Available online: https://github.com/jszlek/MODEL_INTERPRETATION (accessed on 20 April 2022).
- Moorthy, N.S.H.N.; Ramos, M.J.; Fernandes, P.A. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools. J. Enzyme Inhib. Med. Chem. 2014, 29, 317–324. [Google Scholar] [CrossRef]
- Halder, A.K.; Cordeiro, M. Multi-Target In Silico Prediction of Inhibitors for Mitogen-Activated Protein Kinase-Interacting Kinases. Biomolecules 2021, 11, 1670. [Google Scholar] [CrossRef] [PubMed]
- Khoshneviszadeh, M.; Edraki, N.; Miri, R.; Foroumadi, A.; Hemmateenejad, B. QSAR study of 4-aryl-4H-chromenes as a new series of apoptosis inducers using different chemometric tools. Chem. Biol. Drug Des. 2012, 79, 442–458. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Molnar, C.; Freiesleben, T.; König, G.; Casalicchio, G.; Wright, M.N.; Bischl, B. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process. arXiv 2021, arXiv:2109.01433. [Google Scholar]
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. arXiv 2014, arXiv:1309.6392. [Google Scholar] [CrossRef]
- Cañizares-Carmenate, Y.; Campos Delgado, L.E.; Torrens, F.; Castillo-Garit, J.A. Thorough evaluation of OECD principles in modelling of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives using QSARINS. SAR QSAR Environ. Res. 2020, 31, 741–759. [Google Scholar] [CrossRef]
- Le-Thi-Thu, H.; Casañola-Martín, G.M.; Marrero-Ponce, Y.; Rescigno, A.; Saso, L.; Parmar, V.S.; Torrens, F.; Abad, C. coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database. Mol. Divers. 2011, 15, 507–520. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A. Monte Carlo Method Based QSAR Studies of Mer Kinase Inhibitors in Compliance with OECD Principles. Drug Res. 2018, 68, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Olasupo, S.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Chemoinformatic studies on some inhibitors of dopamine transporter and the receptor targeting schizophrenia for developing novel antipsychotic agents. Heliyon 2020, 6, e04464. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, S. Use of the Monte Carlo Method for OECD Principles-Guided QSAR Modeling of SIRT1 Inhibitors. Arch. Der. Pharm. 2017, 350, e1600268. [Google Scholar] [CrossRef] [Green Version]
- FDA. Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 12 May 2022).
Inputs Number | 10-CV | External Testing | ||||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Adjusted R2 | AIC | |
216 | 0.5437 | 0.7443 | 0.6806 | 0.6021 | 0.4362 | 1642.8 |
123 | 0.5523 | 0.7361 | 0.6830 | 0.5992 | 0.5185 | 1605.5 |
39 | 0.5774 | 0.7116 | 0.6926 | 0.5879 | 0.5648 | 1583.9 |
38 | 0.5782 | 0.7108 | 0.7282 | 0.5445 | 0.5196 | 1673.5 |
24 | 0.5926 | 0.6962 | 0.7276 | 0.5452 | 0.5298 | 1716.4 |
23 | 0.5941 | 0.6946 | 0.7597 | 0.5042 | 0.4882 | 1751.8 |
Name | Coefficients |
---|---|
Intercept | −1.0046 |
GBM_grid__1_AutoML_20210902_051708_model_54 | 0.6633 |
GBM_grid__1_AutoML_20210902_051708_model_20 | 0.1599 |
DeepLearning_grid__3_AutoML_20210902_051708_model_3 | 0.1089 |
XGBoost_grid__1_AutoML_20210902_051708_model_120 | 0.0848 |
DeepLearning_grid__3_AutoML_20210902_051708_model_8 | 0.0295 |
DeepLearning_grid__2_AutoML_20210902_051708_model_2 | 0.0263 |
DeepLearning_grid__3_AutoML_20210902_051708_model_2 | 0.0187 |
DeepLearning_grid__3_AutoML_20210902_051708_model_5 | 0.0058 |
XGBoost_grid__1_AutoML_20210902_051708_model_52 | 0.0066 |
DeepLearning_grid__2_AutoML_20210902_051708_model_3 | 0.0074 |
XGBoost_grid__1_AutoML_20210902_051708_model_95 | 0.0058 |
XGBoost_grid__1_AutoML_20210902_051708_model_131 | 0.0058 |
XGBoost_grid__1_AutoML_20210902_051708_model_90 | 0.0037 |
XGBoost_grid__1_AutoML_20210902_051708_model_113 | 0.0026 |
DeepLearning_grid__2_AutoML_20210902_051708_model_8 | 0.0025 |
XGBoost_grid__1_AutoML_20210902_051708_model_30 | 0.0026 |
GBM_grid__1_AutoML_20210902_044957_model_20 | 0.0005 |
Measure | Curated Database | GLASS Database |
---|---|---|
F value | 0.0002 | 0.0085 |
p-value | 1.0000 | 1.0000 |
Statistically significant different predictions | False | False |
Variable | av|SHAP| | Description |
---|---|---|
SMR VSA3 | 0.088 | MOE MR VSA Descriptor 3 |
GATS3p | 0.088 | Geary autocorrelation of lag 3 weighted by polarizability |
PEOE VSA2 | 0.083 | MOE Charge VSA Descriptor 2 |
SaaaC | 0.083 | Sum of aaaC |
AATSC3se | 0.082 | Averaged and centered Moreau–Broto autocorrelation of lag 3 weighted by Sanderson EN |
nBondsS | 0.078 | Number of single bonds in non-kekulized structure |
AATS6dv | 0.073 | Averaged Moreau–Broto autocorrelation of lag 6 weighted by valence electrons |
GATS6p | 0.071 | Geary coefficient of lag 6 weighted by polarizability |
PEOE VSA9 | 0.071 | MOE Charge VSA Descriptor 9 |
IC2 | 0.069 | 2-ordered neighborhood information content |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czub, N.; Pacławski, A.; Szlęk, J.; Mendyk, A. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case. Pharmaceutics 2022, 14, 1415. https://doi.org/10.3390/pharmaceutics14071415
Czub N, Pacławski A, Szlęk J, Mendyk A. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case. Pharmaceutics. 2022; 14(7):1415. https://doi.org/10.3390/pharmaceutics14071415
Chicago/Turabian StyleCzub, Natalia, Adam Pacławski, Jakub Szlęk, and Aleksander Mendyk. 2022. "Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case" Pharmaceutics 14, no. 7: 1415. https://doi.org/10.3390/pharmaceutics14071415
APA StyleCzub, N., Pacławski, A., Szlęk, J., & Mendyk, A. (2022). Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case. Pharmaceutics, 14(7), 1415. https://doi.org/10.3390/pharmaceutics14071415