Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experiments
2.1.1. Experimental Equipment
2.1.2. Sample Preparation
2.1.3. Experimental Procedure and Parameters
2.1.4. Neutron Facility and Imaging Parameters
2.1.5. Analysis of Pore Structure after Freeze-Drying
2.2. Image Processing
3. Results
3.1. Porosity and PSDs
3.2. Temperature and Pressure
3.3. Qualitative Comparison of Image Data
3.4. Saturation Profiles and Sublimation Rate
3.5. Influence of Pore Structure
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Haseley, P.; Oetjen, G.-W. Freeze-Drying, 3rd ed.; John Wiley & Sons: Newark, NJ, USA, 2017; ISBN 978-3-527-34306-5. [Google Scholar]
- Pikal, M.J. Freeze-drying. In Encyclopedia of Pharmaceutical Technology, 3rd ed.; Swarbrick, J., Ed.; Informa Healthcare: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Hua, T.-C.; Liu, B.-L.; Zhang, H. Freeze-Drying of Pharmaceutical and Food Products; Elsevier Science: Burlington, VT, USA, 2010; ISBN 9781845697464. [Google Scholar]
- Kharaghani, A.; Tsotsas, E.; Wolf, C.; Beutler, T.; Guttzeit, M.; Oetjen, G.-W. Freeze-drying. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1–47. ISBN 9783527306732. [Google Scholar]
- Liapis, A.I.; Bruttini, R. Freeze drying. In Handbook of Industrial Drying, 4th ed.; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 259–282. [Google Scholar]
- Meister, E.; Gieseler, H. Freeze-dry microscopy of protein/sugar mixtures: Drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J. Pharm. Sci. 2009, 98, 3072–3087. [Google Scholar] [CrossRef] [PubMed]
- Meister, E.; Sasi, S.; Gieseler, H. Freeze-dry microscopy: Impact of nucleation temperature and excipient concentration on collapse temperature data. AAPS PharmSciTech 2009, 10, 582–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fissore, D.; Pisano, R.; Barresi, A.A. On the methods based on the pressure rise test for monitoring a freeze-drying process. Dry. Technol. 2010, 29, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Foerst, P.; Melo de Carvalho, T.; Lechner, M.; Kovacevic, T.; Kim, S.; Kirse, C.; Briesen, H. Estimation of mass transfer rate and primary drying times during freeze-drying of frozen maltodextrin solutions based on x-ray μ-computed tomography measurements of pore size distributions. J. Food Eng. 2019, 260, 50–57. [Google Scholar] [CrossRef]
- Hottot, A.; Vessot, S.; Andrieu, J. A direct characterization method of the ice morphology. Relationship between mean crystals size and primary drying times of freeze-drying processes. Dry. Technol. 2004, 22, 2009–2021. [Google Scholar] [CrossRef]
- Warning, A.D.; Arquiza, J.M.R.; Datta, A.K. A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying. Food Bioprod. Process. 2015, 94, 637–648. [Google Scholar] [CrossRef]
- Nakagawa, K.; Tamiya, S.; Do, G.; Kono, S.; Ochiai, T. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography. Eur. J. Pharm. Biopharm. 2018, 127, 279–287. [Google Scholar] [CrossRef]
- Siebert, T.; Zuber, M.; Hamann, E.; Baumbach, T.; Karbstein, H.P.; Gaukel, V. Micro-CT visualization of structure development during freeze-drying processes. Dry. Technol. 2020, 38, 376–384. [Google Scholar] [CrossRef]
- Pandya, B.; Smith, G.; Ermolina, I.; Polygalov, E. Observations on the changing shape of the ice mass and the determination of the sublimation end point in freeze-Drying: An application for through-vial impedance spectroscopy (TVIS). Pharmaceutics 2021, 13, 1835. [Google Scholar] [CrossRef]
- Vorhauer-Huget, N.; Mannes, D.; Hilmer, M.; Gruber, S.; Strobl, M.; Tsotsas, E.; Foerst, P. Freeze-drying with structured sublimation fronts: Visualization with neutron imaging. Processes 2020, 8, 1091. [Google Scholar] [CrossRef]
- Gruber, S.; Vorhauer-Huget, N.; Foerst, P. In situ micro-computed tomography to study microstructure and sublimation front during freeze-drying. Food Struct. 2021, 29, 100213. [Google Scholar] [CrossRef]
- Lammens, J.; Goudarzi, N.M.; Leys, L.; Nuytten, G.; Van Bockstal, P.-J.; Vervaet, C.; Boone, M.N.; De Beer, T. Spin freezing and its impact on pore size, tortuosity and solid State. Pharmaceutics 2021, 13, 2126. [Google Scholar] [CrossRef] [PubMed]
- Pisano, R.; Arsiccio, A.; Nakagawa, K.; Barresi, A.A. Tuning, measurement and prediction of the impact of freezing on product morphology: A step toward improved design of freeze-drying cycles. Dry. Technol. 2019, 37, 579–599. [Google Scholar] [CrossRef]
- Capozzi, L.C.; Pisano, R. Looking inside the ‘black box’: Freezing engineering to ensure the quality of freeze-dried biopharmaceuticals. Eur. J. Pharm. Biopharm. 2018, 129, 58–65. [Google Scholar] [CrossRef]
- Foerst, P.; Gruber, S.; Schulz, M.; Vorhauer, N.; Tsotsas, E. Characterization of lyophilization of frozen bulky solids. Chem. Eng. Technol. 2020, 43, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Vorhauer, N.; Schulz, M.; Hilmer, M.; Peters, J.; Tsotsas, E.; Foerst, P. Estimation of the local sublimation front velocities from neutron radiography and tomography of particulate matter. Chem. Eng. Sci. 2020, 211, 115268. [Google Scholar] [CrossRef]
- Weishaupt, K.; Koch, T.; Helmig, R. A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Dry. Technol. 2022, 40, 697–718. [Google Scholar] [CrossRef]
- Metzger, T.; Tsotsas, E.; Prat, M. Pore-network models: A powerful tool to study drying at the pore level and understand the influence of structure on drying kinetics. In Modern Drying Technology, Vol. 1: Computational Tools at Different Scales; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH: Weinheim, Germany, 2007; pp. 57–102. [Google Scholar]
- Vorhauer, N.; Foerst, P.; Schuchmann, H.; Tsotsas, E. Pore network model of primary freeze frying. In Proceedings of the International Drying Symposium, Valencia, Spain, 11–14 September 2018. [Google Scholar]
- Thomik, M.; Gruber, S.; Foerst, P.; Tsotsas, E.; Vorhauer-Huget, N. Determination of 3D pore network structure of freeze-dried maltodextrin. Dry. Technol. 2022, 40, 748–766. [Google Scholar] [CrossRef]
- Defraeye, T.; Nicolaï, B.; Mannes, D.; Aregawi, W.; Verboven, P.; Derome, D. Probing inside fruit slices during convective drying by quantitative neutron imaging. J. Food Eng. 2016, 178, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Loupiac, C.; Scussat, S.; Hélary, A.; Desert, S.; Ott, F. Neutron imaging and tomography: Applications in food science. EPJ Web Conf. 2018, 188, 02001. [Google Scholar] [CrossRef]
- Hilmer, M.; Gruber, S.; Foerst, P. Development of a freeze-drying stage for in-situ µ-CT measurements. Processes 2020, 8, 869. [Google Scholar] [CrossRef]
- De Schryver, T.; Boone, M.A.; De Kock, T.; Duquenne, B.; Christaki, M.; Masschaele, B.; Dierick, M.; Boone, M.N.; Van Hoorebeke, L. A compact low cost cooling stage for lab based X-ray micro-CT setups. AIP Conf. Proc. 2016, 1696, 020018. [Google Scholar]
- Siegwart, M.; Harti, R.P.; Manzi-Orezzoli, V.; Valsecchi, J.; Strobl, M.; Grünzweig, C.; Schmidt, T.J.; Boillat, P. Selective visualization of water in fuel cell gas diffusion layers with neutron dark-field imaging. J. Electrochem. Soc. 2019, 166, F149–F157. [Google Scholar] [CrossRef] [Green Version]
- Kaestner, A.P.; Hartmann, S.; Kühne, G.; Frei, G.; Grünzweig, C.; Josic, L.; Schmid, F.; Lehmann, E.H. The ICON beamline—A facility for cold neutron imaging at SINQ. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 659, 387–393. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Frei, G.; Kühne, G.; Boillat, P. The micro-setup for neutron imaging: A major step forward to improve the spatial resolution. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 576, 389–396. [Google Scholar] [CrossRef]
- Kaestner, A.P.; Hovind, J.; Boillat, P.; Muehlebach, C.; Carminati, C.; Zarebanadkouki, M.; Lehmann, E.H. Bimodal imaging at ICON using neutrons and X-rays. Phys. Procedia 2017, 88, 314–321. [Google Scholar] [CrossRef]
- Badal Tejedor, M.; Fransson, J.; Millqvist-Fureby, A. Freeze-dried cake structural and physical heterogeneity in relation to freeze-drying cycle parameters. Int. J. Pharm. 2020, 590, 119891. [Google Scholar] [CrossRef]
- Searles, J.A.; Carpenter, J.F.; Randolph, T.W. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)’ in pharmaceutical lyophilization. J. Pharm. Sci. 2001, 90, 872–887. [Google Scholar] [CrossRef]
- Nail, S.; Tchessalov, S.; Shalaev, E.; Ganguly, A.; Renzi, E.; Dimarco, F.; Wegiel, L.; Ferris, S.; Kessler, W.; Pikal, M.; et al. Recommended best practices for process monitoring instrumentation in pharmaceutical freeze drying 2017. AAPS PharmSciTech 2017, 18, 2379–2393. [Google Scholar] [CrossRef] [Green Version]
- Chitu, T.; Vessot, S.; Peczalski, R.; Andrieu, J.; Woinet, B.; Françon, A. Influence of operating conditions on the freeze-drying of frozen particles in a fixed bed and modeling data. Dry. Technol. 2015, 33, 1892–1898. [Google Scholar] [CrossRef]
- Nakagawa, K.; Tamiya, S.; Sakamoto, S.; Do, G.; Kono, S. Observation of microstructure formation during freeze-drying of dextrin solution by in-situ X-ray computed tomography. Front. Chem. 2018, 6, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, P.; Meunier, V.; Kessler, U.; Heinrich, S. Influence of freezing parameters on the formation of internal porous structure and its impact on freeze-drying kinetics. Processes 2021, 9, 1273. [Google Scholar] [CrossRef]
- Vilas, C.A.; Alonso, A.; Balsa-Canto, E.; López-Quiroga, E.; Trelea, I.C. Model-based real time operation of the freeze-drying process. Processes 2020, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Gieseler, H. Product Morphology and Drying Behavior Delineated by a New Freeze-Drying Microbalance. Ph.D. Thesis, University Erlangen-Nürnberg, Erlangen, Germany, 2004. [Google Scholar]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods: The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. VDI Heat Atlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-79999-3. [Google Scholar]
Name of Sample | Annealing | Freezing Conditions (K/s) | Solid Content (w/w) | Sample Volume (µL) | D2O Content (g) |
---|---|---|---|---|---|
MD5 | - | 0.1 | 0.05 | 900 | 0.855 |
MD5 AN | 11 h at −5 °C | 0.1 | 0.05 | 900 | 0.855 |
MD30 | - | 0.1 | 0.3 | 900 | 0.630 |
Parameters | Unit | MD5 | MD5 AN | MD30 |
---|---|---|---|---|
Acceleration voltage | (kV) | 60 | 60 | 60 |
Current | (µA) | 60 | 60 | 100 |
Exposure time | (ms) | 1649 | 1434 | 984 |
Projections/360° | (-) | 2000 | 2000 | 2000 |
Number of radiographs per projection | (-) | 5 | 5 | 5 |
Voxel size | (µm) | 8 | 8 | 8 |
Parameters | Unit | MD5 | MD5 AN | MD30 |
---|---|---|---|---|
Acceleration voltage | (kV) | 60 | 60 | 60 |
Current | (µA) | 20 | 20 | 20 |
Exposure time | (ms) | 5051 | 4776 | 4758 |
Projections/360° | (-) | 2000 | 2000 | 2000 |
Number of radiographs per projection | (-) | 3 | 5 | 4 |
Voxel size | (µm) | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomik, M.; Gruber, S.; Kaestner, A.; Foerst, P.; Tsotsas, E.; Vorhauer-Huget, N. Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns. Pharmaceutics 2022, 14, 1538. https://doi.org/10.3390/pharmaceutics14081538
Thomik M, Gruber S, Kaestner A, Foerst P, Tsotsas E, Vorhauer-Huget N. Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns. Pharmaceutics. 2022; 14(8):1538. https://doi.org/10.3390/pharmaceutics14081538
Chicago/Turabian StyleThomik, Maximilian, Sebastian Gruber, Anders Kaestner, Petra Foerst, Evangelos Tsotsas, and Nicole Vorhauer-Huget. 2022. "Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns" Pharmaceutics 14, no. 8: 1538. https://doi.org/10.3390/pharmaceutics14081538
APA StyleThomik, M., Gruber, S., Kaestner, A., Foerst, P., Tsotsas, E., & Vorhauer-Huget, N. (2022). Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns. Pharmaceutics, 14(8), 1538. https://doi.org/10.3390/pharmaceutics14081538