Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedure
2.3. Characterization of Polymer
2.4. Preparation of Nanoparticles
2.5. Freeze-Drying to Obtain Nanopowders
2.6. Particle Size, Polydispersity Index (PDI), and Surface Charge
2.7. Encapsulation Efficiency (EE)
2.8. Morphological Examination
2.9. Colloidal Stability at Storage Conditions
2.10. In Vitro Aerodynamic Profile by Next-Generation Impactor (NGI)
2.11. Isolation of Monocytes and Differentiation into Macrophages
2.12. Cytotoxicity Studies
2.12.1. Cytotoxicity on A549 Cells
2.12.2. Cytotoxicity on Raw 264.7 Cells
2.12.3. Cytotoxicity on Human Macrophages
2.13. Confocal Imaging for Visualization of Uptake of NPs in A549 and Raw 264.7 Cells
2.14. Human Macrophage Phenotype Analysis
2.15. Tolerogenic Effect of NPs in Macrophages
2.16. Hemolysis Assay
2.17. Statistical Analysis
3. Results
3.1. Characterization of Polymer
3.2. Freeze-Dried Nanopowders
3.3. Morphological Examination
3.4. Colloidal Stability
3.5. In Vitro Aerodynamic Profile
3.6. Cytotoxicity Studies
3.7. Visualization of NPs in the A549 and Raw 264.7 Cells
3.8. Human Macrophage Phenotype Analysis
3.9. Tolerogenic Activity
3.10. Hemolytic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieira, A.C.; Chaves, L.L.; Pinheiro, M.; Lima, S.C.; Neto, P.J.R.; Ferreira, D.; Sarmento, B.; Reis, S. Lipid Nanoparticles Coated with Chitosan Using a One-Step Association Method to Target Rifampicin to Alveolar Macrophages. Carbohydr. Polym. 2021, 252, 116978. [Google Scholar] [CrossRef] [PubMed]
- Rawal, T.; Parmar, R.; Tyagi, R.K.; Butani, S. Rifampicin Loaded Chitosan Nanoparticle Dry Powder Presents an Improved Therapeutic Approach for Alveolar Tuberculosis. Colloids Surf. B Biointerfaces 2017, 154, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, M.; Pallagi, E.; Csóka, I.; Benke, E.; Farkas, Á.; Zeeshan, M.; Burián, K.; Kókai, D.; Ambrus, R. Aerodynamic Properties and in Silico Deposition of Isoniazid Loaded Chitosan/Thiolated Chitosan and Hyaluronic Acid Hybrid Nanoplex Dpis as a Potential Tb Treatment. Int. J. Biol. Macromol. 2020, 165, 3007–3019. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; Gonçalves, C.; Costa, C.; Sousa, J.; Silva-Gomes, R.; Castro, A.G.; Pedrosa, J.; Appelberg, R.; Gama, F.M. Delivery of Llkkk18 Loaded into Self-Assembling Hyaluronic Acid Nanogel for Tuberculosis Treatment. J. Control. Release 2016, 235, 112–124. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, I.; Conte, C.; Miro, A.; Quaglia, F.; Ungaro, F. Pulmonary Drug Delivery: A Role for Polymeric Nanoparticles? Curr. Top. Med. Chem. 2015, 15, 386–400. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G. Alginate Nanoparticles as Antituberculosis Drug Carriers: Formulation Development, Pharmacokinetics and Therapeutic Potential. Indian J. Chest Dis. Allied Sci. 2006, 48, 171. [Google Scholar]
- Abdelghany, S.; Parumasivam, T.; Pang, A.; Roediger, B.; Tang, P.; Jahn, K.; Britton, W.J.; Chan, H.-K. Alginate Modified-Plga Nanoparticles Entrapping Amikacin and Moxifloxacin as a Novel Host-Directed Therapy for Multidrug-Resistant Tuberculosis. J. Drug Deliv. Sci. Technol. 2019, 52, 642–651. [Google Scholar] [CrossRef]
- Scolari, I.R.; Páez, P.L.; Sánchez-Borzone, M.E.; Granero, G.E. Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier against Mycobacterium Tuberculosis. Aaps Pharmscitech 2019, 20, 67. [Google Scholar] [CrossRef]
- Shah, S.; Cristopher, D.; Sharma, S.; Soniwala, M.; Chavda, J. Inhalable Linezolid Loaded Plga Nanoparticles for Treatment of Tuberculosis: Design, Development and in Vitro Evaluation. J. Drug Deliv. Sci. Technol. 2020, 60, 102013. [Google Scholar] [CrossRef]
- Hakkimane, S.S.; Shenoy, V.P.; Gaonkar, S.L.; Bairy, I.; Guru, B.R. Antimycobacterial Susceptibility Evaluation of Rifampicin and Isoniazid Benz-Hydrazone in Biodegradable Polymeric Nanoparticles against Mycobacterium Tuberculosis H37rv Strain. Int. J. Nanomed. 2018, 13, 4303. [Google Scholar] [CrossRef] [Green Version]
- Moretton, M.A.; Cagel, M.; Bernabeu, E.; Gonzalez, L.; Chiappetta, D.A. Nanopolymersomes as Potential Carriers for Rifampicin Pulmonary Delivery. Colloids Surf. B Biointerfaces 2015, 136, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, W.; Peng, Y.; Du, M.; Luo, J.; Zong, L. Preventative Vaccine-Loaded Mannosylated Chitosan Nanoparticles Intended for Nasal Mucosal Delivery Enhance Immune Responses and Potent Tumor Immunity. Mol. Pharm. 2013, 10, 2904–2914. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Zhang, W.; Chen, Y.; Xu, Y.; Wang, B.; Zong, L. Eudragit® L100-Coated Mannosylated Chitosan Nanoparticles for Oral Protein Vaccine Delivery. Int. J. Biol. Macromol. 2018, 113, 534–542. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, D.; Chung, S.; Shim, C. Delivery of Ofloxacin to the Lung and Alveolar Macrophages Via Hyaluronan Microspheres for the Treatment of Tuberculosis. J. Control. Release 2008, 129, 100–106. [Google Scholar] [CrossRef]
- Sionkowska, A.; Gadomska, M.; Musiał, K.; Piątek, J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules 2020, 25, 4035. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Kang, M.L.; Quan, J.-S.; Kang, S.G.; Akaike, T.; Yoo, H.S.; Cho, C.-S. The Potential of Mannosylated Chitosan Microspheres to Target Macrophage Mannose Receptors in an Adjuvant-Delivery System for Intranasal Immunization. Biomaterials 2008, 29, 1931–1939. [Google Scholar] [CrossRef]
- Mukhtar, M.; Szakonyi, Z.; Farkas, Á.; Burian, K.; Kókai, D.; Ambrus, R. Freeze-Dried Vs Spray-Dried Nanoplex Dpis Based on Chitosan and Its Derivatives Conjugated with Hyaluronic Acid for Tuberculosis: In Vitro Aerodynamic and in Silico Deposition Profiles. Eur. Polym. J. 2021, 160, 110775. [Google Scholar] [CrossRef]
- Pornpitchanarong, C.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T.; Patrojanasophon, P. Catechol-Modified Chitosan/Hyaluronic Acid Nanoparticles as a New Avenue for Local Delivery of Doxorubicin to Oral Cancer Cells. Colloids Surf. B Biointerfaces 2020, 196, 111279. [Google Scholar] [CrossRef]
- Attila, K. Optikai Mérési Módszerek Fejlesztése És Alkalmazása Az Aeroszolok Légúti Kiülepedésének Vizsgálatára. 2021. Available online: https://pea.lib.pte.hu/handle/pea/24067 (accessed on 14 June 2022).
- Pomázi, A.; Buttini, F.; Ambrus, R.; Colombo, P.; Szabó-Révész, P. Effect of Polymers for Aerolization Properties of Mannitol-Based Microcomposites Containing Meloxicam. Eur. Polym. J. 2013, 49, 2518–2527. [Google Scholar] [CrossRef]
- Abadelah, M.; Chrystyn, H.; Larhrib, H. Use of Inspiratory Profiles from Patients with Chronic Obstructive Pulmonary Disease (Copd) to Investigate Drug Delivery Uniformity and Aerodynamic Dose Emission of Indacaterol from a Capsule Based Dry Powder Inhaler. Eur. J. Pharm. Sci. 2019, 134, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Farkas, Á.; Szipőcs, A.; Horváth, A.; Horváth, I.; Gálffy, G.; Varga, J.; Galambos, K.; Kugler, S.; Nagy, A.; Szalai, Z. Establishment of Relationships between Native and Inhalation Device Specific Spirometric Parameters as a Step Towards Patient Tailored Inhalation Device Selection. Respir. Med. 2019, 154, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posch, W.; Lass-Flörl, C.; Wilflingseder, D. Generation of Human Monocyte-Derived Dendritic Cells from Whole Blood. JoVE J. Vis. Exp. 2016, 118, e54968. [Google Scholar] [CrossRef] [PubMed]
- Scordo, J.M.; Knoell, D.L.; Torrelles, J.B. Alveolar Epithelial Cells in Mycobacterium Tuberculosis Infection: Active Players or Innocent Bystanders? J. Innate Immun. 2016, 8, 3–14. [Google Scholar] [CrossRef]
- Balzus, B.; Sahle, F.F.; Hönzke, S.; Gerecke, C.; Schumacher, F.; Hedtrich, S.; Kleuser, B.; Bodmeier, R. Formulation and Ex Vivo Evaluation of Polymeric Nanoparticles for Controlled Delivery of Corticosteroids to the Skin and the Corneal Epithelium. Eur. J. Pharm. Biopharm. 2017, 115, 122–130. [Google Scholar] [CrossRef]
- Robla, S.; Prasanna, M.; Varela-Calviño, R.; Grandjean, C.; Csaba, N. A Chitosan-Based Nanosystem as Pneumococcal Vaccine Delivery Platform. Drug Deliv. Transl. Res. 2021, 11, 581–597. [Google Scholar] [CrossRef]
- Braun, D.; Longman, R.S.; Albert, M.L. A Two-Step Induction of Indoleamine 2, 3 Dioxygenase (Ido) Activity During Dendritic-Cell Maturation. Blood 2005, 106, 2375–2381. [Google Scholar] [CrossRef] [Green Version]
- Crecente-Campo, J.; Virgilio, T.; Morone, D.; Calviño-Sampedro, C.; Fernández-Mariño, I.; Olivera, A.; Varela-Calvino, R.; González, S.F.; Alonso, M.J. Design of Polymeric Nanocapsules to Improve Their Lympho-Targeting Capacity. Nanomedicine 2019, 14, 3013–3033. [Google Scholar] [CrossRef]
- Rager, M.N.; Binet, M.R.; Ionescu, G.; Bouvet, O.M. 31p-Nmr and 13c-Nmr Studies of Mannose Metabolism in Plesiomonas Shigelloides: Toxic Effect of Mannose on Growth. Eur. J. Biochem. 2000, 267, 5136–5141. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Jiao, Y.; Luo, J.; Du, M.; Zong, L. Practical Synthesis and Characterization of Mannose-Modified Chitosan. Int. J. Biol. Macromol. 2012, 50, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhtar, M.; Zesshan, M.; Khan, S.; Shahnaz, G.; Khan, S.A.; Sarwar, H.S.; Pasha, R.A.; Ali, H. Fabrication and Optimization of Ph-Sensitive Mannose-Anchored Nano-Vehicle as a Promising Approach for Macrophage Uptake. Appl. Nanosci. 2020, 10, 4013–4027. [Google Scholar] [CrossRef]
- Islam, S.; Arnold, L.; Padhye, R. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-Methylimidazolium Chloride and Chitosan from Crab Shells. BioMed Res. Int. 2015, 2015, 874316. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.; Allémann, E.; Stein, C.A.; Gurny, R. Highly Loaded Nanoparticulate Carrier Using an Hydrophobic Antisense Oligonucleotide Complex. Eur. J. Pharm. Sci. 1999, 9, 163–170. [Google Scholar] [CrossRef]
- Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618. [Google Scholar] [CrossRef] [Green Version]
- Hatami, E.; Mu, Y.; Shields, D.N.; Chauhan, S.C.; Kumar, S.; Cory, T.J.; Yallapu, M.M. Mannose-Decorated Hybrid Nanoparticles for Enhanced Macrophage Targeting. Biochem. Biophys. Rep. 2019, 17, 197–207. [Google Scholar] [CrossRef]
- Azarmi, S.; Roa, W.H.; Löbenberg, R. Targeted Delivery of Nanoparticles for the Treatment of Lung Diseases. Adv. Drug Deliv. Rev. 2008, 60, 863–875. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Clavadetscher, J.; Lee, D.-K.; Chankeshwara, S.V.; Bradley, M.; Cho, W.-S. Surface Charge-Dependent Cellular Uptake of Polystyrene Nanoparticles. Nanomaterials 2018, 8, 1028. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Fu, J.; Wang, T.; He, N. Chitosan/Sodium Tripolyphosphate Nanoparticles: Preparation, Characterization and Application as Drug Carrier. J. Biomed. Nanotechnol. 2009, 5, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors Determining the Stability, Size Distribution, and Cellular Accumulation of Small, Monodisperse Chitosan Nanoparticles as Candidate Vectors for Anticancer Drug Delivery: Application to the Passive Encapsulation of [14c]-Doxorubicin. Nanotechnol. Sci. Appl. 2015, 8, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzankova, V.; Gorinova, C.; Kondeva-Burdina, M.; Simeonova, R.; Philipov, S.; Konstantinov, S.; Petrov, P.; Galabov, D.; Yoncheva, K. In Vitro and in Vivo Toxicity Evaluation of Cationic Pdmaema-Pcl-Pdmaema Micelles as a Carrier of Curcumin. Food Chem. Toxicol. 2016, 97, 1–10. [Google Scholar] [CrossRef]
- Skuland, T.; Låg, M.; Gutleb, A.C.; Brinchmann, B.C.; Serchi, T.; Øvrevik, J.; Holme, J.A.; Refsnes, M. Pro-Inflammatory Effects of Crystalline-and Nano-Sized Non-Crystalline Silica Particles in a 3d Alveolar Model. Part. Fibre Toxicol. 2020, 17, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maj, T.; Slawek, A.; Chelmonska-Soyta, A. Cd80 and Cd86 Costimulatory Molecules Differentially Regulate Ot-Ii Cd4+ T Lymphocyte Proliferation and Cytokine Response in Cocultures with Antigen-Presenting Cells Derived from Pregnant and Pseudopregnant Mice. Mediat. Inflamm. 2014, 2014, 769239. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, K.R.; Puri, V.; Singh, A.; Singh, C. A Review on Recent Advances in Nanomedicines for the Treatment of Pulmonary Tuberculosis. J. Drug Deliv. Sci. Technol. 2022, 69, 103069. [Google Scholar] [CrossRef]
- He, H.; Ghosh, S.; Yang, H. Nanomedicines for Dysfunctional Macrophage-Associated Diseases. J. Control. Release 2017, 247, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Adali, M.B.; Barresi, A.A.; Boccardo, G.; Pisano, R. Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes 2020, 8, 709. [Google Scholar] [CrossRef]
- Bianco, F.; Salomone, F.; Milesi, I.; Murgia, X.; Bonelli, S.; Pasini, E.; Dellacà, R.; Ventura, M.L.; Pillow, J. Aerosol Drug Delivery to Spontaneously-Breathing Preterm Neonates: Lessons Learned. Respir. Res. 2021, 22, 71. [Google Scholar] [CrossRef]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Formulation and in vitro and in Silico Characterization of “Nano-in-Micro” Dry Powder Inhalers Containing Meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef]
- Snima, K.; Jayakumar, R.; Unnikrishnan, A.; Nair, S.V.; Lakshmanan, V.-K. O-Carboxymethyl Chitosan Nanoparticles for Metformin Delivery to Pancreatic Cancer Cells. Carbohydr. Polym. 2012, 89, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Uribe, A.P.; Valencia-Martínez, H.; Carballo-Uicab, G.; Vallejo-Castillo, L.; Medina-Rivero, E.; Chacón-Salinas, R.; Pavón, L.; Velasco-Velázquez, M.A.; Mellado-Sánchez, G.; Estrada-Parra, S. Cd80 Expression Correlates with Il-6 Production in Thp-1-Like Macrophages Costimulated with Lps and Dialyzable Leukocyte Extract (Transferon®). J. Immunol. Res. 2019, 2019, 2198508. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Byun, H.-O.; Choi, B.; Sohn, S. Inhibition of Cd83 Alleviates Systemic Inflammation in Herpes Simplex Virus Type 1-Induced Behcet’s Disease Model Mouse. Mediat. Inflamm. 2019, 2019, 5761392. [Google Scholar] [CrossRef] [Green Version]
- Mellor, A.L.; Lemos, H.; Huang, L. Indoleamine 2, 3-Dioxygenase and Tolerance: Where Are We Now? Front. Immunol. 2017, 8, 1360. [Google Scholar] [CrossRef] [PubMed]
Process | Time (h:min) | Chamber Pressure (mbar) | Product Temperature (°C) | Shelf Temperature (°C) |
---|---|---|---|---|
Freezing | 01:30 | - | −20 | −40 |
02:30 | −20 to −26 | |||
03:45 | −26 to −39 | |||
Primary drying | 04:00 | 0.01 | −39 to −37 | −25 |
06:10 | −37 to −31 | −20 | ||
09:40 | −31 to −27 | 0 | ||
Secondary drying | 16:00 | 0.01 | −27 to −14 | +9 |
21:10 | −14 to −6 | +22 | ||
40:15 | −6 to −2 | +30 |
Samples | Average Particle Size (nm) | PDI | Zeta Potential (mV) | Encapsulation Efficiency (%) | Drug Loading (%) |
---|---|---|---|---|---|
CS/HA NPs | 310 ± 21 | 0.231 ± 0.12 | 30.3 ± 9.05 | - | - |
INH-CS/HA NPs | 342 ± 08 | 0.301 ± 0.17 | 29.5 ± 2.01 | 90.18 ± 1.01 | 23.5 ± 1.29 |
MC/HA NPs | 298 ± 11 | 0.116 ± 0.01 | 30.6 ± 3.79 | - | - |
INH-MC/HA NPs | 303 ± 16 | 0.179 ± 0.04 | 34.3 ± 6.03 | 92.31 ± 2.06 | 25.9 ± 2.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, M.; Csaba, N.; Robla, S.; Varela-Calviño, R.; Nagy, A.; Burian, K.; Kókai, D.; Ambrus, R. Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics 2022, 14, 1543. https://doi.org/10.3390/pharmaceutics14081543
Mukhtar M, Csaba N, Robla S, Varela-Calviño R, Nagy A, Burian K, Kókai D, Ambrus R. Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics. 2022; 14(8):1543. https://doi.org/10.3390/pharmaceutics14081543
Chicago/Turabian StyleMukhtar, Mahwash, Noemi Csaba, Sandra Robla, Rubén Varela-Calviño, Attila Nagy, Katalin Burian, Dávid Kókai, and Rita Ambrus. 2022. "Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis" Pharmaceutics 14, no. 8: 1543. https://doi.org/10.3390/pharmaceutics14081543
APA StyleMukhtar, M., Csaba, N., Robla, S., Varela-Calviño, R., Nagy, A., Burian, K., Kókai, D., & Ambrus, R. (2022). Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics, 14(8), 1543. https://doi.org/10.3390/pharmaceutics14081543