Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Formulation Studies of Cytisine (CYT)
2.2.1. Analytical Methods to Quantify CYT
- -
- UV-Vis Methods
- -
- HPLC Method
2.2.2. CYT Stability Assay
2.2.3. Ex Vivo Permeation/Penetration of CYT through Porcine Buccal Mucosa
- -
- Tissue preparation
- -
- Ex vivo permeation assay
- -
- Evaluation of CYT amount entrapped into the buccal tissue
2.2.4. Determination of the Biopharmaceutical Parameters: Js, Kp, tlag, De and Ac
2.3. Preparation and Characterization of CYT-Loaded Buccal Tablets
2.3.1. Preparation of CYT-Loaded Pharmaceutical Matrices by a Spray-Drying Technique
2.3.2. Yield and Uniformity of CYT-Loaded Spray-Dried Powdery Matrices
2.3.3. Preparation of CYT-Loaded Buccal Tablets
2.3.4. Reproducibility of CYT-Loaded Tablets
2.3.5. Fourier Transform Infrared Spectroscopy (FTIR) in Attenuated Total Reflectance (ATR) Mode Analysis
2.3.6. X-ray Diffraction (XRD) Analysis
2.3.7. In Vitro Dissolution Studies and Drug-Release Kinetics Evaluation
2.3.8. Ex Vivo Permeation/Penetration of CYT through Porcine Buccal Mucosa by Administering CYT-Loaded BDSs
2.4. Data Analysis
3. Results
3.1. Pre-Formulation Studies of CYT
3.1.1. CYT Stability in PBS (pH 7.4) and Simulated Saliva (pH 6.8)
3.1.2. CYT Permeation through the Buccal Mucosa and Tissue Accumulation
3.2. Design, Preparation, and Characterization of CYT-Loaded Buccal Tablets
3.2.1. Spray-Dried Matrix Powders, Tablet Preparation and Preliminary Characterization
3.2.2. FTIR in ATR Mode and XRD Analyses
3.2.3. CYT Release Studies
3.2.4. Ex Vivo Permeation/Penetration of CYT through Porcine Buccal Mucosa by Administering CYT-Loaded BDSs
4. Discussion
4.1. Pre-Formulation Studies of CYT
4.2. Design, Preparation, and Characterization of CYT-Loaded Buccal Tablets
4.2.1. Excipients Selection
4.2.2. Optimization of the Spray-Drying Parameters
4.2.3. Spray-Dried Matrices Characterization and Tablets Preparation and Evaluation
4.2.4. CYT Release Studies and Evaluation of the Drug Discharge Mechanism
4.2.5. Ex Vivo Tests and Pharmacokinetic Considerations
- Cmax: 12.1 ± 2.2 ng/mL;
- t1/2: 4.4 ± 0.5 h (as a consequence Ke = 0.693/t1/2 = 0.1575 h−1);
- VD: 110.1 ± 19.0 L [9].
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnie, R.J.; Stratton, K.; Kwan, L.Y. Public Health Implications of Raising the Minimum Age of Legal Access to Tobacco Products; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Gallucci, G.; Tartarone, A.; Lerose, R.; Lalinga, A.V.; Capobianco, A.M. Cardiovascular risk of smoking and benefits of smoking cessation. J. Thorac. Dis. 2020, 12, 3866–3876. [Google Scholar] [CrossRef] [PubMed]
- Kohata, Y.; Fujiwara, Y.; Watanabe, T.; Kobayashi, M.; Takemoto, Y.; Kamata, N.; Yamagami, H.; Tanigawa, T.; Shiba, M.; Watanabe, T.; et al. Long-Term Benefits of Smoking Cessation on Gastroesophageal Reflux Disease and Health-Related Quality of Life. PLoS ONE 2016, 11, e0147860. [Google Scholar] [CrossRef]
- Wadgave, U.; Nagesh, L. Nicotine Replacement Therapy: An Overview. Int. J. Health Sci. 2016, 10, 407–416. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; Chepkin, S.C.; Ye, W.; Bullen, C.; Lancaster, T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev. 2018, 5, CD000146. [Google Scholar] [CrossRef]
- Choi, H.K.; Ataucuri-Vargas, J.; Lin, C.; Singrey, A. The current state of tobacco cessation treatment. Clevel. Clin. J. Med. 2021, 88, 393–404. [Google Scholar] [CrossRef]
- Warne, D. Alcoholism and Substance Abuse. In Integrative Medicine; Elsevier: Philadelphia, PA, USA, 2018; pp. 818–828.e2. [Google Scholar] [CrossRef]
- Courtney, R.J.; McRobbie, H.; Tutka, P.; Weaver, N.A.; Petrie, D.; Mendelsohn, C.P.; Shakeshaft, A.; Talukder, S.; Macdonald, C.; Thomas, D.; et al. Effect of Cytisine vs Varenicline on Smoking Cessation: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2021, 326, 56–64. [Google Scholar] [CrossRef]
- Jeong, S.H.; Sheridan, J.; Bullen, C.; Newcombe, D.; Walker, N.; Tingle, M. Ascending single dose pharmacokinetics of cytisine in healthy adult smokers. Xenobiotica 2019, 49, 1332–1337. [Google Scholar] [CrossRef]
- Walker, N.; Howe, C.; Glover, M.; McRobbie, H.; Barnes, J.; Nosa, V.; Parag, V.; Bassett, B.; Bullen, C. Cytisine versus Nicotine for Smoking Cessation. N. Engl. J. Med. 2014, 371, 2353–2362. [Google Scholar] [CrossRef]
- Jeong, S.H.; Newcombe, D.; Sheridan, J.; Tingle, M. Pharmacokinetics of cytisine, an α4 β2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test Anal. 2015, 7, 475–482. [Google Scholar] [CrossRef]
- Madhav, N.S.; Shakya, A.K.; Shakya, P.; Singh, K. Orotransmucosal drug delivery systems: A review. J. Control. Release 2009, 140, 2–11. [Google Scholar] [CrossRef]
- Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm. 2018, 546, 194–214. [Google Scholar] [CrossRef]
- Gal, J.Y.; Fovet, Y.; Adib-Yadzi, M. About a synthetic saliva for in vitro studies. Talanta 2001, 53, 1103–1115. [Google Scholar] [CrossRef]
- Chazotte, B. Labeling Golgi with Fluorescent Ceramides. Cold Spring Harb. Protoc. 2012, 2012, pdb.prot070599. [Google Scholar] [CrossRef]
- del Consuelo, I.D.; Pizzolato, G.-P.; Falson, F.; Guy, R.H.; Jacques, Y. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. J. Pharm. Sci. 2005, 94, 2777–2788. [Google Scholar] [CrossRef]
- De Caro, V.; Giandalia, G.; Siragusa, M.; Sutera, F.; Giannola, L. New prospective in treatment of Parkinson’s disease: Studies on permeation of ropinirole through buccal mucosa. Int. J. Pharm. 2012, 429, 78–83. [Google Scholar] [CrossRef]
- Di Prima, G.; Campisi, G.; De Caro, V. Amorphous Ropinirole-Loaded Mucoadhesive Buccal Film: A Potential Patient-Friendly Tool to Improve Drug Pharmacokinetic Profile and Effectiveness. J. Pers. Med. 2020, 10, 242. [Google Scholar] [CrossRef]
- Di Prima, G.; Bongiovì, F.; Palumbo, F.S.; Pitarresi, G.; Licciardi, M.; Giammona, G. Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids. J. Drug Deliv. Sci. Technol. 2019, 49, 195–208. [Google Scholar] [CrossRef]
- Di Prima, G.; Angellotti, G.; Scarpaci, A.G.; Murgia, D.; D’agostino, F.; Campisi, G.; De Caro, V. Improvement of Resveratrol Permeation through Sublingual Mucosa: Chemical Permeation Enhancers versus Spray Drying Technique to Obtain Fast-Disintegrating Sublingual Mini-Tablets. Pharmaceutics 2021, 13, 1370. [Google Scholar] [CrossRef]
- De Caro, V.; Scaturro, A.L.; Di Prima, G.; Avellone, G.; Sutera, F.M.; di Fede, O.; Campisi, G.; Giannola, L.I. Aloin delivery on buccal mucosa:ex vivostudies and design of a new locoregional dosing system. Drug Dev. Ind. Pharm. 2015, 41, 1541–1547. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Roncarati, R.; Cortesi, R.; Cervellati, F.; Nastruzzi, C. Production of Eudragit Microparticles by Spray-Drying Technique: Influence of Experimental Parameters on Morphological and Dimensional Characteristics. Pharm. Dev. Technol. 2000, 5, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- De Caro, V.; Giandalia, G.; Siragusa, M.G.; Paderni, C.; Campisi, G.; Giannola, L.I. Evaluation of galantamine transbuccal absorption by reconstituted human oral epithelium and porcine tissue as buccal mucosa models: Part I. Eur. J. Pharm. Biopharm. 2008, 70, 869–873. [Google Scholar] [CrossRef]
- Angellotti, G.; Presentato, A.; Murgia, D.; Di Prima, G.; D’Agostino, F.; Scarpaci, A.G.; D’Oca, M.C.; Alduina, R.; Campisi, G.; De Caro, V. Lipid Nanocarriers-Loaded Nanocomposite as a Suitable Platform to Release Antibacterial and Antioxidant Agents for Immediate Dental Implant Placement Restorative Treatment. Pharmaceutics 2021, 13, 2072. [Google Scholar] [CrossRef]
- Murgia, D.; Angellotti, G.; Conigliaro, A.; Pavia, F.C.; D’Agostino, F.; Contardi, M.; Mauceri, R.; Alessandro, R.; Campisi, G.; De Caro, V. Development of a Multifunctional Bioerodible Nanocomposite Containing Metronidazole and Curcumin to Apply on L-PRF Clot to Promote Tissue Regeneration in Dentistry. Biomedicines 2020, 8, 425. [Google Scholar] [CrossRef]
- Sattar, M.; Hadgraft, J.; Lane, M.E. Preparation, characterization and buccal permeation of naratriptan. Int. J. Pharm. 2015, 493, 146–151. [Google Scholar] [CrossRef]
- Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A. Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Control. Release 2006, 114, 15–40. [Google Scholar] [CrossRef]
- Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1666–1691. [Google Scholar] [CrossRef]
- Fonseca-Santos, B.; Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C 2018, 86, 129–143. [Google Scholar] [CrossRef]
- Chaves, P.D.S.; Frank, L.A.; Frank, A.G.; Pohlmann, A.R.; Guterres, S.; Beck, R.C.R. Mucoadhesive Properties of Eudragit®RS100, Eudragit®S100, and Poly(ε-caprolactone) Nanocapsules: Influence of the Vehicle and the Mucosal Surface. AAPS PharmSciTech 2018, 19, 1637–1646. [Google Scholar] [CrossRef]
- Patra, C.N.; Priya, R.; Swain, S.; Jena, G.K.; Panigrahi, K.C.; Ghose, D. Pharmaceutical significance of Eudragit: A review. Futur. J. Pharm. Sci. 2017, 3, 33–45. [Google Scholar] [CrossRef]
- Sarath, C.C.; Shanks, R.A.; Thomas, S. Chapter 1—Polymer Blends. In Chandrasekharakurup SBT-NPB; Thomas, S., Shanks, R., Eds.; William Andrew Publishing: Oxford, UK, 2014; pp. 1–14. [Google Scholar] [CrossRef]
- Serra, L.; Doménech, J.; Peppas, N.A. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. Eur. J. Pharm. Biopharm. 2006, 63, 11–18. [Google Scholar] [CrossRef]
- Di Prima, G.; Conigliaro, A.; De Caro, V. Mucoadhesive Polymeric Films to Enhance Barbaloin Penetration Into Buccal Mucosa: A Novel Approach to Chemoprevention. AAPS PharmSciTech 2019, 20, 18. [Google Scholar] [CrossRef]
- Wu, X.; Desai, K.-G.H.; Mallery, S.R.; Holpuch, A.S.; Phelps, M.P.; Schwendeman, S.P. Mucoadhesive Fenretinide Patches for Site-Specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Coincorporation of Propylene Glycol and Menthol. Mol. Pharm. 2012, 9, 937–945. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef]
- Gao, Y.; Zuo, J.; Bou-Chacra, N.; Pinto, T.D.J.A.; Clas, S.-D.; Walker, R.B.; Löbenberg, R. In Vitro Release Kinetics of Antituberculosis Drugs from Nanoparticles Assessed Using a Modified Dissolution Apparatus. BioMed Res. Int. 2013, 2013, 136590. [Google Scholar] [CrossRef] [PubMed]
- Malekjani, N.; Jafari, S.M. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3–47. [Google Scholar] [CrossRef]
- Vijaya, C.; Bingi, M.; Vigneshwaran, L.V. Transdermal Delivery of Venlafaxine Hydrochloride: The Effects of Enhancers on Permeation Across Pig Ear Skin. Indian J. Pharm. Sci. 2011, 73, 456–459. [Google Scholar] [CrossRef]
S-CYT-A | S-CYT-B | S-CYT-C | S-CYT-D | |
---|---|---|---|---|
Eudragit® RS100 | 75 | 70 | 65 | 80 |
PVP K90 | - | - | 5 | - |
PEG 1000 | 10 | 10 | 10 | 10 |
Propylene Glycol | 10 | 10 | 10 | - |
Xylitol | - | 5 | 5 | 5 |
Cytisine | 5 | 5 | 5 | 5 |
CYT (mg/mL) | Js (µg/cm2 ∙ h−1) | Kp (cm/h) | De (µg/cm2) | Ac (cm) | tlag (min) |
---|---|---|---|---|---|
2 | 4.94 ± 0.16 | 0.00247 ± 0.00001 | 164.72 ± 13.12 | 0.08236 ± 0.00656 | - |
5 | 21.02 ± 4.69 | 0.00420 ± 0.00094 | 171.86 ± 17.52 | 0.02186 ± 0.00223 | 60 |
8 | 36.17 ± 5.40 | 0.00452 ± 0.00068 | 511.30 ± 95.02 | 0.04065 ± 0.00755 | 90 |
10 | 46.77 ± 6.18 | 0.00468 ± 0.00062 | 559.30 ± 93.66 | 0.03557 ± 0.00596 | 100 |
15 | 45.62 ± 3.66 | 0.00304 ± 0.00024 | 524.64 ± 33.45 | 0.02225 ± 0.00142 | 110 |
Powders | Tablets | |||||
---|---|---|---|---|---|---|
Composition | Yield % | DL % | LE % | Thickness (mm) | Weight (mg) | CYT Per Tablet (mg) |
S-CYT-A | 63.0 ± 1.0 | 5.12 ± 0.02 | 102.4 ± 0.4 | 1.01 ± 0.03 | 18.00 ± 0.94 | 0.92 ± 0.05 |
S-CYT-B | 63.0 ± 3.5 | 5.84 ± 0.48 | 116.8 ± 9.6 | 1.05 ± 0.01 | 17.24 ± 1.25 | 1.07 ± 0.08 |
S-CYT-C | 53.7 ± 5.0 | 5.41 ± 0.12 | 108.2 ± 2.4 | 0.91 ± 0.04 | 17.29 ± 0.76 | 0.99 ± 0.04 |
S-CYT-D | 76.0 ± 0.1 | 4.72 ± 0.01 | 94.4 ± 0.2 | 0.88 ± 0.02 | 20.51 ± 1.26 | 0.97 ± 0.06 |
Mathematical Model | S-CYT-A | S-CYT-B | S-CYT-C | S-CYT-D |
---|---|---|---|---|
Zero order D = k·t | k = 0.01485 ± 0.00103 R = 0.472 | Does not converge | Does not converge | Does not converge |
First order D = 1·(1 − ek·t) | k = 0.03675 ± 0.00116 R = 0.982 | k = 0.07436 ± 0.00653 R = 0.889 | k = 0.07824 ± 0.00262 R = 0.896 | k = 0.05376 ± 0.00222 R = 0.953 |
Higuchi D = k·t0.5 | k = 0.09050 ± 0.00176 R = 0.743 | k = 0.15658 ± 0.00445 R = 0.863 | k = 0.16270 ± 0.00527 R = 0.705 | k = 0.13514 ± 0.00285 R = 0.909 |
Korsmeyer–Peppas (Power Law) D = k·tn | k = 0.23273 ± 0.02238 n = 0.2996 ± 0.02048 R = 0.931 | k = 0.25748 ± 0.02174 n = 0.34963 ± 0.02554 R = 0.974 | k = 0.24749 ± 0.01109 n = 0.34487 ± 0.01665 R = 0.974 | k = 0.20754 ± 0.01829 n = 0.38014 ± 0.02458 R = 0.971 |
Hixson–Crowell D = 1·[1 − (1 − k·t)3] | k = 0.00991 ± 0.00065 R = 0.905 | k = 0.01865 ± 0.00186 R = 0.703 | k = 0.02257 ± 0.00104 R = 0.746 | k = 0.01389 ± 0.00090 R = 0.834 |
Peppas–Sahlin D = k1·tm + k2·t2m (m = 0.43) * | k1 = 0.014941 ± 0.01126 k2 = −0.00028 ± 0.00206 R = 0.974 | k1 = 0.25062 ± 0.01200 k2 = −0.01263 ± 0.00283 R = 0.985 | k1 = 0.23389 ± 0.00530 k2 = −0.01117 ± 0.00155 R = 0.985 | k1 = 0.20417 ± 0.01072 k2 = −0.00645 ± 0.00224 R = 0.978 |
Formulation | Js (µg/cm2 ∙ h−1) | Kp (cm/h) | De (µg/cm2) | Ac (cm) | [CYT]DONOR (mg/mL) | tlag (min) |
---|---|---|---|---|---|---|
S-CYT-A | 21.11 ± 2.86 | 0.01939 ± 0.00319 | 164.44 ± 28.73 | 0.15107 ± 0.02437 | 1.09 ± 0.09 | 69 |
S-CYT-B | 32.40 ± 0.63 | 0.03417 ± 0.00712 | 181.96 ± 12.22 | 0.19192 ± 0.04084 | 0.95 ± 0.10 | 23 |
S-CYT-C | 18.05 ± 2.80 | 0.01608 ± 0.00279 | 98.23 ± 13.87 | 0.08753 ± 0.01374 | 1.12 ± 0.03 | 70 |
S-CYT-D | 18.77 ± 3.71 | 0.01240 ± 0.00290 | 94.45 ± 11.46 | 0.06321 ± 0.00480 | 1.40 ± 0.27 | 50 |
Formulation | CYT Flux | Tested Tablet Parameters | Theoretical Tablet Parameters |
---|---|---|---|
S-CYT-A | 21.11 µg/cm2 ∙ h−1 | DRA: 13.93 µg/h Total exchange area: 0.66 cm2 Diameter: 0.65 cm | Total exchange area: 9.95 cm2 Diameter: 2.52 cm |
S-CYT-B | 32.40 µg/cm2 ∙ h−1 | DRA: 21.38 µg/h Total exchange area: 0.66 cm2 Diameter: 0.65 cm | Total exchange area: 6.48 cm2 Diameter: 2.03 cm |
S-CYT-C | 18.05 µg/cm2 ∙ h−1 | DRA: 11.91 µg/h Total exchange area: 0.66 cm2 Diameter: 0.65 cm | Total exchange area: 11.63 cm2 Diameter: 2.72 cm |
S-CYT-D | 18.77 µg/cm2 ∙ h−1 | DRA: 12.39 µg/h Total exchange area: 0.66 cm2 Diameter: 0.65 cm | Total exchange area: 11.19 cm2 Diameter: 2.67 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angellotti, G.; Di Prima, G.; Scarpaci, A.G.; D’Agostino, F.; Campisi, G.; De Caro, V. Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy. Pharmaceutics 2022, 14, 1583. https://doi.org/10.3390/pharmaceutics14081583
Angellotti G, Di Prima G, Scarpaci AG, D’Agostino F, Campisi G, De Caro V. Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy. Pharmaceutics. 2022; 14(8):1583. https://doi.org/10.3390/pharmaceutics14081583
Chicago/Turabian StyleAngellotti, Giuseppe, Giulia Di Prima, Amalia Giulia Scarpaci, Fabio D’Agostino, Giuseppina Campisi, and Viviana De Caro. 2022. "Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy" Pharmaceutics 14, no. 8: 1583. https://doi.org/10.3390/pharmaceutics14081583
APA StyleAngellotti, G., Di Prima, G., Scarpaci, A. G., D’Agostino, F., Campisi, G., & De Caro, V. (2022). Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy. Pharmaceutics, 14(8), 1583. https://doi.org/10.3390/pharmaceutics14081583