Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Models
2.1.1. Particle Trajectory Tracking Model
2.1.2. Nanofluid Convection Model
2.1.3. Nanoparticle Transport and Deposition Model
2.2. Concentration of Deposited Particles
2.3. Model Setup
3. Results and Discussion
3.1. Particles with a Negative Surface Charge
3.2. Particles with Zero Surface Charge
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in Radiation Therapy: A Summary of Various Approaches to Enhance Radiosensitization in Cancer. Transl. Cancer Res. 2013, 2, 330–342. [Google Scholar] [CrossRef]
- Wakefield, G.; Gardener, M.; Stock, M.; Adair, M. Nanoparticle Augmented Radiotherapy Using Titanium Oxide Nanoparticles. J. Nanomater. Mol. Nanotechnol. 2018, 7, s6. [Google Scholar] [CrossRef]
- Therapy, R.; Cdks, B. The Science Behind Radiation Therapy; American Cancer Society: Atlanta, GA, USA, 2014; p. 15. [Google Scholar]
- Marill, J.; Mohamed Anesary, N.; Paris, S. DNA Damage Enhancement by Radiotherapy-Activated Hafnium Oxide Nanoparticles Improves CGAS-STING Pathway Activation in Human Colorectal Cancer Cells. Radiother. Oncol. 2019, 141, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Bobyk, L.; Edouard, M.; Deman, P.; Vautrin, M.; Pernet-Gallay, K.; Delaroche, J.; Adam, J.F.; Estève, F.; Ravanat, J.L.; Elleaume, H. Photoactivation of Gold Nanoparticles for Glioma Treatment. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1089–1097. [Google Scholar] [CrossRef]
- Hainfeld, J.F.; Slatkin, D.N.; Smilowitz, H.M. The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Phys. Med. Biol. 2004, 49, N309–N315. [Google Scholar] [CrossRef]
- Ngwa, W.; Korideck, H.; Kassis, A.I.; Kumar, R.; Sridhar, S.; Makrigiorgos, G.M.; Cormack, R.A. In Vitro Radiosensitization by Gold Nanoparticles during Continuous Low-Dose-Rate Gamma Irradiation with I-125 Brachytherapy Seeds. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 25–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale Radiotherapy with Hafnium Oxide Nanoparticles. Future Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hunting, D.J.; Ayotte, P.; Sanche, L. Radiosensitization of DNA by Gold Nanoparticles Irradiated with High-Energy Electrons. Radiat. Res. 2008, 169, 19–27. [Google Scholar] [CrossRef]
- Su, D.; Ma, R.; Salloum, M.; Zhu, L. Multi-Scale Study of Nanoparticle Transport and Deposition in Tissues during an Injection Process. Med. Biol. Eng. Comput. 2010, 48, 853–863. [Google Scholar] [CrossRef]
- Sefidgar, M.; Soltani, M.; Raahemifar, K.; Bazmara, H.; Nayinian, S.M.; Bazargan, M. Effect of Tumor Shape, Size, and Tissue Transport Properties on Drug Delivery to Solid Tumors. J. Biol. Eng. 2014, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sefidgar, M.; Soltani, M.; Raahemifar, K.; Sadeghi, M.; Bazmara, H.; Bazargan, M.; Mousavi Naeenian, M. Numerical Modeling of Drug Delivery in a Dynamic Solid Tumor Microvasculature. Microvasc. Res. 2015, 99, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Arifin, D.Y.; Lee, K.Y.T.; Wang, C.H. Chemotherapeutic Drug Transport to Brain Tumor. J. Control. Release 2009, 137, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Goodman, T.T.; Chen, J.; Matveev, K.; Pun, S.H. Spatio-Temporal Modeling of Nanoparticle Delivery to Multicellular Tumor Spheroids. Biotechnol. Bioeng. 2008, 101, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Soni, S.; Tyagi, H. Investigation of Nanoparticle Injection to a Tissue through Porous Media Theory. ICTEA 2019, 2019, 2–4. [Google Scholar]
- Chou, C.Y.; Chang, W.I.; Horng, T.L.; Lin, W.L. Numerical Modeling of Nanodrug Distribution in Tumors with Heterogeneous Vasculature. PLoS ONE 2017, 12, e0189802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astefanoaei, I.; Stancu, A. A Computational Study of the Bioheat Transfer in Magnetic Hyperthermia Cancer Therapy. J. Appl. Phys. 2019, 125, 194701. [Google Scholar] [CrossRef]
- Su, D. Multi-Scale Numerical Study of Nanoparticle Transport in Deformable Tissues during an Infusion Process. Ph.D. Thesis, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA, 2011. [Google Scholar]
- Ambrosi, D.; Ciarletta, P.; Danesi, E.; de Falco, C.; Taffetani, M.; Zunino, P. A Multiscale Modeling Approach to Transport of Nano-Constructs in Biological Tissues; Springer: Cham, Switzerland, 2017; pp. 109–138. ISBN 9783319733708. [Google Scholar]
- Elimelech, M. Predicting collision efficiencies of colloidal particles in porous media. Water Res. 1992, 26, 1–8. [Google Scholar] [CrossRef]
- Tufenkji, N.; Elimelech, M. Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environ. Sci. Technol. 2004, 38, 529–536. [Google Scholar] [CrossRef]
- Bai, R.; Tien, C. A New Correlation for the Initial Filter Coefficient under Unfavorable Surface Interactions. J. Colloid Interface Sci. 1996, 179, 631–634. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-5540-0. [Google Scholar]
- Soltani, M.; Chen, P. Numerical Modeling of Fluid Flow in Solid Tumors. PLoS ONE 2011, 6, e20344. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K. Transport of Molecules across Tumor Vasculature. Cancer Metastasis Rev. 1987, 6, 559–593. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.L.; Byrne, H.M. A Mathematical Model to Study the Effects of Drug Resistance and Vasculature on the Response of Solid Tumors to Chemotherapy. Math. Biosci. 2000, 164, 17–38. [Google Scholar] [CrossRef]
- Ma, R.; Su, D.; Zhu, L. Multiscale Simulation of Nanoparticle Transport in Deformable Tissue during an Infusion Process in Hyperthermia Treatments of Cancers. In Nanoparticle Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 2016; pp. 69–96. [Google Scholar] [CrossRef]
- Yuan, T.; Gao, L.; Zhan, W.; Dini, D. Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter. Pharm. Res. 2022, 39, 767–781. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J. Permeability and Effective Porosity of Porous Media. Phys. Rev. E 1997, 56, 3319–3325. [Google Scholar] [CrossRef]
- Available online: https://www.hamiltoncompany.com/laboratory-products/needles-knowledge/needle-gauge-chart (accessed on 15 April 2021).
- Comsol. The CFD Module User’s Guide; Comsol: Stockholm, Sweden, 2020. [Google Scholar]
- Dahaghin, A.; Emadiyanrazavi, S.; Haghpanahi, M.; Salimibani, M.; Bahreinizad, H.; Eivazzadeh-Keihan, R.; Maleki, A. A Comparative Study on the Effects of Increase in Injection Sites on the Magnetic Nanoparticles Hyperthermia. J. Drug Deliv. Sci. Technol. 2021, 63, 102542. [Google Scholar] [CrossRef]
- Shen, K.; Yan, Y.; Gao, W.; Li, L. Numerical Simulation of the Effect of Injection Sites Arrangement on the Thermal Ablation in the Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2022, 555, 169393. [Google Scholar] [CrossRef]
- Su, D.; Ma, R.; Zhu, L. Numerical Study of Nanofluid Infusion in Deformable Tissues for Hyperthermia Cancer Treatments. Med. Biol. Eng. Comput. 2011, 49, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Flesch, R.C.C.; Jin, T. Numerical Investigation of Temperature Field in Magnetic Hyperthermia Considering Mass Transfer and Diffusion in Interstitial Tissue. J. Phys. D Appl. Phys. 2018, 51, 035401. [Google Scholar] [CrossRef]
- Mahesh, N.; Singh, N.; Talukdar, P. A Mathematical Model for Understanding Nanoparticle Biodistribution after Intratumoral Injection in Cancer Tumors. J. Drug Deliv. Sci. Technol. 2022, 68, 103048. [Google Scholar] [CrossRef]
- Zhan, W.; Gedroyc, W.; Xu, X.Y. Mathematical Modelling of Drug Transport and Uptake in a Realistic Model of Solid Tumour. Protein Pept Lett. 2014, 21, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
Coefficient | Value | Description |
---|---|---|
Porosity-dependent parameter of Happel model | ||
Aspect ratio | ||
Peclet number | ||
van der Waals number | ||
Attraction number | ||
Gravity number | ||
London number | ||
First electrokinetic parameter | ||
Second electrokinetic parameter | ||
Double Layer Force parameter |
Parameters and Properties | Value |
---|---|
Injection Amount | 0.2 cc |
Injection Rate | 20 × 10−4 L/s |
Needle | 26 gauge |
Nanoparticle Concentration | 0.783 mol/m3 |
Tumour Porosity | 0.4 |
Tumour Permeability | 5 × 10−13 m2 |
Fluid Density | 960 kg/m3 |
Fluid viscosity | 1 × 10−3 kg/(ms) |
Nanoparticle diffusivity | 10−11 m2/s (0 mV) 10−7 m2/s (−20 mV) |
Time step | 0.1 s (during injection), 1 s (after injection) |
Parameters and Properties | Value |
---|---|
Tumour Porosity, | 0.4 |
Fluid Density, | 960 kg/m3 |
Fluid Viscosity, | 1 × 10−3 kg/(ms) |
Nanoparticle Density, | 1060 kg/m3 |
Cell Diameter, | 15 × 10−6 m |
Cell Surface Charge, | −20 mV |
Nanoparticle Surface Charge, | 0, −20 mV |
Particle Diameter, | 40 × 10−9 m |
Fluid Velocity, | 1 × 10−4–1 × 10−1 m/s |
Nanoparticle Diffusivity, | 1 × 10−11 m2/s (0 mV) 10−7 m2/s (−20 mV) |
Hamaker Constant, | 4 × 10−20 J |
Debye–Huckel Parameter, | 4.51 × 106 (m/mol)1/2 |
Temperature, | 310.15 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caddy, G.; Stebbing, J.; Wakefield, G.; Xu, X.Y. Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection. Pharmaceutics 2022, 14, 1615. https://doi.org/10.3390/pharmaceutics14081615
Caddy G, Stebbing J, Wakefield G, Xu XY. Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection. Pharmaceutics. 2022; 14(8):1615. https://doi.org/10.3390/pharmaceutics14081615
Chicago/Turabian StyleCaddy, George, Justin Stebbing, Gareth Wakefield, and Xiao Yun Xu. 2022. "Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection" Pharmaceutics 14, no. 8: 1615. https://doi.org/10.3390/pharmaceutics14081615
APA StyleCaddy, G., Stebbing, J., Wakefield, G., & Xu, X. Y. (2022). Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection. Pharmaceutics, 14(8), 1615. https://doi.org/10.3390/pharmaceutics14081615