-Omic Approaches and Treatment Response in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Methodology
2.1. Study Selection
2.2. Clinical Outcome
- -
- Disease Activity Score 28-joint counts (DAS28) [7]: The result is calculated by using a special calculator that includes: Tender joint count (TJC) (of 28), swollen joint count (SJC) (of 28) and global health.
- -
- EULAR (European Alliance of Associations for Rheumatology) response criteria [8]: This outcome classifies patients (good, moderate and non-responders) depending on the change in DAS28 and the level of disease activity reached during follow-up.
- -
- CDAI (Clinical Disease Activity Index) [9]: This index is calculated using TJC (of 28), SJC (of 28), and patient and physician global assessment.
- -
- SDAI (Simplified Disease Activity Index) [10]: Similar to the CDAI + C-Reactive Protein (CRP).
- -
- HAQ-DIs (Health Assessment Questionnaire–Disability Index scores) [11]: a self-reported questionnaire covering 20 items in eight domains related to measuring difficulty in performing activities of daily living.
- -
- ACR20 (American College of Rheumatology) [12]: The ACR20 is a composite measure defined as both improvement of 20% in the TJC and SWC, and improvement of 20% in three of the following five criteria: patient and physician global assessment, functional ability measure (HAQ), visual analog pain scale, and erythrocyte sedimentation rate or CRP.
- -
- ACR/EULAR remission criteria [13]: This criteria include the index SDAI and CDAI and Boolean (SWJ (of 28), TJC (of 28), patient global assessment, and CRP).
3. Pharmacogenomics Findings in Rheumatoid Arthritis
4. Epigenomics and Treatment Response
4.1. DNA Methylation
4.2. miRNA Profiling
5. Transcriptomic Biomarkers
6. Identification of Response Biomarkers by Proteomics
7. Multi-Omic Approaches for Response Prediction
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ABA (Abatacept) | JAKi (Janus kinase inhibitors) |
ACPA (Anti-Citrullinated Peptide Antibodies) | IFN (Interferon) |
ACR (American College of Rheumatology) | IFX (Infliximab) |
ADA (Adalimumab) | MTX (Methotrexate) |
CDAI (Clinical Disease Activity Index) | NK (Natural Killers) |
CPZ (Certolizumab pegol) | RDM (Region Differentially Methylated) |
CRP (C-Reactive Protein) | RA (Rheumatoid Arthritis) |
DAS28 (Disease Activity Score 28-joint counts) | RTX (Rituximab) |
DMARDs (Disease-Modifying Antirheumatic Drugs) | SDAI (Simplified Disease Activity Index) |
DMRs (Differentially Methylated Regions) | TCZ (Tocilizumab) |
DNMT (DNA-Methyltransferases) | TNFi (TNF inhibitors) |
ETN (Etanercept) | Treg (Regulatory T cell) |
EULAR (European Alliance of Associations for Rheumatology) | PBMC (Peripheral Blood Mononuclear Cell) |
GCM (Gene Coexpression Modules) | PDM (Positions Differentially Methylated) |
GWAS (Genome-Wide Association Study) | RTX (Rituximab) |
GOL (Golimumab) | sDFR (Sustained Drug-Free Remission) |
HAQ-DIs (Health Assessment Questionnaire–Disability Index scores) | SNP (Single Nucleotide Polymorphisms) |
HCQ (Hydroxicloroquine) | SSZ (Sulfasalazine) |
References
- Karami, J.; Masoumi, M.; Khorramdelazad, H.; Bashiri, H.; Darvishi, P.; Sereshki, H.A.; Shekarabi, M.; Sahebkar, A. Role of Autophagy in the Pathogenesis of Rheumatoid Arthritis: Latest Evidence and Therapeutic Approaches. Life Sci. 2020, 254, 117734. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid Arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Edilova, M.I.; Akram, A.; Abdul-Sater, A.A. Innate Immunity Drives Pathogenesis of Rheumatoid Arthritis. Biomed. J. 2021, 44, 172–182. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M.; et al. EULAR Recommendations for the Management of Rheumatoid Arthritis with Synthetic and Biological Disease-Modifying Antirheumatic Drugs: 2019 Update. Ann. Rheum. Dis. 2020, 79, S685–S699. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, C.A.; Boyter, A.C.; Mullen, A.B.; McRorie, E.R. Biological Therapy for Rheumatoid Arthritis: Is Personalised Medicine Possible? Eur. J. Hosp. Pharm. Sci. Pract. 2014, 21, 229–237. [Google Scholar] [CrossRef]
- Ota, M.; Fujio, K. Multi-Omics Approach to Precision Medicine for Immune-Mediated Diseases. Inflamm. Regen. 2021, 41, 23. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.; van’t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P.L. Modified Disease Activity Scores That Include Twenty-Eight-Joint Counts. Development and Validation in a Prospective Longitudinal Study of Patients with Rheumatoid Arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef] [Green Version]
- van Gestel, A.M.; Prevoo, M.L.; van’t Hof, M.A.; van Rijswijk, M.H.; van de Putte, L.B.; van Riel, P.L. Development and Validation of the European League Against Rheumatism Response Criteria for Rheumatoid Arthritis. Comparison with the Preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 1996, 39, 34–40. [Google Scholar] [CrossRef]
- Aletaha, D.; Nell, V.P.K.; Stamm, T.; Uffmann, M.; Pflugbeil, S.; Machold, K.; Smolen, J.S. Acute Phase Reactants Add Little to Composite Disease Activity Indices for Rheumatoid Arthritis: Validation of a Clinical Activity Score. Arthritis Res. Ther. 2005, 7, R796–R806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolen, J.S.; Breedveld, F.C.; Schiff, M.H.; Kalden, J.R.; Emery, P.; Eberl, G.; van Riel, P.L.; Tugwell, P. A Simplified Disease Activity Index for Rheumatoid Arthritis for Use in Clinical Practice. Rheumatology 2003, 42, 244–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fries, J.F.; Spitz, P.; Kraines, R.G.; Holman, H.R. Measurement of Patient Outcome in Arthritis. Arthritis Rheum. 1980, 23, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Boers, M.; Bombardier, C.; Furst, D.; Goldsmith, C.; Katz, L.M.; Lightfoot, R.J.; Paulus, H.; Strand, V. American College of Rheumatology. Preliminary Definition of Improvement in Rheumatoid Arthritis. Arthritis Rheum. 1995, 38, 727–735. [Google Scholar] [CrossRef]
- Felson, D.T.; Smolen, J.S.; Wells, G.; Zhang, B.; van Tuyl, L.H.D.; Funovits, J.; Aletaha, D.; Allaart, C.F.; Bathon, J.; Bombardieri, S.; et al. American College of Rheumatology/European League against Rheumatism Provisional Definition of Remission in Rheumatoid Arthritis for Clinical Trials. Ann. Rheum. Dis. 2011, 70, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.C.; Bongartz, T.; Massey, J.; Mifsud, B.; Spiliopoulou, A.; Scott, I.C.; Wang, J.; Morgan, M.; Plant, D.; Colombo, M.; et al. Genome-Wide Association Study of Response to Methotrexate in Early Rheumatoid Arthritis Patients. Pharm. J. 2018, 18, 528–538. [Google Scholar] [CrossRef]
- Senapati, S.; Singh, S.; Das, M.; Kumar, A.; Gupta, R.; Kumar, U.; Jain, S.; Juyal, R.C.; Thelma, B.K. Genome-Wide Analysis of Methotrexate Pharmacogenomics in Rheumatoid Arthritis Shows Multiple Novel Risk Variants and Leads for TYMS Regulation. Pharmacogenet. Genom. 2014, 24, 211–219. [Google Scholar] [CrossRef]
- López-Rodríguez, R.; Ferreiro-Iglesias, A.; Lima, A.; Bernardes, M.; Pawlik, A.; Paradowska-Gorycka, A.; Świerkot, J.; Slezak, R.; Dolžan, V.; González-Álvaro, I.; et al. Replication Study of Polymorphisms Associated with Response to Methotrexate in Patients with Rheumatoid Arthritis. Sci. Rep. 2018, 8, 7342. [Google Scholar] [CrossRef]
- Eektimmerman, F.; Swen, J.J.; Madhar, M.B.; Allaart, C.F.; Guchelaar, H.-J. Predictive Genetic Biomarkers for the Efficacy of Methotrexate in Rheumatoid Arthritis: A Systematic Review. Pharm. J. 2020, 20, 159–168. [Google Scholar] [CrossRef]
- Cui, J.; Saevarsdottir, S.; Thomson, B.; Padyukov, L.; Van Der Helm-van Mil, A.H.M.; Nititham, J.; Hughes, L.B.; De Vries, N.; Raychaudhuri, S.; Alfredsson, L.; et al. Rheumatoid Arthritis Risk Allele PTPRC Is Also Associated with Response to Anti-Tumor Necrosis Factor α Therapy. Arthritis Rheum. 2010, 62, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Cañete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Sarafidou, T.; Caliz, R.; Ferrer, M.A.; et al. Replication of PTPRC as Genetic Biomarker of Response to TNF Inhibitors in Patients with Rheumatoid Arthritis. Pharm. J. 2016, 16, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Zervou, M.I.; Myrthianou, E.; Flouri, I.; Plant, D.; Chlouverakis, G.; Castro-Giner, F.; Rapsomaniki, P.; Barton, A.; Boumpas, D.T.; Sidiropoulos, P.; et al. Lack of Association of Variants Previously Associated with Anti-TNF Medication Response in Rheumatoid Arthritis Patients: Results from a Homogeneous Greek Population. PLoS ONE 2013, 8, e74375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plant, D.; Prajapati, R.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Barton, A. Replication of Association of the PTPRC Gene with Response to Anti-Tumor Necrosis Factor Therapy in a Large UK Cohort. Arthritis Rheum. 2012, 64, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Bae, S.-C. Associations between PTPRC Rs10919563 A/G and FCGR2A R131H Polymorphisms and Responsiveness to TNF Blockers in Rheumatoid Arthritis: A Meta-Analysis. Rheumatol. Int. 2016, 36, 837–844. [Google Scholar] [CrossRef]
- Liu, C.; Batliwalla, F.; Li, W.; Lee, A.; Roubenoff, R.; Beckman, E.; Khalili, H.; Damle, A.; Kern, M.; Furie, R.; et al. Genome-Wide Association Scan Identifies Candidate Polymorphisms Associated with Differential Response to Anti-TNF Treatment in Rheumatoid Arthritis. Mol. Med. 2008, 14, 575–581. [Google Scholar] [CrossRef]
- Krintel, S.B.; Palermo, G.; Johansen, J.S.; Germer, S.; Essioux, L.; Benayed, R.; Badi, L.; Ostergaard, M.; Hetland, M.L. Investigation of Single Nucleotide Polymorphisms and Biological Pathways Associated with Response to TNFα Inhibitors in Patients with Rheumatoid Arthritis. Pharm. Genom. 2012, 22, 577–589. [Google Scholar] [CrossRef]
- Acosta-Colman, I.; Palau, N.; Tornero, J.; Fernández-Nebro, A.; Blanco, F.; González-Alvaro, I.; Cañete, J.D.; Maymó, J.; Ballina, J.; Fernández-Gutiérrez, B.; et al. GWAS Replication Study Confirms the Association of PDE3A-SLCO1C1 with Anti-TNF Therapy Response in Rheumatoid Arthritis. Pharmacogenomics 2013, 14, 727–734. [Google Scholar] [CrossRef]
- Smith, S.L.; Plant, D.; Lee, X.H.; Massey, J.; Hyrich, K.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.; Barton, A. Previously Reported PDE3A-SLCO1C1 Genetic Variant Does Not Correlate with Anti-TNF Response in a Large UK Rheumatoid Arthritis Cohort. Pharmacogenomics 2016, 17, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Rodriguez, R.; Perez-Pampin, E.; Marquez, A.; Blanco, F.J.; Joven, B.; Carreira, P.; Ferrer, M.A.; Caliz, R.; Valor, L.; Narvaez, J.; et al. Validation Study of Genetic Biomarkers of Response to TNF Inhibitors in Rheumatoid Arthritis. PLoS ONE 2018, 13, e0196793. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Maldonado, J.M.; Cáliz, R.; López-Nevot, M.Á.; Cabrera-Serrano, A.J.; Moñiz-Díez, A.; Canhão, H.; Ter Horst, R.; Quartuccio, L.; Sorensen, S.B.; Glintborg, B.; et al. Validation of GWAS-Identified Variants for Anti-TNF Drug Response in Rheumatoid Arthritis: A Meta-Analysis of Two Large Cohorts. Front. Immunol. 2021, 12, 672255. [Google Scholar] [CrossRef]
- Plant, D.; Bowes, J.; Potter, C.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Barton, A. Genome-Wide Association Study of Genetic Predictors of Anti-Tumor Necrosis Factor Treatment Efficacy in Rheumatoid Arthritis Identifies Associations with Polymorphisms at Seven Loci. Arthritis Rheum. 2011, 63, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Márquez, A.; Ferreiro-Iglesias, A.; Dávila-Fajardo, C.L.; Montes, A.; Pascual-Salcedo, D.; Perez-Pampin, E.; Moreno-Ramos, M.J.; García-Portales, R.; Navarro, F.; Moreira, V.; et al. Lack of Validation of Genetic Variants Associated with Anti-Tumor Necrosis Factor Therapy Response in Rheumatoid Arthritis: A Genome-Wide Association Study Replication and Meta-Analysis. Arthritis Res. Ther. 2014, 16, R66. [Google Scholar] [CrossRef] [Green Version]
- Mirkov, M.U.; Cui, J.; Vermeulen, S.H.; Stahl, E.A.; Toonen, E.J.M.; Makkinje, R.R.; Lee, A.T.; Huizinga, T.W.J.; Allaart, R.; Barton, A.; et al. Genome-Wide Association Analysis of Anti-TNF Drug Response in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2013, 72, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Stahl, E.A.; Saevarsdottir, S.; Miceli, C.; Diogo, D.; Trynka, G.; Raj, T.; Mirkov, M.U.; Canhao, H.; Ikari, K.; et al. Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis. PLoS Genet. 2013, 9, e1003394. [Google Scholar] [CrossRef] [Green Version]
- Julià, A.; Fernandez-Nebro, A.; Blanco, F.; Ortiz, A.; Cañete, J.D.; Maymó, J.; Alperi-López, M.; Fernández-Gutierrez, B.; Olivè, A.; Corominas, H.; et al. A Genome-Wide Association Study Identifies a New Locus Associated with the Response to Anti-TNF Therapy in Rheumatoid Arthritis. Pharm. J. 2016, 16, 147–150. [Google Scholar] [CrossRef]
- Honne, K.; Hallgrímsdóttir, I.; Wu, C.; Sebro, R.; Jewell, N.P.; Sakurai, T.; Iwamoto, M.; Minota, S.; Jawaheer, D. A Longitudinal Genome-Wide Association Study of Anti-Tumor Necrosis Factor Response among Japanese Patients with Rheumatoid Arthritis. Arthritis Res. Ther. 2016, 18, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Cañete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Caliz, R.; Ferrer, M.A.; Joven, B.; et al. Evaluation of 12 GWAS-Drawn SNPs as Biomarkers of Rheumatoid Arthritis Response to TNF Inhibitors. A Potential SNP Association with Response to Etanercept. PLoS ONE 2019, 14, e0213073. [Google Scholar] [CrossRef]
- White, I.R.; Kleinstein, S.E.; Praet, C.; Chamberlain, C.; McHale, D.; Maia, J.M.; Xie, P.; Goldstein, D.B.; Urban, T.J.; Shea, P.R. A Genome-Wide Screen for Variants Influencing Certolizumab Pegol Response in a Moderate to Severe Rheumatoid Arthritis Population. PLoS ONE 2022, 17, e0261165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bansal, A.T.; Martin, M.; Germer, S.; Benayed, R.; Essioux, L.; Lee, J.S.; Begovich, A.; Hemmings, A.; Kenwright, A.; et al. Genome-Wide Association Analysis Implicates the Involvement of Eight Loci with Response to Tocilizumab for the Treatment of Rheumatoid Arthritis. Pharm. J. 2013, 13, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado-Montoro, M.; Cañadas-Garre, M.; González-Utrilla, A.; Plaza-Plaza, J.C.; Calleja-Hernández, M.Á. Genetic and Clinical Biomarkers of Tocilizumab Response in Patients with Rheumatoid Arthritis. Pharmacol. Res. 2016, 111, 264–271. [Google Scholar] [CrossRef]
- Cavalli, G.; Heard, E. Advances in Epigenetics Link Genetics to the Environment and Disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Xu, L.; Chang, C.; Zhang, R.; Jin, Y.; He, D. Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis. Front. Genet. 2020, 11, 811. [Google Scholar] [CrossRef]
- Ahmadi, M.; Gharibi, T.; Dolati, S.; Rostamzadeh, D.; Aslani, S.; Baradaran, B.; Younesi, V.; Yousefi, M. Epigenetic Modifications and Epigenetic Based Medication Implementations of Autoimmune Diseases. Biomed. Pharmacother. 2017, 87, 596–608. [Google Scholar] [CrossRef]
- de Andres, M.C.; Perez-Pampin, E.; Calaza, M.; Santaclara, F.J.; Ortea, I.; Gomez-Reino, J.J.; Gonzalez, A. Assessment of Global DNA Methylation in Peripheral Blood Cell Subpopulations of Early Rheumatoid Arthritis before and after Methotrexate. Arthritis Res. Ther. 2015, 17, 233. [Google Scholar] [CrossRef] [Green Version]
- Liebold, I.; Grützkau, A.; Göckeritz, A.; Gerl, V.; Lindquist, R.; Feist, E.; Zänker, M.; Häupl, T.; Poddubnyy, D.; Zernicke, J.; et al. Peripheral Blood Mononuclear Cells Are Hypomethylated in Active Rheumatoid Arthritis and Methylation Correlates with Disease Activity. Rheumatology 2021, 60, 1984–1995. [Google Scholar] [CrossRef]
- Guderud, K.; Sunde, L.H.; Flåm, S.T.; Mæhlen, M.T.; Mjaavatten, M.D.; Lillegraven, S.; Aga, A.B.; Evenrød, I.M.; Norli, E.S.; Andreassen, B.K.; et al. Rheumatoid Arthritis Patients, Both Newly Diagnosed and Methotrexate Treated, Show More DNA Methylation Differences in CD4+ Memory Than in CD4+ Naïve T Cells. Front. Immunol. 2020, 11, 194. [Google Scholar] [CrossRef]
- Gosselt, H.R.; Van Zelst, B.D.; De Rotte, M.C.F.J.; Hazes, J.M.W.; De Jonge, R.; Heil, S.G. Higher Baseline Global Leukocyte DNA Methylation Is Associated with MTX Non-Response in Early RA Patients. Arthritis Res. Ther. 2019, 21, 157. [Google Scholar] [CrossRef] [Green Version]
- Gosselt, H.R.; Vallerga, C.L.; Mandaviya, P.R.; Lubberts, E.; Hazes, J.M.W.; De Jonge, R.; Heil, S.G. Epigenome Wide Association Study of Response to Methotrexate in Early Rheumatoid Arthritis Patients. PLoS ONE 2021, 16, e0247709. [Google Scholar] [CrossRef]
- Liu, C.C.; Fang, T.J.; Ou, T.T.; Wu, C.C.; Li, R.N.; Lin, Y.C.; Lin, C.H.; Tsai, W.C.; Liu, H.W.; Yen, J.H. Global DNA Methylation, DNMT1, and MBD2 in Patients with Rheumatoid Arthritis. Immunol. Lett. 2011, 135, 96–99. [Google Scholar] [CrossRef]
- Plant, D.; Webster, A.; Nair, N.; Oliver, J.; Smith, S.L.; Eyre, S.; Hyrich, K.L.; Wilson, A.G.; Morgan, A.W.; Isaacs, J.D.; et al. Differential Methylation as a Biomarker of Response to Etanercept in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1353–1360. [Google Scholar] [CrossRef]
- Glossop, J.R.; Nixon, N.B.; Emes, R.D.; Sim, J.; Packham, J.C.; Mattey, D.L.; Farrell, W.E.; Fryer, A.A. DNA Methylation at Diagnosis Is Associated with Response to Disease-Modifying Drugs in Early Rheumatoid Arthritis. Epigenomics 2017, 9, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Nair, N.; Plant, D.; Plant, D.; Verstappen, S.M.; Verstappen, S.M.; Isaacs, J.D.; Morgan, A.W.; Hyrich, K.L.; Hyrich, K.L.; Hyrich, K.L.; et al. Differential DNA Methylation Correlates with Response to Methotrexate in Rheumatoid Arthritis. Rheumatology 2020, 59, 1364–1371. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, C.; Morice-Picard, F.; Dagoneau, N.; Wang, L.W.; Perrot, C.; Crow, Y.J.; Bauer, F.; Flori, E.; Prost-Squarcioni, C.; Krakow, D.; et al. ADAMTSL2 Mutations in Geleophysic Dysplasia Demonstrate a Role for ADAMTS-like Proteins in TGF-Beta Bioavailability Regulation. Nat. Genet. 2008, 40, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.A.; Knezevic, B.R.; Ammann, J.U.; Rhodes, D.A.; Aw, D.; Palmer, D.B.; Mather, I.H.; Trowsdale, J. BTN1A1, the Mammary Gland Butyrophilin, and BTN2A2 Are Both Inhibitors of T Cell Activation. J. Immunol. 2010, 184, 3514–3525. [Google Scholar] [CrossRef]
- Stanczyk, J.; Ospelt, C.; Karouzakis, E.; Filer, A.; Raza, K.; Kolling, C.; Gay, R.; Buckley, C.D.; Tak, P.P.; Gay, S.; et al. Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation. Arthritis Rheum. 2011, 63, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-Y.; Wu, J.-Q.; Liu, Z.-H.; Sun, S.-L. MicroRNAs in Rheumatoid Arthritis: What Is the Latest with Regards to Diagnostics? Expert Rev. Mol. Diagn. 2019, 19, 363–366. [Google Scholar] [CrossRef]
- Castro-Villegas, C.; Pérez-Sánchez, C.; Escudero, A.; Filipescu, I.; Verdu, M.; Ruiz-Limón, P.; Aguirre, M.A.; Jiménez-Gomez, Y.; Font, P.; Rodriguez-Ariza, A.; et al. Circulating MiRNAs as Potential Biomarkers of Therapy Effectiveness in Rheumatoid Arthritis Patients Treated with Anti-TNFα. Arthritis Res. Ther. 2015, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Bogunia-Kubik, K.; Wysoczańska, B.; Piątek, D.; Iwaszko, M.; Ciechomska, M.; Świerkot, J. Significance of Polymorphism and Expression of MiR-146a and NFkB1 Genetic Variants in Patients with Rheumatoid Arthritis. Arch. Immunol. Ther. Exp. 2016, 64, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Han, Y.; Qu, H.; Fang, J.; Ye, M.; Yin, W. Correlation of MicroRNA Expression Profile with Clinical Response to Tumor Necrosis Factor Inhibitor in Treating Rheumatoid Arthritis Patients: A Prospective Cohort Study. J. Clin. Lab. Anal. 2019, 33, e22953. [Google Scholar] [CrossRef] [Green Version]
- Duroux-Richard, I.; Pers, Y.M.; Fabre, S.; Ammari, M.; Baeten, D.; Cartron, G.; Touitou, I.; Jorgensen, C.; Apparailly, F. Circulating MiRNA-125b Is a Potential Biomarker Predicting Response to Rituximab in Rheumatoid Arthritis. Mediat. Inflamm. 2014, 2014, 342524. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J. The Potential of Circulating MicroRNA-125a and MicroRNA-125b as Markers for Inflammation and Clinical Response to Infliximab in Rheumatoid Arthritis Patients. J. Clin. Lab. Anal. 2020, 34, e23329. [Google Scholar] [CrossRef] [Green Version]
- Krintel, S.B.; Dehlendorff, C.; Hetland, M.L.; Hørslev-Petersen, K.; Andersen, K.K.; Junker, P.; Pødenphant, J.; Ellingsen, T.; Ahlquist, P.; Lindegaard, H.M.; et al. Prediction of Treatment Response to Adalimumab: A Double-Blind Placebo-Controlled Study of Circulating MicroRNA in Patients with Early Rheumatoid Arthritis. Pharm. J. 2016, 16, 141–146. [Google Scholar] [CrossRef]
- Sode, J.; Krintel, S.B.; Carlsen, A.L.; Hetland, M.L.; Johansen, J.S.; HØrslev-Petersen, K.; Stengaard-Pedersen, K.; Ellingsen, T.; Burton, M.; Junker, P.; et al. Plasma MicroRNA Profiles in Patients with Early Rheumatoid Arthritis Responding to Adalimumab plus Methotrexate vs. Methotrexate Alone: A Placebo-Controlled Clinical Trial. J. Rheumatol. 2018, 45, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ciechomska, M.; Bonek, K.; Merdas, M.; Zarecki, P.; Swierkot, J.; Gluszko, P.; Bogunia-Kubik, K.; Maslinski, W. Changes in MiRNA-5196 Expression as a Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Arch. Immunol. Ther. Exp. 2018, 66, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ruiz, J.C.; Ramos-Remus, C.; Sánchez-Corona, J.; Castillo-Ortiz, J.D.; Castañeda-Sánchez, J.J.; Bastian, Y.; Romo-García, M.F.; Ochoa-González, F.; Monsivais-Urenda, A.E.; González-Amaro, R.; et al. Analysis of MiRNA Expression in Patients with Rheumatoid Arthritis during Remission and Relapse after a 5-Year Trial of Tofacitinib Treatment. Int. Immunopharmacol. 2018, 63, 35–42. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-KappaB-Dependent Induction of MicroRNA MiR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, L.-S.; Zhou, Y.-H. Elevated MicroRNA-125b Promotes Inflammation in Rheumatoid Arthritis by Activation of NF-ΚB Pathway. Biomed. Pharmacother. 2017, 93, 1151–1157. [Google Scholar] [CrossRef]
- Ren, B.; Liu, J.; Wu, K.; Zhang, J.; Lv, Y.; Wang, S.; Liu, L.; Liu, D. TNF-α-Elicited MiR-29b Potentiates Resistance to Apoptosis in Peripheral Blood Monocytes from Patients with Rheumatoid Arthritis. Apoptosis 2019, 24, 892–904. [Google Scholar] [CrossRef]
- Thurlings, R.M.; Boumans, M.; Tekstra, J.; van Roon, J.A.; Vos, K.; van Westing, D.M.; van Baarsen, L.G.; Bos, C.; Kirou, K.A.; Gerlag, D.M.; et al. Relationship between the Type I Interferon Signature and the Response to Rituximab in Rheumatoid Arthritis Patients. Arthritis Rheum. 2010, 62, 3607–3614. [Google Scholar] [CrossRef]
- van Baarsen, L.G.M.; Wijbrandts, C.A.; Rustenburg, F.; Cantaert, T.; van der Pouw Kraan, T.C.T.M.; Baeten, D.L.; Dijkmans, B.A.C.; Tak, P.P.; Verweij, C.L. Regulation of IFN Response Gene Activity during Infliximab Treatment in Rheumatoid Arthritis Is Associated with Clinical Response to Treatment. Arthritis Res. Ther. 2010, 12, R11. [Google Scholar] [CrossRef] [Green Version]
- Raterman, H.G.; Vosslamber, S.; de Ridder, S.; Nurmohamed, M.T.; Lems, W.F.; Boers, M.; van de Wiel, M.; Dijkmans, B.A.C.; Verweij, C.L.; Voskuyl, A.E. The Interferon Type I Signature towards Prediction of Non-Response to Rituximab in Rheumatoid Arthritis Patients. Arthritis Res. Ther. 2012, 14, R95. [Google Scholar] [CrossRef] [Green Version]
- Toonen, E.J.M.; Gilissen, C.; Franke, B.; Kievit, W.; Eijsbouts, A.M.; den Broeder, A.A.; van Reijmersdal, S.V.; Veltman, J.A.; Scheffer, H.; Radstake, T.R.D.J.; et al. Validation Study of Existing Gene Expression Signatures for Anti-TNF Treatment in Patients with Rheumatoid Arthritis. PLoS ONE 2012, 7, e0033199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, G.; Holweg, C.T.J.; Kummerfeld, S.K.; Choy, D.F.; Setiadi, A.F.; Hackney, J.A.; Haverty, P.M.; Gilbert, H.; Lin, W.Y.; Diehl, L.; et al. Synovial Phenotypes in Rheumatoid Arthritis Correlate with Response to Biologic Therapeutics. Arthritis Res. Ther. 2014, 16, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellam, J.; Marion-Thore, S.; Dumont, F.; Jacques, S.; Garchon, H.J.; Rouanet, S.; Taoufik, Y.; Hendel-Chavez, H.; Sibilia, J.; Tebib, J.; et al. Use of Whole-Blood Transcriptomic Profiling to Highlight Several Pathophysiologic Pathways Associated with Response to Rituximab in Patients with Rheumatoid Arthritis: Data from a Randomized, Controlled, Open-Label Trial. Arthritis Rheumatol. 2014, 66, 2015–2025. [Google Scholar] [CrossRef] [Green Version]
- Sanayama, Y.; Ikeda, K.; Saito, Y.; Kagami, S.I.; Yamagata, M.; Furuta, S.; Kashiwakuma, D.; Iwamoto, I.; Umibe, T.; Nawata, Y.; et al. Prediction of Therapeutic Responses to Tocilizumab in Patients with Rheumatoid Arthritis: Biomarkers Identified by Analysis of Gene Expression in Peripheral Blood Mononuclear Cells Using Genome-Wide Dna Microarray. Arthritis Rheumatol. 2014, 66, 1421–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, H.L.; Thomas, H.B.; Moots, R.J.; Edwards, S.W. Interferon Gene Expression Signature in Rheumatoid Arthritis Neutrophils Correlates with a Good Response to TNFi Therapy. Rheumatology 2015, 54, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Eyre, S.; Yarwood, A.; Hyrich, K.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.; Plant, D.; Barton, A. Biologics in Rheumatoid Arthritis Genetics Investigating CD11c Expression as a Potential Genomic Biomarker of Response to TNF Inhibitor Biologics in Whole Blood Rheumatoid Arthritis Samples. Arthritis Res. Ther. 2015, 17, 359. [Google Scholar] [CrossRef] [Green Version]
- Oswald, M.; Curran, M.E.; Lamberth, S.L.; Townsend, R.M.; Hamilton, J.D.; Chernoff, D.N.; Carulli, J.; Townsend, M.J.; Weinblatt, M.E.; Kern, M.; et al. Modular Analysis of Peripheral Blood Gene Expression in Rheumatoid Arthritis Captures Reproducible Gene Expression Changes in Tumor Necrosis Factor Responders. Arthritis Rheumatol. 2015, 67, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Suzuki, K.; Iijima, H.; Hata, Y.; Lim, C.R.; Ishizawa, Y.; Kameda, H.; Amano, K.; Matsubara, K.; Matoba, R.; et al. Identification of Baseline Gene Expression Signatures Predicting Therapeutic Responses to Three Biologic Agents in Rheumatoid Arthritis: A Retrospective Observational Study. Arthritis Res. Ther. 2016, 18, 159. [Google Scholar] [CrossRef] [Green Version]
- Muskardin, T.W.; Vashisht, P.; Dorschner, J.M.; Jensen, M.A.; Chrabot, B.S.; Kern, M.; Curtis, J.R.; Danila, M.I.; Cofield, S.S.; Shadick, N.; et al. Increased Pretreatment Serum IFN-β/α Ratio Predicts Non-Response to Tumour Necrosis Factor α Inhibition in Rheumatoid Arthritis. Ann. Rheum. Dis. 2016, 75, 1757–1762. [Google Scholar] [CrossRef]
- Teitsma, X.M.; Jacobs, J.W.G.; Mokry, M.; Borm, M.E.A.; Pethö-Schramm, A.; van Laar, J.M.; Bijlsma, J.W.J.; Lafeber, F.P.J. Identification of Differential Co-Expressed Gene Networks in Early Rheumatoid Arthritis Achieving Sustained Drug-Free Remission after Treatment with a Tocilizumab-Based or Methotrexate-Based Strategy. Arthritis Res. Ther. 2017, 19, 170. [Google Scholar] [CrossRef] [Green Version]
- Spiliopoulou, A.; Colombo, M.; Plant, D.; Nair, N.; Cui, J.; Coenen, M.J.H.; Ikari, K.; Yamanaka, H.; Saevarsdottir, S.; Padyukov, L.; et al. Association of Response to TNF Inhibitors in Rheumatoid Arthritis with Quantitative Trait Loci for CD40 and CD39. Ann. Rheum. Dis. 2019, 78, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama-Kokuryo, W.; Yamazaki, H.; Takeuchi, T.; Amano, K.; Kikuchi, J.; Kondo, T.; Nakamura, S.; Sakai, R.; Hirano, F.; Nanki, T.; et al. Identification of Molecules Associated with Response to Abatacept in Patients with Rheumatoid Arthritis. Arthritis Res. Ther. 2020, 22, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derambure, C.; Dzangue-Tchoupou, G.; D’Agostino, M.A.; Lequerre, T.; Vittecoq, O. Gene Expression Regulated by Abatacept Associated with Methotrexate and Correlation with Disease Activity in Rheumatoid Arthritis. PLoS ONE 2020, 15, e0237143. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.; Nair, N.; Orozco, G.; Smith, S.; Hyrich, K.L.; Morgan, A.; Isaacs, J.; Wilson, A.G.; Barton, A.; Plant, D. Correction to: Transcriptome-Wide Study of TNF-Inhibitor Therapy in Rheumatoid Arthritis Reveals Early Signature of Successful Treatment. Arthritis Res. Ther. 2021, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Triaille, C.; Durez, P.; Sokolova, T.; Tilman, G.; de Bellefon, L.M.; Galant, C.; Coulie, P.; Lauwerys, B.R.; Limaye, N. Common Transcriptomic Effects of Abatacept and Other DMARDs on Rheumatoid Arthritis Synovial Tissue. Front. Immunol. 2021, 12, 724895. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, K.; Aihaiti, Y.; Li, Z.; Yuan, Q.; Xu, J.; Zheng, H.; Yang, M.; Wang, B.; Yang, Y.; et al. Derlin-1, as a Potential Early Predictive Biomarker for Nonresponse to Infliximab Treatment in Rheumatoid Arthritis, Is Related to Autophagy. Front. Immunol. 2022, 12, 795912. [Google Scholar] [CrossRef]
- Sutcliffe, M.; Nair, N.; Oliver, J.; Morgan, A.W.; Isaacs, J.D.; Wilson, A.G.; Verstappen, S.M.M.; Viatte, S.; Hyrich, K.L.; Morris, A.P.; et al. Pre-Defined Gene Co-Expression Modules in Rheumatoid Arthritis Transition towards Molecular Health Following Anti-TNF Therapy. Rheumatology 2022, 61 (Suppl. S1), keac133-186. [Google Scholar] [CrossRef]
- Sekiguchi, N.; Kawauchi, S.; Furuya, T.; Inaba, N.; Matsuda, K.; Ando, S.; Ogasawara, M.; Aburatani, H.; Kameda, H.; Amano, K.; et al. Messenger Ribonucleic Acid Expression Profile in Peripheral Blood Cells from RA Patients Following Treatment with an Anti-TNF-Alpha Monoclonal Antibody, Infliximab. Rheumatology 2008, 47, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Lequerré, T.; Gauthier-Jauneau, A.-C.; Bansard, C.; Derambure, C.; Hiron, M.; Vittecoq, O.; Daveau, M.; Mejjad, O.; Daragon, A.; Tron, F.; et al. Gene Profiling in White Blood Cells Predicts Infliximab Responsiveness in Rheumatoid Arthritis. Arthritis Res. Ther. 2006, 8, R105. [Google Scholar] [CrossRef] [Green Version]
- Tanino, M.; Matoba, R.; Nakamura, S.; Kameda, H.; Amano, K.; Okayama, T.; Nagasawa, H.; Suzuki, K.; Matsubara, K.; Takeuchi, T. Prediction of Efficacy of Anti-TNF Biologic Agent, Infliximab, for Rheumatoid Arthritis Patients Using a Comprehensive Transcriptome Analysis of White Blood Cells. Biochem. Biophys. Res. Commun. 2009, 387, 261–265. [Google Scholar] [CrossRef]
- Julià, A.; Erra, A.; Palacio, C.; Tomas, C.; Sans, X.; Barceló, P.; Marsal, S. An Eight-Gene Blood Expression Profile Predicts the Response to Infliximab in Rheumatoid Arthritis. PLoS ONE 2009, 4, e7556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuhlmüller, B.; Häupl, T.; Hernandez, M.M.; Grützkau, A.; Kuban, R.J.; Tandon, N.; Voss, J.W.; Salfeld, J.; Kinne, R.W.; Burmester, G.R. CD11c as a Transcriptional Biomarker to Predict Response to Anti-TNF Monotherapy with Adalimumab in Patients with Rheumatoid Arthritis. Clin. Pharmacol. Ther. 2010, 87, 311–321. [Google Scholar] [CrossRef]
- Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The Emerging Role of Epigenetics in Human Autoimmune Disorders. Clin. Epigenetics 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Peres, R.S.; Liew, F.Y.; Talbot, J.; Carregaro, V.; Oliveira, R.D.; Almeida, S.L.; França, R.F.O.; Donate, P.B.; Pinto, L.G.; Ferreira, F.I.S.; et al. Low Expression of CD39 on Regulatory T Cells as a Biomarker for Resistance to Methotrexate Therapy in Rheumatoid Arthritis. Proc. Natl. Acad. Sci. USA 2015, 112, 2509–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papalexi, E.; Satija, R. Single-Cell RNA Sequencing to Explore Immune Cell Heterogeneity. Nat. Rev. Immunol. 2018, 18, 35–45. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Wu, R.; Ding, T.; Xue, H.; Gao, C.; Li, X.; Wang, C. New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 709178. [Google Scholar] [CrossRef]
- Yanagida, M.; Kawasaki, M.; Fujishiro, M.; Miura, M.; Ikeda, K.; Nozawa, K.; Kaneko, H.; Morimoto, S.; Takasaki, Y.; Ogawa, H.; et al. Serum Proteome Analysis in Patients with Rheumatoid Arthritis Receiving Therapy with Tocilizumab: An Anti-Interleukin-6 Receptor Antibody. Biomed. Res. Int. 2013, 2013, 607137. [Google Scholar] [CrossRef]
- Blaschke, S.; Rinke, K.; Maring, M.; Flad, T.; Patschan, S.; Jahn, O.; Mueller, C.A.; Mueller, G.A.; Dihazi, H. Haptoglobin-A1, -A2, Vitamin D-Binding Protein and Apolipoprotein C-III as Predictors of Etanercept Drug Response in Rheumatoid Arthritis. Arthritis Res. Ther. 2015, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.F.; Nair, N.; Verstappen, S.M.M.; Barton, A.; Zucht, H.D.; Budde, P.; Schulz-Knappe, P.; Plant, D. Proteomic Analysis to Define Predictors of Treatment Response to Adalimumab or Methotrexate in Rheumatoid Arthritis Patients. Pharm. J. 2020, 20, 516–523. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Ge, Y.; Kang, J.; Liao, J.; Du, J.; Tian, J.; Xie, X.; Li, F. ITRAQ and PRM-Based Proteomic Analysis Provides New Insights into Mechanisms of Response to Triple Therapy in Patients with Rheumatoid Arthritis. J. Inflamm. Res. 2021, 14, 6993–7006. [Google Scholar] [CrossRef]
- Aterido, A.; Cañete, J.D.; Tornero, J.; Blanco, F.; Fernández-Gutierrez, B.; Pérez, C.; Alperi-López, M.; Olivè, A.; Corominas, H.; Martínez-Taboada, V.; et al. A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated with the Response to Anti-TNF Therapy in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 1459. [Google Scholar] [CrossRef]
- Tasaki, S.; Suzuki, K.; Kassai, Y.; Takeshita, M.; Murota, A.; Kondo, Y.; Ando, T.; Nakayama, Y.; Okuzono, Y.; Takiguchi, M.; et al. Multi-Omics Monitoring of Drug Response in Rheumatoid Arthritis in Pursuit of Molecular Remission. Nat. Commun. 2018, 9, 2755. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Concepcion, A.N.; Vianen, M.; Marijnissen, A.C.A.; Lafeber, F.P.G.J.; Radstake, T.R.D.J.; Pandit, A. Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 212–222. [Google Scholar] [CrossRef]
- Yoosuf, N.; Maciejewski, M.; Ziemek, D.; Jelinsky, S.A.; Folkersen, L.; Müller, M.; Sahlström, P.; Vivar, N.; Catrina, A.; Berg, L.; et al. Early Prediction of Clinical Response to Anti-TNF Treatment Using Multi-Omics and Machine Learning in Rheumatoid Arthritis. Rheumatology 2022, 61, 1680–1689. [Google Scholar] [CrossRef]
- Julià, A.; Gómez, A.; López-Lasanta, M.; Blanco, F.; Erra, A.; Fernández-Nebro, A.; Mas, A.J.; Pérez-García, C.; Vivar, M.L.G.; Sánchez-Fernández, S.; et al. Longitudinal Analysis of Blood DNA Methylation Identifies Mechanisms of Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. EBioMedicine 2022, 80, 104053. [Google Scholar] [CrossRef]
Drug | Clinical Outcome | Discovery Cohort (n) | Replication Cohort (n) | Main Associations | p-Value | Replication | Reference |
---|---|---|---|---|---|---|---|
MTX | ∆DAS28 at 6 months | 1424 | 429 177 | NRG3 (rs168201) | 9.8 × 10−8 | - | [14] |
MTX | ∆DAS28 at 6 months | 457 | - | ARL14|PPM1L (rs7624766) | 3.9 × 10−7 | - | [15] |
ADA, ETN, IFX | ∆DAS28/EULAR at 3 months | 89 | - | MAFB (rs6028945) | 2 × 10−7 | No [28,33] | [23] |
IFNK (rs7046653) | 5 × 10−7 | - | |||||
ADA, ETN, IFX | ∆DAS28/EULAR at 3 months | 196 | - | NR2F2 (rs10520789) | 6 × 10−7 | No [28] | [24] |
PDE3A-SLCO1C1 (rs3794271) | 3.5 × 10−6 | Yes [25] No [26,27,28] | |||||
ADA, ETN, IFX | ∆DAS28 at 6 months | 566 | 774 | EYA (rs17301249) | 6 × 10−5 | No [30] | [29] |
Intergenic region (rs12081765) | 7 × 10−4 | No [30] | |||||
PDZD2 (rs1532269) | 7 × 10−4 | Yes [30] | |||||
Intergenic region (rs7305646) | 1 × 10−4 | No [30] | |||||
ADA, ETN, IFX | ∆DAS28 at 3 months | 882 | 1821 | Intergenic region (rs4411591) | 5 × 10−5 | Yes [35] | [31] |
ADA, ETN, IFX | ∆DAS28/EULAR from 3 to 12 months | 2706 | 290 | CD84 (rs6427528) | 8 × 10−8 | Yes [35] | [32] |
ADA, ETN, IFX | ∆DAS28 at 12 weeks | 375 | 245 | MED15 (rs113878252) | 1.2 × 10−8 | - | [33] |
ADA, ETN, IFX | ∆DAS28 at 6 months | 487 | - | rs284511 | 2.5 × 10−8 | No [27] | [34] |
CZP | ΔACR20, ΔDAS28 at week 6 and ΔDAS28 at week 12 | 302 | - | rs12287315 | 5.7 × 10−8 | - | [36] |
rs35355083 | 1.5 × 10−7 | ||||||
TCZ | ∆DAS28 at 4 months ACR20 at 6 months | 1157 | 526 | CD69 (rs11052877) | 4 × 10−3 | Yes [38] | [37] |
Study | Patients (n) | Drug | Sample | Time Sample | Outcome |
---|---|---|---|---|---|
Liu et al., 2011 [47] | 65 | ETN or ADA (26) | Peripheral blood | Baseline | DAS28 |
De Andrés et al., 2015 [42] | 19 early RA patients | MTX (12 GR, 1 MR, 2 NR) /17 controls | T, B, NK, monocytes and polymorphonuclear leukocytes from whole blood | Baseline/ after 1 month | DAS28 at 6 months |
Plant et al., 2016 [48] | 72 | ETN (36 GR/36 PR) | Whole blood | Baseline | DAS28 at 3 months |
Glossop et al., 2017 [49] | 46 | MTX, SSZ and HCQ (35 GR/11 NR) | Whole blood | Baseline | EULAR criteria at 6 months |
Gosselt et al., 2019 [45] | 181 | MTX or MTX + SSZ + HCQ + corticosteroids (140 MR/GR and 41 NR) | Whole blood leukocytes | Baseline and at 3 months | DAS28 |
Liebold et al., 2021 [43] | 16 RA 17 controls | MTX, sarilumab, Janus kinase inhibitors (8 GR-MR/8 NR) | Peripheral blood and CD4+, CD8+, CD14+ and CD19+ | Baseline/3 months | DAS28-ESR DAS28-CRP |
Guderud et al., 2020 [44] | 72 | MTX (36 GR + 36 PR) | Whole blood | Baseline and 4 weeks after MTX | EULAR criteria at 6 months |
Nair et al., 2020 [50] | 68 | MTX (34 GR + 34 PR) | Whole blood | Baseline and 4 weeks after MTX | DAS28 at 6 months |
Gosselt et al., 2021 [46] | 69 | MTX or MTX + SSZ + HCQ + corticosteroids | Whole blood | Baseline | DAS28 at 3 months |
Study | Patients (n) | Drug (n Patients) | Response (n) | Sample | Time Sample | Outcome |
---|---|---|---|---|---|---|
Castro Villegas et al., 2015 [55] | Study cohort (10); Replication cohort (85) | ADA (15), ETN (25) and IFX (55) | GR (85) NR (10) | Serum | Baseline and at 6 months | EULAR criteria at 6 months |
Bogunia-Kubik et al., 2016 [56] | 13 | anti-TNF-α | Not specified | Serum | Before and after 3 months of TNFi | EULAR criteria 3 months |
Liu et al., 2019 [57] | Study cohort (16); Replication cohort (92) | ETN | 8 GR; 8 NR 60 GR; 32 NR | PBMCs | Baseline | EULAR criteria at week 24 |
Duroux-Richard et al., 2014 [58] | 32 | RTX | 16 GR; 16 NR | Blood (16) and serum samples (32) | Baseline | EULAR criteria at 3 months |
Cheng et al., 2020 [59] | 96 | IFX | 69 GR; 27 NR | Peripheral blood samples | Baseline, 4, 12 and 24 weeks | EULAR criteria at week 24 |
Krintel et al., 2015 [60] | 180 | ADA (89) or ADA ± MTX (91) | EULAR criteria | |||
Sode et al., 2018 [61] | 89 | ADA + MTX (89) | ADA + MTX: 40 GR; 46 NR | Plasma | Baseline and at 3 months | ACR/EULAR remission at 3 and 12 months |
Ciechomska et al., 2018 [62] | 10 | ETN (7) ADA (3) | Not specified | Serum | Baseline and after TNFi | DAS28 |
Fernandez-Ruiz et al., 2018 [63] | 16 | Tofacitinib | 10 Remission; 6 No remission | Blood | At the first month after the last dose of tofacitinib | Remission ((DAS28) <2.6 and no swollen joints) |
Study | Patients (n) | Drug (n Patients) | Response | Sample | Time Sample | Outcome |
---|---|---|---|---|---|---|
Thurlings et al., 2010 [68] | 51 | RTX | Not specified | PBMC | Baseline | EULAR criteria at weeks 12 and 24 |
Van Baarsen et al., 2010 [69] | 33 | IFX | (12 GR and 6 PR) | Whole blood | Before/after 1 month | DAS, tender joint counts and HAQ-DIs criteria at week 16 |
Raterman et al., 2012 [70] | 14 | RTX | 8 GR; 6 NR | Whole blood | Baseline | EULAR at week 24 |
Toonen et al., 2012 [71] | 42 | IFX (27) or ADA (15) | (18 GR and 24 NR) | Whole blood | Baseline | EULAR criteria at week 14 |
Glynn Dennis et al., 2014 [72] | GSE21537 dataset (62) | IFX | Not specified | Synovial | Baseline | EULAR at week 16 |
Sellam et al., 2014 [73] | 68 | RTX | 44 GR; 24 NR | PBMCs | Baseline and 24 weeks | EULAR at week 24 |
Sanayama et al., 2014 [74] | 40 + 20 | TCZ | GR 29 NR 8 GR 15 NR 5 | PBMC | Baseline, 3 and 6 months | physician’s global assessment and CDAI at 6 months |
Wright et al., 2015 [75] | 20 | ADA (13), ETN (5), GOL (2) | 5 GR; 13 MR; 2 NR | Neutrophils | Baseline | DAS28 at week 12 |
Smith et al., 2015 [76] | 75 | ADA (25) ETN (50) | ADA (16 GR, 9 NR) ETN (25 GR, 25 NR) | Whole blood | Baseline | EULAR criteria at month 3 |
Oswald et al., 2015 [77] | 240 | ABCoN (IFX 20, ETN 21, ADA 9) GO-FURTHER (GOL 72) BATTER-UP (IFX 23, ETN 31, GOL 9, ADA 41, CZP 14) | ABConN (GR 35, NR 15) GO-FURTHER (GR 66, NR 6) BATTER-UP (GR 79, NR 39) | Whole blood | Baseline/after 14 weeks | EULAR at 14 weeks |
Nakamura et al., 2016 [78] | 209 | IFX (140), TCZ (38), or ABA (31) | IFX (30% REM), TCZ (21.1% REM), ABA (22.6% REM) | Whole blood | Baseline | CDAI at 6 months |
Wampler Muskardin et al., 2016 [79] | Test cohort:32 (ABCoN) Validation cohort: 92 (TETRAD registry) | IFX (19), ADA (37), ETN (60), GOL (2), CZP (6) | Test cohort: 13 NR and 19 GR Validation cohort: 44 NR, 30 MR and 18 GR | Serum sample | Baseline | EULAR at 14 weeks EULAR at 12 weeks |
Teitsma et al., 2017 [80] | 60 | MTX + TCZ (19) MTX + TCZ (24) MTX + TCZ (17) | 14 sDFR 5 control 13 sDFR 11 controls 10 sDFR 7 controls | Whole blood | Baseline | sDFR |
Sipiliopoulou et al., 2019 [81] | 2938 (BRAGGSS, DREAM, EIRA, ReAct, WTCCC, Other cohorts) | IFX (792), ADA (1255), ETN (721), GOL (17), CZP (34) | Not specified | Whole blood | Baseline | ESR and SJC baseline and between 3–6 months after treatment |
Yokoyama-Kokuryo et al., 2020 [82] | 45 | ABA ± MTX | 27 GR; 8 MR/NR | Whole blood | Baseline and 6 months | EULAR at 6 months |
Derambure et al., 2020 [83] | 19 | ABA + MTX | 14 GR; 5 NR | Whole blood | Baseline and 6 months | DAS28-CRP at 6 months |
Oliver et al., 2021 [84] | 70 | ADA | 50 GR; 20 NR | Whole blood | Baseline and 3 months | EULAR at 3 months |
Triaille et al., 2021 [85] | 50 | MTX, ADA, ABA, RTX, TCZ | Not specified | Synovial tissue | Baseline and after 16 weeks | EULAR at 16 weeks |
Cai et al., 2022 [86] | Test cohorts: GSE58795, GSE78068 Validation cohorts: GSE77298, GSE55457, and GSE89408 datasets | IFX | GSE58795 36 GR; 23 NR GSE78068 42 GR; 98 NR GSE77298: 16 RA GSE55457: 13 RA GSE89408: 152 RA | Whole blood Synovium | Baseline | ESR and CRP |
Sutcliffe et al., 2022 [87] | 155 RAMS (MTX) BRAGGSS cohort (ADA) | MTX (85) or ADA (70) | 42 GR; 43 NR 50 GR; 20 NR | Whole blood | Baseline and at 4 weeks Baseline and at 3 months | EULAR criteria after 3 months EULAR criteria after 6 months |
Study | Patients (n) | Drug (n Patients) | Response | Sample | Time Sample | Outcome |
---|---|---|---|---|---|---|
Yanagida et al., 2013 [97] | 7 | TCZ | 7 MR or GR | Serum | Baseline, 4 and 8 weeks | DAS28 (Baseline, 4 and 8 weeks) |
Blaschke et al., 2015 [98] | 50 | ETN | 31 GR, 19 NR | Serum | Baseline/after 12 and 24 weeks | EULAR criteria at 6 months |
Ling et al., 2020 [99] | 286 | BRAGGSS cohort- ADA (150) RAMS cohort- MTX (136) | ADA: 58 GR, 58 MR and 34 PR. MTX: 59 GR, 2 MR and 75 PR | Serum | Baseline | EULAR criteria at 3 months (BRAGGSS) EULAR criteria at 6 months (RAMS) |
Chen et al., 2021 [100] | 20 | IFX + MTX + Leflunomide | 5 NR, 15 GR | Serum | Baseline and after 14 weeks | EULAR criteria after 14 weeks |
Study | Patients (n) | Drug (n Patients) | Response | Sample | Time Sample | Outcome | Omics |
---|---|---|---|---|---|---|---|
Aterido et al., 2019 [101] | 11 | ADA | GR 5 NR 3 MR 3 | Synovial biopsies | baseline | EULAR criteria at week 14 | Transcriptomic and genomic |
Tasaki et al., 2018 [102] | 34 RA 35 controls | MTX (21), TCZ (13) and IFX (18) | IR: MTX (11), TCZ (3) and IFX (8) GR: MTX (10), TCZ (10) and IFX (10) | 26 cell types from whole blood | Baseline, 4, 8, 12 and 24 weeks | EULAR criteria at week 24 (DAS28-ESR) | Transcriptomics and proteomics |
Tao et al., 2021 [103] | 80 | ETN (38) or ADA (42) | ADA (20 GR/MR; 18 NR) ETN (19GR/MR; 23 NR) | CD14+, CD4+ from whole blood | Baseline | EULAR criteria at 6 months | Transcriptomics and epigenomics |
Yoosuf et al., 2022 [104] | 39 female | IFX (16), ADA (11), ETN (8), GOL (2), CZP (2) | 23 (GR/MR); 16 (NR) | PBMCs from whole blood | Baseline and 3 months | EULAR criteria | Transcriptomics and proteomics |
Julià et al., 2022 [105] | Discovery cohort (62) Validation cohort (60) | ADA (5), CZP (10), ETN (34), GOL (12), IFX (1) ADA (7), CZP (13), ETN (31), GOL (9), IFX (0) | Week 0: GR (50); NR (12); Week 12: GR (44); NR (7) Week 0: GR (49); NR (10); Week 12: GR (48); NR (10) | Whole blood and neutrophils, macrophages, CD4+ T, CD8+ T, B and NK cells | Baseline and at week 12 | EULAR criteria at week 12 | Transcriptomics and epigenomics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid-Paredes, A.; Martín, J.; Márquez, A. -Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics 2022, 14, 1648. https://doi.org/10.3390/pharmaceutics14081648
Madrid-Paredes A, Martín J, Márquez A. -Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics. 2022; 14(8):1648. https://doi.org/10.3390/pharmaceutics14081648
Chicago/Turabian StyleMadrid-Paredes, Adela, Javier Martín, and Ana Márquez. 2022. "-Omic Approaches and Treatment Response in Rheumatoid Arthritis" Pharmaceutics 14, no. 8: 1648. https://doi.org/10.3390/pharmaceutics14081648
APA StyleMadrid-Paredes, A., Martín, J., & Márquez, A. (2022). -Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics, 14(8), 1648. https://doi.org/10.3390/pharmaceutics14081648