Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solvent Extraction
2.3. Supercritical Fluid Extraction
2.4. Liquid Chromatography with Mass Spectrometric Detection (LC-MS)
2.5. High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD)
2.6. Design of Experiments (DoE)
2.7. Stability Study
2.8. Water Content Analysis after Karl Fischer
3. Results and Discussion
3.1. Phytochemical Characterization of Solvent Extracts
3.2. Supercritical Carbon Dioxide Extraction
3.3. Comparison of scCO2 Extraction and Conventional Solvent Extraction
3.4. Water Content Analysis
3.5. Stability Study with scCO2 Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.). Pharm. Crop. 2011, 2, 28–54. [Google Scholar] [CrossRef]
- Zielińska, A.; Alves, H.; Marques, V.; Durazzo, A.; Lucarini, M.; Alves, T.F.; Morsink, M.; Willemen, N.; Eder, P.; Chaud, M.V.; et al. Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. Medicina 2020, 56, 336. [Google Scholar] [CrossRef]
- Tonnesen, H.H.; Karlsen, J. Studies on Curcumin and Curcuminoids VI. Kinetics of Curcumin Degradation in Aqueous Solution. Z. Für Lebensm.-Unters. Forsch. 1985, 108, 402–404. [Google Scholar] [CrossRef]
- Souza, C.R.A.; Osme, S.F.; Glória, M.B.A. Stability of Curcuminoid Pigments in Model Systems. J. Food Process. Preserv. 1997, 21, 353–363. [Google Scholar] [CrossRef]
- Hjorth Tennesen, H.I.; Karlsen, J.; Beijersbergen van Henegouwen, G. Studies on Curcumin and Curcuminoids: VIII. Photochemical Stability of Curcumin. Z. Für Lebensm.-Unters. Forsch. 1986, 183, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Gul, K.; Kim, A.N.; Rahman, M.S.; Lee, M.H.; Kim, J.I.; Kwak, D.; Shin, E.C.; Kim, H.J.; Kerr, W.L.; et al. Impact of Supercritical Carbon Dioxide Turmeric Extract on the Oxidative Stability of Perilla Oil. Int. J. Food Sci. Technol. 2020, 55, 183–191. [Google Scholar] [CrossRef]
- Sikora, E.; Bielak-Zmijewska, A.; Piwocka, K.; Skierski, J.; Radziszewska, E. Inhibition of Proliferation and Apoptosis of Human and Rat T Lymphocytes by Curcumin, a Curry Pigment. Biochem. Pharmacol. 1997, 54, 899–907. [Google Scholar] [CrossRef]
- Chen, Y.S.; Ho, C.C.; Cheng, K.C.; Tyan, Y.S.; Hung, C.F.; Tan, T.W.; Chung, J.G. Curcumin Inhibited the Arylamines N-Acetyltransferase Activity, Gene Expression and DNA Adduct Formation in Human Lung Cancer Cells (A549). Toxicol. Vitr. 2003, 17, 323–333. [Google Scholar] [CrossRef]
- Oda, Y. Inhibitory Effect of Curcumin on SOS Functions Induced by UV Irradiation. Mutat. Res. Lett. 1995, 348, 67–73. [Google Scholar] [CrossRef]
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.S.; Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef] [PubMed]
- Aratanechemuge, Y.; Komiya, T.; Moteki, H.; Katsuzaki, H.; Imai, K.; Hibasami, H. Selective Induction of Apoptosis by Ar-Turmerone Isolated from Turmeric (Curcuma longa L.) in Two Human Leukemia Cell Lines, but Not in Human Stomach Cancer Cell Line. Int. J. Mol. Med. 2002, 9, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of Antifungal and Anti-Aflatoxigenic Properties of Essential Oil Derived from Turmeric (Curcuma longa L.) on Aspergillus Flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.F.; Henriques, O.B.; Andreoni, A.A.S.; Vital, G.R.F.; Campos, M.M.C.; Habermehl, G.G.; de Moraes, V.L.G. Antivenom and Biological Effects of Ar-Turmerone Isolated from Curcuma longa (Zingiberaceae). Toxicon 1992, 30, 1211–1218. [Google Scholar] [CrossRef]
- Ali, A.; Wang, Y.H.; Khan, I.A. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma longa, Ar-Turmerone, and Curcuminoids Against Aedes Aegypti and Anopheles Quadrimaculatus (Culicidae: Diptera). J. Med. Entomol. 2015, 52, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.R.A.; Glória, M.B.A. Chemical Analysis of Turmeric from Minas Gerais, Brazil and Comparison of Methods for Flavour Free Oleoresin. Braz. Arch. Biol. Technol. 1998, 41, 218–224. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Äcia, P.; Leal, F.; Carvalho, J.O.E.; Angela, A.M.; Meireles, A. Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longa L.) Extracts Obtained Using Various Techniques. J. Agric. Food Chem. 2003, 51, 6604–6611. [Google Scholar] [CrossRef]
- Wakte, P.S.; Sachin, B.S.; Patil, A.A.; Mohato, D.M.; Band, T.H.; Shinde, D.B. Optimization of Microwave, Ultra-Sonic and Supercritical Carbon Dioxide Assisted Extraction Techniques for Curcumin from Curcuma longa. Sep. Purif. Technol. 2011, 79, 50–55. [Google Scholar] [CrossRef]
- Began, G.; Goto, M.; Kodama, A.; Hirose, T. Response Surfaces of Total Oil Yield of Turmeric (Curcuma longa) in Supercritical Carbon Dioxide. Food Res. Int. 2000, 33, 341–345. [Google Scholar] [CrossRef]
- King, J.W. Analytical Supercritical Fluid Extraction. In Analytical Supercritical Fluid Chromatography and Extraction; Lee, M.L., Markides, K.E., Eds.; Chromatography Conferences Inc.: Provo, UT, USA, 1990; pp. 311–362. ISBN 0842523944. [Google Scholar]
- Sihvonen, M.; Järvenpää, E.; Hietaniemi, V.; Huopalahti, R. Advances in Supercritical Carbon Dioxide Technologies. Trends Food Sci. Technol. 1999, 10, 217–222. [Google Scholar] [CrossRef]
- Phelps, C.L.; Smart, N.G.; Wai, C.M. Chemistry Everday for Everyone Past, Present, and Possible Future Applications of Supercritical Fluid Extraction Technology. J. Chem. Educ. 1996, 73, 1163–1168. [Google Scholar] [CrossRef]
- Kumar, S.K.; Johnston, K.P. Modelling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. J. Supercrit. Fluids 1988, 1, 15–22. [Google Scholar] [CrossRef]
- Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G. Supercritical Fluids as Solvents for Chemical and Materials Processing. Nature 1996, 383, 313–318. [Google Scholar] [CrossRef]
- Kandiah, M.; Spiro, M. Extraction of Ginger Rhizome: Kinetic Studies with Supercritical Carbon Dioxide. Int. J. Food Sci. Technol. 1990, 25, 328–338. [Google Scholar] [CrossRef]
- Stahl, E.; Quirin, K.-W.; Gerard, D., II. Grundlagen Der Extraktion Mit Verdichteten Gasen. In Verdichtete Gase zur Extraktion und Raffination; Springer: Berlin/Heidelberg, Germany, 1987; pp. 10–36. ISBN 3540169377. [Google Scholar]
- Zhang, Y.; Yang, J.; Yu, Y.X. Dielectric Constant and Density Dependence of the Structure of Supercritical Carbon Dioxide Using a New Modified Empirical Potential Model: A Monte Carlo Simulation Study. J. Phys. Chem. B 2005, 109, 13375–13382. [Google Scholar] [CrossRef]
- Raveendran, P.; Ikushima, Y.; Wallen, S.L. Polar Attributes of Supercritical Carbon Dioxide. Acc. Chem. Res. 2005, 38, 478–485. [Google Scholar] [CrossRef]
- Council of Europe. 2.5.12. Water: Semi-Micro Determination. In European Pharmacopoeia; 10.8; EDQM: Strasbourg, France, 2022; pp. 171–172. [Google Scholar]
- Herebian, D.; Choi, J.H.; Abd El-Aty, A.M.; Shim, J.H.; Spiteller, M. Metabolite Analysis in Curcuma Domestica Using Various GC-MS and LC-MS Separation and Detection Techniques. Biomed. Chromatogr. 2009, 23, 951–965. [Google Scholar] [CrossRef]
- Jiang, H.; Somogyi, Á.; Jacobsen, N.E.; Timmermann, B.N.; Gang, D.R. Analysis of Curcuminoids by Positive and Negative Electrospray Ionization and Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1001–1012. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, R.X.; Liu, Z. A High-Throughput Quantification Method of Curcuminoids and Curcumin Metabolites in Human Plasma via High-Performance Liquid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. B 2014, 949–950, 70–78. [Google Scholar] [CrossRef]
- Gören, A.C.; Çikrikçi, S.; Çergel, M.; Bilsel, G. Rapid Quantitation of Curcumin in Turmeric via NMR and LC–Tandem Mass Spectrometry. Food Chem. 2009, 113, 1239–1242. [Google Scholar] [CrossRef]
- Allen, F.; Greiner, R.; Wishart, D. Competitive Fragmentation Modeling of ESI-MS/MS Spectra for Putative Metabolite Identification. Metabolomics 2015, 11, 98–110. [Google Scholar] [CrossRef]
- Matsumura, S.; Murata, K.; Zaima, N.; Yoshioka, Y.; Morimoto, M.; Kugo, H.; Yamamoto, A.; Moriyama, T.; Matsuda, H. Inhibitory Activities of Essential Oil Obtained from Turmeric and Its Constituents against β-Secretase. Nat. Prod. Commun. 2016, 11, 1785–1788. [Google Scholar] [CrossRef]
- Iwamoto, K.; Matsumura, S.; Yoshioka, Y.; Yamamoto, A.; Makino, S.; Moriyama, T.; Zaima, N. Using Turmeric Oil as a Solvent Improves the Distribution of Sesamin-Sesamolin in the Serum and Brain of Mice. Lipids 2019, 54, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.; Quirin, K.-W.; Gerard, D., IV. Anwendung Verdichteter Gase Zur Extraktion Und Raffination. In Verdichtete Gase zur Extraktion und Raffination; Springer: Berlin/Heidelberg, Germany, 1987; pp. 82–241. ISBN 3540169377. [Google Scholar]
- Stahl, H.C.E.; Schilz, W. Extraktion Mit Überkritischen Gasen in Direkter Kopplung Mit Der Dünnschicht-Chromatographie. Anwendungsmöglichkeiten Auf Dem Naturstoffgebiet. Chem. Ing. Tech. 1976, 48, 773–778. [Google Scholar] [CrossRef]
- Chang, L.H.; Jong, T.T.; Huang, H.S.; Nien, Y.F.; Chang, C.M.J. Supercritical Carbon Dioxide Extraction of Turmeric Oil from Curcuma longa Linn and Purification of Turmerones. Sep. Purif. Technol. 2006, 47, 119–125. [Google Scholar] [CrossRef]
- Gopalan, B.; Goto, M.; Kodama, A.; Hirose, T. Supercritical Carbon Dioxide Extraction of Turmeric (Curcuma longa). J. Agric. Food Chem. 2000, 48, 2189–2192. [Google Scholar] [CrossRef]
- Galano, A.; Álvarez-Diduk, R.; Ramírez-Silva, M.T.; Alarcón-Ángeles, G.; Rojas-Hernández, A. Role of the Reacting Free Radicals on the Antioxidant Mechanism of Curcumin. Chem. Phys. 2009, 363, 13–23. [Google Scholar] [CrossRef]
- Kharat, M.; Du, Z.; Zhang, G.; Mcclements, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of PH, Temperature, and Molecular Environment. J. Agric. Food Chem. 2016, 65, 1525–1532. [Google Scholar] [CrossRef]
- Pandey, K.U.; Dalvi, S.V. Understanding Stability Relationships among Three Curcumin Polymorphs. Adv. Powder Technol. 2019, 30, 266–276. [Google Scholar] [CrossRef]
- Litwinienko, G.; Ingold, K.U. Abnormal Solvent Effects on Hydrogen Atom Abstraction. 2. Resolution of the Curcumin Antioxidant Controversy. The Role of Sequential Proton Loss Electron Transfer. J. Org. Chem. 2004, 69, 5888–5896. [Google Scholar] [CrossRef]
- Gordon, O.N.; Schneider, C. Vanillin and Ferulic Acid: Not the Major Degradation Products of Curcumin. Trends Mol. Med. 2012, 18, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Malasoni, R.; Naqvi, A.; Srivastava, A.; Pandey, R.R.; Singh, A.; Chaudhary, M.; Paliwal, S.K.; Dwivedi, A.K. An Improved HPLC Method for Simultaneous Estimation of Isocurcumenol, Ar-Turmerone and α,β-Turmerone in Hexane Soluble Fraction of Curcuma longa and Its Formulations. J. Biomater. Tissue Eng. 2014, 4, 405–410. [Google Scholar] [CrossRef]
- van ’T Hoff, J.H. L’équilibre Chimique Dans Les Systèmes Gazeux on Dissous à l’état Dilué. Recl. Des Trav. Chim. Des Pays-Bas 1885, 4, 424–427. [Google Scholar] [CrossRef]
- Lv, R.; Zhang, X.; Xing, R.; Shi, W.; Zhao, H.; Li, W.; Jouyban, A.; Acree, W.E. Comprehensive Understanding on Solubility and Solvation Performance of Curcumin (Form I) in Aqueous Co-Solvent Blends. J. Chem. Thermodyn. 2022, 167, 106718. [Google Scholar] [CrossRef]
- Jagannathan, R.; Abraham, P.M.; Poddar, P. Temperature-Dependent Spectroscopic Evidences of Curcumin in Aqueous Medium: A Mechanistic Study of Its Solubility and Stability. J. Phys. Chem. B 2012, 116, 14533–14540. [Google Scholar] [CrossRef] [PubMed]
Experiment | Pressure (bar) | Temperature (°C) |
---|---|---|
1 | 75 | 35 |
2 | 250 | 35 |
3 | 425 | 35 |
4 | 250 | 55 |
5 | 125 | 55 |
6 | 425 | 55 |
7 | 425 | 75 |
8 | 250 | 75 |
9 | 150 | 75 |
10 | 125 | 55 |
11 | 425 | 35 |
12 | 425 | 75 |
13 | 250 | 35 |
14 | 250 | 75 |
15 | 425 | 55 |
16 | 75 | 35 |
17 | 150 | 75 |
18 | 250 | 55 |
19 | 425 | 35 |
20 | 250 | 55 |
21 | 250 | 35 |
22 | 250 | 75 |
23 | 75 | 35 |
24 | 150 | 75 |
25 | 425 | 75 |
26 | 425 | 55 |
27 | 125 | 55 |
28 | 250 | 55 |
29 | 250 | 55 |
30 | 250 | 55 |
31 | 250 | 55 |
32 | 250 | 55 |
33 | 250 | 55 |
Extract | Extraction Parameters | |
---|---|---|
methanol | methanol | solvent extract |
n-hexane | n-hexane | solvent extract |
42535 | scCO2; 425 bar; 35 °C | direct removal |
42555 | scCO2; 425 bar; 55 °C | direct removal |
42575 | scCO2; 425 bar; 75 °C | direct removal |
42575R | scCO2; 425 bar; 75 °C | removed as methanolic solution |
Peak No. | Rt (min) | Peak Assignment | UV λmax (nm) | MSn Data (m/z) | References | ||
---|---|---|---|---|---|---|---|
MS 1, P | MS 2, P | MS 3 | |||||
1 | 24.5 | bisdemethoxycurcumin (BDMC) | 425 | 309 | 225 | 147 | [30,31,32] |
2 | 24.9 | demethoxycurcumin (DMC) | 425 | 339 | 245 | 175 | [30,31,32] |
3 | 25.3 Ref.: 25.3 | curcumin | 425 | 369 | 245 | 175 | reference standard [30,31,32,33] |
4 | 32.3 Ref.: 32.4 | ar-turmerone | 240 | 217 | 119 | 92 | reference standard [34] |
5 | 34.5 Ref.: 34.6 | α-turmerone | 236 | 219 | 121 | 93 | reference standard [34,35,36] |
6 | 34.7 | β-turmerone | 242 | 219 | 201 | 121 | [34,35,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widmann, A.-K.; Wahl, M.A.; Kammerer, D.R.; Daniels, R. Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction. Pharmaceutics 2022, 14, 1943. https://doi.org/10.3390/pharmaceutics14091943
Widmann A-K, Wahl MA, Kammerer DR, Daniels R. Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction. Pharmaceutics. 2022; 14(9):1943. https://doi.org/10.3390/pharmaceutics14091943
Chicago/Turabian StyleWidmann, Ann-Kathrin, Martin A. Wahl, Dietmar R. Kammerer, and Rolf Daniels. 2022. "Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction" Pharmaceutics 14, no. 9: 1943. https://doi.org/10.3390/pharmaceutics14091943
APA StyleWidmann, A. -K., Wahl, M. A., Kammerer, D. R., & Daniels, R. (2022). Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction. Pharmaceutics, 14(9), 1943. https://doi.org/10.3390/pharmaceutics14091943