The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Animals
2.3. Preparation and Optimization of DTX-Containing Emulsion
2.3.1. Selection of the Ratio of Oil Phase Composition
2.3.2. Preparation of DTX-Containing Emulsion
2.3.3. Determination of Drug Recovery
2.3.4. Accelerated Emulsion Stability
2.4. Drug Release across the Dialysis Membrane Experiment In Vitro
2.5. Molecules Interaction Study
2.6. ADME Analysis
2.7. Toxicity Study
2.8. Antioxidant Activity Studies
2.8.1. The Activity of Scavenging the DPPH Free Radical
2.8.2. The Activity of Scavenging H2O2
2.9. Drug Release Study Ex Vivo
2.10. Lipid Peroxidation Model of Tissue Homogenate Ex Vivo
2.11. Statistical Analysis
3. Results and Discussion
3.1. Formulation Studies
3.1.1. Effects of Shear Speed on Emulsion Micelle and Stability
3.1.2. Effects of Different Ratios of the Oil Phase on Drug Release In Vitro
3.2. Drug Recovery
3.3. Molecular Interaction Analysis between DTX and Excipients
3.4. ADME Analysis and Skin Toxicity Study
3.5. Ex Vivo Release Study
3.6. In Vitro Antioxidant Activity Assays
3.6.1. In Vitro DPPH and H2O2 Scavenging Assays for DTX
3.6.2. Comparison of Antioxidant Activity of DTX and DTX-Containing Emulsion
3.7. Lipid Peroxidation Study of DTX and DTX-Containing Emulsion in Different Tissue Homogenates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denis, J.N.; Greene, A.E.; Guenard, D.; Gueritte-Voegelein, F.; Mangatal, L.; Potier, P. Highly efficient, practical approach to natural taxol. J. Am. Chem. Soc. 1988, 110, 5917–5919. [Google Scholar] [CrossRef]
- Mangatal, L.; Adeline, M.-T.; Guénard, D.; Guéritte-Voegelein, F.; Potier, P. Application of the vicinal oxyamination reaction with asymmetric induction to the hemisynthesis of taxol and analogues. Tetrahedron 1989, 45, 4177–4190. [Google Scholar] [CrossRef]
- Jain, S.; Deore, S.V.; Ghadi, R.; Chaudhari, D.; Kuche, K.; Katiyar, S.S. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy. Mater. Sci. Eng. C 2020, 121, 111832. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Li, M.; Li, Y.; Xiong, H.; Jiang, D.; Li, L.; Huang, H.; Kang, Y.; Pang, J. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy. Mater. Sci. Eng. C 2021, 123, 111956. [Google Scholar] [CrossRef]
- Dogan, S.E.; Mizrak, D.; Alkan, A.; Demirkazik, A. Docetaxel-induced pericardial effusion. J. Oncol. Pharm. Pr. 2016, 23, 389–391. [Google Scholar] [CrossRef]
- Jeon, Y.S.; Kang, S.H.; Lee, S.J. Docetaxel-induced Severe Fluid Retention in a Breast Cancer Patient: A Case Report. J. Breast Cancer 2010, 13, 231–235. [Google Scholar] [CrossRef]
- Bhangoo, R.; Cheng, T.; Petersen, M.; Thorpe, C.; DeWees, T.; Anderson, J.; Vargas, C.; Patel, S.; Halyard, M.; Schild, S.; et al. Radiation recall dermatitis: A review of the literature. Semin. Oncol. 2022, 49, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Yoon, H.Y.; Koo, H.; Ko, S.-H.; Shim, J.-S.; Lee, J.-H.; Kim, K.; Kwon, I.C.; Kim, D.-D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 2011, 32, 7181–7190. [Google Scholar] [CrossRef]
- Agrawal, P.; Singh, R.P.; Sonali; Kumari, L.; Sharma, G.; Koch, B.; Rajesh, C.V.; Mehata, A.K.; Singh, S.; Pandey, B.L.; et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater. Sci. Eng. C 2017, 74, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, C.; Yang, M.; Pan, X.; Hu, J. Docetaxel-loaded Redox-Sensitive Nanoparticles Self-assembling from Poly(Caprolactone) Conjugates with Disulfide-linked Poly(Ethylene Glycol). J. Biomater. Sci. Polym. Ed. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aldawsari, H.M.; Singh, S.; Alhakamy, N.A.; Bakhaidar, R.B.; Halwani, A.A.; Sreeharsha, N.; Badr-Eldin, S.M. Adenosine Conjugated Docetaxel Nanoparticles—Proof of Concept Studies for Non-Small Cell Lung Cancer. Pharmaceuticals 2022, 15, 544. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, J.; Cai, Q.; Fan, S.; Xu, Q.; Zang, J.; Yang, H.; Yu, W.; Li, Z.; Zhang, Z. Acetic acid transporter-mediated, oral, multifunctional polymer liposomes for oral delivery of docetaxel. Colloids Surfaces B Biointerfaces 2020, 198, 111499. [Google Scholar] [CrossRef]
- Immordino, M.L.; Brusa, P.; Arpicco, S.; Stella, B.; Dosio, F.; Cattel, L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J. Control. Release 2003, 91, 417–429. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Q.; Gan, T.; Fang, Y.; Yue, P.; Sun, Y.; Jin, Y.; Feng, J.; Tu, L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021, 26, 4481. [Google Scholar] [CrossRef]
- Repp, L.; Unterberger, C.J.; Ye, Z.; Feltenberger, J.B.; Swanson, S.M.; Marker, P.C.; Kwon, G.S. Oligo(Lactic Acid)8-Docetaxel Prodrug-Loaded PEG-b-PLA Micelles for Prostate Cancer. Nanomaterials 2021, 11, 2745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Su, M.; Lin, X.; Luo, Y.; He, H.; Cai, C.; Tang, X. Evaluation of Docetaxel-Loaded Intravenous Lipid Emulsion: Pharmacokinetics, Tissue Distribution, Antitumor Activity, Safety and Toxicity. Pharm. Res. 2010, 27, 1687–1702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, M.; Yang, R.; Zhang, D.; Guan, J.; Yu, J.; Yang, B.; Zhang, H.; Zhang, S.; Liu, D.; et al. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int. J. Pharm. 2018, 546, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kilfoyle, B.E.; Sheihet, L.; Zhang, Z.; Laohoo, M.; Kohn, J.; Michniak-Kohn, B.B. Development of paclitaxel-TyroSpheres for topical skin treatment. J. Control. Release 2012, 163, 18–24. [Google Scholar] [CrossRef]
- Yin, X.; Cao, X.; Li, J.; Cheng, X.; Cheng, G.; Zou, M.; Piao, H. A Novel Surfactant-Free O/O Paclitaxel Ointment for the Topical Treatment of Psoriasis. AAPS PharmSciTech 2019, 20, 212. [Google Scholar] [CrossRef]
- Tampucci, S.; Carpi, S.; Digiacomo, M.; Polini, B.; Fogli, S.; Burgalassi, S.; Macchia, M.; Nieri, P.; Manera, C.; Monti, D. Diclofenac-Derived Hybrids for Treatment of Actinic Keratosis and Squamous Cell Carcinoma. Molecules 2019, 24, 1793. [Google Scholar] [CrossRef] [Green Version]
- Tampucci, S.; Guazzelli, L.; Burgalassi, S.; Carpi, S.; Chetoni, P.; Mezzetta, A.; Nieri, P.; Polini, B.; Pomelli, C.S.; Terreni, E.; et al. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020, 12, 1078. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Sun, J.; Liu, K.; Liu, X.; He, Z. Preparation and Characterization of a Submicron Lipid Emulsion of Docetaxel: Submicron Lipid Emulsion of Docetaxel. Drug Dev. Ind. Pharm. 2008, 34, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-H.; Wang, M.-T.; Chen, Y.-H.; Chen, Y.-Y.; Wang, C.-H. Docetaxel extravasation results in significantly delayed and relapsed skin injury: A case report. Oncol. Lett. 2014, 7, 1497–1498. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, R.; Jiang, H.; Zhang, H.; Luo, C. Computer-Aided Drug Design in Epigenetics. Front. Chem. 2018, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Ain, Q.U.; Batool, M.; Choi, S. TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules 2020, 25, 627. [Google Scholar] [CrossRef]
- Repetto, M.G.; Ferrarotti, N.F.; Boveris, A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch. Toxicol. 2009, 84, 255–262. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Arch. Surg. 2006, 391, 499–510. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y. Study on antioxidant and antitumor activities of Taxus Chinensis extract. J. Guangxi Norm. Univ. 2016, 34, 55–59. [Google Scholar]
- Lee, P.-E.; Choo, W.-S. Characterization of flaxseed oil emulsions. J. Food Sci. Technol. 2014, 52, 4378–4386. [Google Scholar] [CrossRef]
- Yousef, R.G.; Ibrahim, A.; Khalifa, M.M.; Eldehna, W.M.; Gobaara, I.M.M.; Mehany, A.B.M.; Elkaeed, E.B.; Alsfouk, A.A.; Metwaly, A.M.; Eissa, I.H. Discovery of new nicotinamides as apoptotic VEGFR-2 inhibitors: Virtual screening, synthesis, anti-proliferative, immunomodulatory, ADMET, toxicity, and molecular dynamic simulation studies. J. Enzym. Inhib. Med. Chem. 2022, 37, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Das, T.; Awasthi, M.; Pandey, V.P.; Pandey, B.; Dwivedi, U.N. DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation. Biotechnol. Appl. Biochem. 2015, 63, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I.; Bursal, E.; Şehitoğlu, M.H.; Bilsel, M.; Gören, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 48, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Xia, H.; Cheng, Z.; Cheng, Y.; Xu, Y. Investigating the passage of tetramethylpyrazine-loaded liposomes across blood-brain barrier models in vitro and ex vivo. Mater. Sci. Eng. C 2016, 69, 1010–1017. [Google Scholar] [CrossRef]
- Bathara, M.; Date, T.; Chaudhari, D.; Ghadi, R.; Kuche, K.; Jain, S. Exploring the Promising Potential of High Permeation Vesicle-Mediated Localized Transdermal Delivery of Docetaxel in Breast Cancer To Overcome the Limitations of Systemic Chemotherapy. Mol. Pharm. 2020, 17, 2473–2486. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, X.; Wu, Y.; Liu, C.; Xia, H.; Cheng, X.; Cheng, Y.; Xia, Y.; Wang, Y. In Vitro Evaluation of Kaempferol-Loaded Hydrogel as pH-Sensitive Drug Delivery Systems. Polymers 2022, 14, 3205. [Google Scholar] [CrossRef]
- Eze, J.I.; Anene, B.M.; Chukwu, C.C. Determination of serum and organ malondialdehyde (MDA) concentration, a lipid peroxidation index, in Trypanosoma brucei-infected rats. Comp. Clin. Pathol. 2008, 17, 67–72. [Google Scholar] [CrossRef]
- Mira, I.Z.N.; Tyrode, E.; Marquez, L.; Pena, A.A.; Pizzino, A.; Salager, J. Emulsion catastrophic inversion from abnormal to normal morphology. 2. Effect of the stirring intensity on the dynamic inversion frontier. Ind. Eng. Chem. Res. 2003, 42, 57–61. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, L.; Zhang, C.; Song, C.; Wang, C.; Zhang, M.; Xie, Y.; Schaefer, H.F. Conformers, properties, and docking mechanism of the anticancer drug docetaxel: DFT and molecular dynamics studies. J. Comput. Chem. 2018, 39, 889–900. [Google Scholar] [CrossRef]
- Fang, Q.-Q.; Wang, X.-F.; Zhao, W.-Y.; Shi, B.-H.; Lou, D.; Chen, C.-Y.; Zhang, M.-X.; Wang, X.; Ma, L.; Tan, W.-Q. Development of a Chitosan–Vaseline Gauze Dressing with Wound-Healing Properties in Murine Models. Am. J. Trop. Med. Hyg. 2020, 102, 468–475. [Google Scholar] [CrossRef]
- Ren, G.; Liu, D.; Guo, W.; Wang, M.; Wu, C.; Guo, M.; Ai, X.; Wang, Y.; He, Z. Docetaxel prodrug liposomes for tumor therapy: Characterization, in vitro and in vivo evaluation. Drug Deliv. 2016, 23, 1272–1281. [Google Scholar] [CrossRef]
- Jacinto, T.A.; Oliveira, B.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Ciprofloxacin-Loaded Zein/Hyaluronic Acid Nanoparticles for Ocular Mucosa Delivery. Pharmaceutics 2022, 14, 1557. [Google Scholar] [CrossRef]
- Pailla, S.R.; Sampathi, S.; Junnuthula, V.; Maddukuri, S.; Dodoala, S.; Dyawanapelly, S. Brain-Targeted Intranasal Delivery of Zotepine Microemulsion: Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022, 14, 978. [Google Scholar] [CrossRef]
- Sonaje, K.; Tyagi, V.; Chen, Y.; Kalia, Y.N. Iontosomes: Electroresponsive Liposomes for Topical Iontophoretic Delivery of Chemotherapeutics to the Buccal Mucosa. Pharmaceutics 2021, 13, 88. [Google Scholar] [CrossRef]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, Y.; Cheng, Z.; Liu, X.; Yi, X. Free Radical Scavenging Activities of the Extracts from Taxus chinensis var. mairei. Asian J. Chem. 2013, 25, 6213–6215. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, X.; Xu, J.; Liu, C.; Huang, F.; Huang, Q.; Yang, J. Effect of Flaxseed Oil Fortified with Vitamin E and Phytosterols on Antioxidant Defense Capacities and Lipids Profile in Rats. J. Food Sci. 2012, 77, H135–H140. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R.; Angeli, J.P.F.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Hassannia, B.; Vandenabeele, P.; Berghe, T.V. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.D.; Verweij, J.; Cusatis, G.A.; Van Schaik, R.H.; Marsh, S.; Orwick, S.J.; Franke, R.M.; Hu, S.; Schuetz, E.G.; Lamba, V.; et al. Pharmacogenetic Pathway Analysis of Docetaxel Elimination. Clin. Pharmacol. Ther. 2008, 85, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Joo, H.-G. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death. J. Veter- Sci. 2016, 17, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xu, W.; Guan, R.; Wang, Y.; Wu, J.; Zhai, L.; Chen, G.; Hu, S. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model. Int. Immunopharmacol. 2016, 38, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kodumudi, K.N.; Woan, K.; Gilvary, D.L.; Sahakian, E.; Wei, S.; Djeu, J.Y. A Novel Chemoimmunomodulating Property of Docetaxel: Suppression of Myeloid-Derived Suppressor Cells in Tumor Bearers. Clin. Cancer Res. 2010, 16, 4583–4594. [Google Scholar] [CrossRef]
- Varbiro, G.; Veres, B.; Gallyas, F., Jr.; Sumegi, B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free. Radic. Biol. Med. 2001, 31, 548–558. [Google Scholar] [CrossRef]
- Pieniążek, A.; Czepas, J.; Piasecka-Zelga, J.; Gwoździński, K.; Koceva-Chyła, A. Oxidative stress induced in rat liver by anticancer drugs doxorubicin, paclitaxel and docetaxel. Adv. Med Sci. 2013, 58, 104–111. [Google Scholar] [CrossRef]
- Ray, S.; Mondal, S.; Ray, S.D.; Roy, P.P. Role of antioxidants on docetaxel-induced in vitro lipid peroxidation using malondialdehyde as model marker: An experimental and in silico approach. Med. Chem. Res. 2014, 23, 4436–4446. [Google Scholar] [CrossRef]
- Hadad, S.; Goli, S.A.H. Improving Oxidative Stability of Flaxseed Oil by Encapsulation in Electrospun Flaxseed Mucilage Nanofiber. Food Bioprocess Technol. 2019, 12, 829–838. [Google Scholar] [CrossRef]
Formulation | DTX (mL) | Oil Phase | Water Phase | ||||
---|---|---|---|---|---|---|---|
Stearic Acid (g) | Vaseline (g) | Flaxseed Oil (g) | SDS (g) | Glycerol (g) | PBS | ||
DTX (1:1) | 1.0 | 2.5 | 2.5 | - | 0.1 | 1.5 | to 10 mL |
DTX (2:3) | 1.0 | 1.0 | 1.5 | 0.3 | 0.1 | 1.5 |
Component | BBB Level a | Solubility Level b | Absorption Level c | CYP2D6 Prediction d | PPB Prediction e |
---|---|---|---|---|---|
Docetaxel | 4 | 2 | 3 | NIN | √ |
Stearic acid | 4 | 2 | 0 | NIN | √ |
Vaseline | 0 | 2 | 0 | NIN | √ |
Flaxseed oil | 0 | 2 | 0 | NIN | √ |
SDS | 1 | 3 | 0 | NIN | √ |
Glycerol | 4 | 4 | 1 | NIN | × |
Component | Skin Sensitization | Skin Irritancy |
---|---|---|
Stearic acid | None | Moderate |
Vaseline | Strong | Mild |
Flaxseed oil | None | Moderate |
Glycerol | None | Mild |
SDS | None | Mild |
Group | Zero-Order | First-Order | Higuchi | Hixson–Crowell | Koresmeyer–Peppas |
---|---|---|---|---|---|
DTX | Q = 0.0235 t + 11.427 R = 0.7665 | Q = 81.5433(1 − e−0.0016 t) R = 0.9881 | Q = 1.5584 t1/2 + 2.8141 R = 0.9569 | Q = 100 [1 − (1 − 0.00029 t)3] R = 0.9096 | Q = 0.3045 t0.4132 R = 0.9689 |
DTX/O | Q = 0.0126 t + 4.073 R = 0.6611 | Q = 39.0424(1 − e−0.0027 t) R = 0.9879 | Q = 0.9384 t1/2 − 0.7333 R = 0.9181 | Q = 100 [1 − (1 − 0.00013 t)3] R = 0.6984 | Q = 1.1403 t0.4642 R = 0.9238 |
DTX/W | Q = 0.0169 t + 5.688 R = 0.9922 | Q = 148.7101(1 − e−0.0002 t) R = 0.9276 | Q = 1.001 t1/2 + 2.5097 R = 0.9504 | Q = 100 [1 − (1 − 0.00011 t)3] R = 0.6729 | Q = 1.9069 t0.4262 R = 0.9275 |
Group | Inhibition Rate | |
---|---|---|
Liver | Spleen | |
50 μg/mL DTX | - | 43.90 ± 2.38% b |
100 μg/mL DTX | 7.69 ± 0.72% b | 52.79 ± 1.80% ab |
200 μg/mL DTX | 21.98 ± 1.18% a | 48.33 ± 1.72% ab |
500 μg/mL DTX | 20.11 ± 1.13% a | 57.0.2 ± 1.51% a |
1000 μg/mL DTX | 26.77 ± 1.38% a | 50.58 ± 1.11% ab |
DTX/W | 26.21 ± 4.21% a | 56.59 ± 6.71% a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, M.; Li, Y.; Xia, H.; Cheng, Y.; Liu, C.; Xia, Y.; Wang, Y.; Yue, Y.; Cheng, X.; et al. The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics 2022, 14, 1993. https://doi.org/10.3390/pharmaceutics14101993
Wu Y, Wang M, Li Y, Xia H, Cheng Y, Liu C, Xia Y, Wang Y, Yue Y, Cheng X, et al. The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics. 2022; 14(10):1993. https://doi.org/10.3390/pharmaceutics14101993
Chicago/Turabian StyleWu, Yifang, Mengmeng Wang, Yufan Li, Hongmei Xia, Yongfeng Cheng, Chang Liu, Ying Xia, Yu Wang, Yan Yue, Xiaoman Cheng, and et al. 2022. "The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation" Pharmaceutics 14, no. 10: 1993. https://doi.org/10.3390/pharmaceutics14101993
APA StyleWu, Y., Wang, M., Li, Y., Xia, H., Cheng, Y., Liu, C., Xia, Y., Wang, Y., Yue, Y., Cheng, X., & Xie, Z. (2022). The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics, 14(10), 1993. https://doi.org/10.3390/pharmaceutics14101993