In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Senna spp. Extracts
2.2. Chemical Characterization of the Crude Extracts
2.3. Light Sources
2.4. Bacterial Strains and Culture Conditions
2.5. Antimicrobial Photodynamic Therapy (aPDT) Using Microbial Suspensions
2.6. Antimicrobial Photodynamic Therapy (aPDT) in Biofilm
2.7. Reactive Oxygen Species (ROS) Detection—Cell-Free System (Solution)
2.8. Cytotoxicity Assessment
2.9. Statistical Analysis
3. Results
3.1. Chemical Characterization of the Crude Extracts
3.2. Visible Light Absorption Spectrum
3.3. Antimicrobial Photodynamic Therapy (aPDT) Using Microbial Suspensions
3.4. Antimicrobial Photodynamic Therapy (aPDT) in Biofilm
3.5. ROS Detection
3.6. Cytotoxicity Assessment
3.7. Correlation Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Qin, R.; Zaat, S.A.J.; Breukink, E.; Heger, M. Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Transl. Res. 2015, 1, 140–167. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. London: Review on Antimicrobial Resistance. 2016. Available online: https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf (accessed on 20 July 2020).
- Ceci, M.; Delpech, G.; Sparo, M.; Mezzina, V.; Bruni, S.S.; Baldaccini, B. Clinical and microbiological features of bacteremia caused by Enterococcus faecalis. J. Infect. Dev. Ctries. 2015, 9, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Gangcuangco, L.M.; Alejandria, M.; Henson, K.E.; Alfaraz, L.; Ata, R.M.; Lopez, M.; Saniel, M. Prevalence and risk factors for trimethoprim-sulfamethoxazole-resistant Escherichia coli among women with acute uncomplicated urinary tract infection in a developing country. Int. J. Infect. Dis. 2015, 34, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilakamarthi, U.; Giribabu, L. Photodynamic Therapy: Past, Present and Future. Chem. Rec. 2017, 17, 775–802. [Google Scholar] [CrossRef]
- Konopka, K.; Goslinski, T. Photodynamic Therapy in Dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siewert, B.; Stuppner, H. The photoactivity of natural products—An overlooked potential of phytomedicines? Phytomedicine 2019, 60, 152985. [Google Scholar] [CrossRef]
- Nakamura, K.; Ishiyama, K.; Sheng, H.; Ikai, H.; Kanno, T.; Niwano, Y. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria. J. Agric. Food Chem. 2015, 63, 7707–7713. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Li, X.; Liu, X.; Han, X. Recent Advances in Developing Photosensitizers for Photodynamic Cancer Therapy. Comb. Chem. High Throughput Screen. 2017, 20, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Bueno, P.C.P.; Pereira, F.M.V.; Torres, R.B.; Cavalheiro, A.J. Development of a comprehensive method for analyzing clerodane-type diterpenes and phenolic compounds from Casearia sylvestris Swartz (Salicaceae) based on ultra high performance liquid chromatography combined with chemometric tools. J. Sep. Sci. 2015, 38, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.M.; Lorenzón, E.N.; Santos-Filho, N.A.; Zago, L.H.P.; Uliana, M.P.; de Oliveira, K.T.; Cilli, E.M.; Fontana, C.R. Antimicrobial Photodynamic therapy enhanced by the peptide aurein 1.2. Sci. Rep. 2018, 8, 4212. [Google Scholar] [CrossRef] [Green Version]
- Fontana, C.R.; Abernethy, A.D.; Som, S.; Ruggiero, K.; Doucette, S.; Marcantonio, R.A.; Boussios, C.I.; Kent, R.; Goodson, J.M.; Tanner, A.C.R.; et al. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 2009, 44, 751–759. [Google Scholar] [CrossRef]
- Kathirvel, P.; Ravi, S. Chemical composition of the essential oil from basil(Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Nat. Prod. Res. 2012, 26, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Khurm, M.; Wang, X.; Zhang, H.; Hussain, S.N.; Qaisar, M.N.; Hayat, K.; Saqib, F.; Zhang, X.; Zhan, G.; Guo, Z. The genus Cassia, L.: Ethnopharmacological and phytochemical overview. Phytother. Res. 2021, 35, 2336–2385. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed]
- Kashef, N.; Hamblin, M.R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist. Updat. 2017, 31, 31–42. [Google Scholar] [CrossRef]
- St Denis, T.G.; Hamblin, M.R. Supramolecular drug delivery platforms in photodynamic therapy. Appl. Nanosci. Photomed. 2015, 22, 465–485. [Google Scholar]
- Freires, I.A.; Denny, C.; Benso, B.; de Alencar, S.M.; Rosalen, P.L. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.B.; Ferrisse, T.M.; Marques, R.S.; de Annunzio, S.R.; Brighenti, F.L.; Fontana, C.R. Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 3585. [Google Scholar] [CrossRef] [PubMed]
- de Annunzio, S.R.; de Freitas, L.M.; Blanco, A.L.; da Costa, M.M.; Carmona-Vargas, C.C.; de Oliveira, K.T.; Fontana, C.R. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. J. Photochem. Photobiol. B 2018, 178, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agel, M.R.; Baghdan, E.; Pinnapireddy, S.R.; Lehmann, J.; Schäfer, J.; Bakowsky, U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf. B Biointerfaces 2019, 178, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.R.; Lee, E.S.; Kang, S.M.; Chung, K.H.; Kim, B.I. Effect of antimicrobial photodynamic therapy with Chlorella andCurcuma extract on Streptococcus mutans biofilms. Photodiagn. Photodyn. Ther. 2021, 35, 102411. [Google Scholar] [CrossRef]
- Oktavia, L.; Mulyani, I.; Suendo, V. Investigation of Chlorophyl-a Derived Compounds as Photosensitizer for PhotodynamicInactivation. Bull. Chem. React. Eng. Catal. 2021, 16, 161–169. [Google Scholar] [CrossRef]
- Mittal, S.; Roy, S.; Srivastava, J. Fungicidal response of a novel natural photosensitizer (Beta vulgaris) on Candida albicans withlow-power laser radiation. Laser Phys. 2013, 23, 055606. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Zhang, H.; Zhang, J.; Sun, H. Effect of 5-aminolevulinic acid photodynamic therapy on Candida albicans biofilms: An in vitro study. Photodiagnosis Photodyn. Ther. 2016, 15, 40–45. [Google Scholar] [CrossRef]
- Ma, W.; Liu, C.; Li, J.; Hao, M.; Ji, Y.; Zeng, X. The effects of aloe emodin-mediated antimicrobial photodynamic therapy ondrug-sensitive and resistant Candida albicans. Photochem. Photobiol. Sci. 2020, 19, 485–494. [Google Scholar] [CrossRef]
- Su, R.; Yan, H.; Li, P.; Zhang, B.; Zhang, Y.; Su, W. Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Photodiagnosis Photodyn. Ther. 2021, 35, 102417. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Chang, K.-C.; Chen, L.-Y.; Hu, A. Low-dose blue light irradiation enhances the antimicrobial activities of curcumin against Propionibacterium acnes. J. Photochem. Photobiol. B Biol. 2018, 189, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Pileggi, G.; Wataha, J.C.; Girard, M.; Grad, I.; Schrenzel, J.; Lange, N.; Bouillaguet, S. Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagnosis Photodyn. Ther. 2013, 10, 134–140. [Google Scholar] [CrossRef]
- Sperandio, F.F.; Huang, Y.Y.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria. Recent Pat. Anti-Infect. Drug Discov. 2013, 8, 108–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.J.; Okoli, I.; Tegos, G.P.; Holson, E.B.; Wagner, F.F.; Hamblin, M.R.; Mylonakis, E. Characterization of Plant-Derived Saponin Natural Products against Candida albicans. ACS Chem. Biol. 2010, 5, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formiga Filho, A.L.; Carneiro, V.S.; Souza, E.A.; Santos, R.L.; Catão, M.H.; Medeiros, A.C. In Vitro Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of Schinopsis brasiliensis Engl.: New Therapeutic Perspectives. Photomed Laser Surg. 2015, 33, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Nardini, E.F.; Almeida, T.S.; Yoshimura, T.M.; Ribeiro, M.S.; Cardoso, R.J.; Garcez, A.S. The potential of commercially available phytotherapeutic compounds as new photosensitizers for dental antimicrobial PDT: A photochemical and photobiological in vitro study. Photodiagnosis Photodyn. Ther. 2019, 27, 248–254. [Google Scholar] [CrossRef]
- Ramage, G.; Walle, K.V.; Wickes, B.L.; Lo’pez-Ribot, J.L. Biofilm formation by Candida dubliniensis. J. Clin. Microbiol. 2001, 39, 3234–3240. [Google Scholar] [CrossRef] [Green Version]
- Chandra, J.; Mukherjee, P.; Leidich, S.; Faddoul, F.; Hoyer, L.; Douglas, L.; Ghannoum, M. Antifungal Resistance of Candidal Biofilms Formed on Denture Acrylic in vitro. J. Dent. Res. 2001, 80, 903–908. [Google Scholar] [CrossRef]
- Farooq, M.A.; Li, L.; Parveen, A.; Wang, B. Globular protein stabilized nanoparticles for delivery of disulfiram: Fabrication, characterization, in vitro toxicity, and cellular uptake. RSC Adv. 2019, 10, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.A.; Xu, L.; Aquib, M.; Ahsan, A.; Baig, M.M.F.A.; Wang, B. Denatured food protein-coated nanosuspension: A promising approach for anticancer delivery of hydrophobic drug. J. Mol. Liq. 2020, 303, 112690. [Google Scholar] [CrossRef]
- Farooq, M.A.; Xinyu, H.; Jabeen, A.; Ahsan, A.; Seidu, T.A.; Kutoka, P.T.; Wang, B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surfaces B Biointerfaces 2020, 199, 111523. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Jabeen, A.; Wang, B. Formulation, optimization, and characterization of whey protein isolate nanocrystals for celecoxib delivery. J. Microencapsul. 2021, 38, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Ferrisse, T.M.; Dias, L.M.; de Oliveira, A.B.; Jordão, C.C.; Mima, E.G.D.O.; Pavarina, A.C. Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis. Pharmaceutics 2022, 14, 2050. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.M.; Ferrisse, T.M.; Medeiros, K.S.; Cilli, E.M.; Pavarina, A.C. Use of Photodynamic Therapy Associated with Antimicrobial Peptides for Bacterial Control: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 3226. [Google Scholar] [CrossRef]
- Drzeżdżon, J.; Jacewicz, D.; Chmurzyński, L. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species—Consequences for plants and humans. Environ. Int. 2018, 119, 133–151. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Addition and Correction to Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2018, 118, 2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, L.S.; de Annunzio, S.R.; de Freitas, L.M.; Dantas, L.O.; de Boni, L.; Donatoni, M.C.; de Oliveira, K.T.; Fontana, C.R. Influence of light intensity and irradiation mode on methylene blue, chlorin-e6 and curcumin-mediated photodynamic therapy against Enterococcus faecalis. Photodiagnosis Photodyn. Ther. 2020, 31, 101925. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.M.S.; Silva, J.G.A.; Silva, M.G.V. Quimiodiversidade e Propriedades Biofarmacológicas de Espécies de Senna Nativas do Nordeste do Brasil. Rev. Virtual. Quim. 2016, 8, 169–195. [Google Scholar]
- Rajendran, M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn. Ther. 2016, 13, 175–187. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://nhiso.com/wp-content/uploads/2018/05/ISO-10993-5-2009.pdf (accessed on 20 April 2021).
- Delben, J.A.; Zago, C.E.; Tyhovych, N.; Duarte, S.; Vergani, C.E. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS ONE 2016, 11, e0155427. [Google Scholar] [CrossRef] [Green Version]
- Svobodová, L.; Rucki, M.; Vlkova, A.; Kejlova, K.; Jírová, D.; Dvorakova, M.; Kolarova, H.; Kandárová, H.; Pôbiš, P.; Heinonen, T.; et al. Sensitization potential of medical devices detected by in vitro and in vivo methods. ALTEX 2021, 38, 419–430. [Google Scholar] [CrossRef] [PubMed]
Suspension | |||||
---|---|---|---|---|---|
Experimental Group | Plant Material Concentrations | Light Dose | Intensity | Pre-Irradiation Time | Irradiation Time in Fractional Mode |
Negative control | 0 | 0 | 0 | 0 | 0 |
Light | 0 | 80 J/cm2 | 155 mW/cm2 | 0 | 0 |
Plant material | 0.05 mg/mL | 0 | 0 | 5 m | 18 m |
PDT | 0.05 mg/mL | 80 J/cm2 | 155 mW/cm2 | 5 m | 18 m |
Vehicle control without light exposure | N/A | 0 | 0 | 0 | 0 |
Vehicle control with light exposure | N/A | 80 J/cm2 | 155 mW/cm2 | 5 m | 18 m |
Biofilm | |||||
Negative control | 0 | 0 | 0 | 0 | 0 |
Light | 0 | 139 J/cm2 | 155 mW/cm2 | 0 | 30 m |
Plant material | 0.05 mg/mL; 0.50 mg/mL | 0 | 0 | 15 m | 30 m |
PDT | 0.05 mg/mL; 0.50 mg/mL | 139 J/cm2 | 155 mW/cm2 | 15 m | 30 m |
Vehicle control without light exposure | N/A | 0 | 0 | 0 | 0 |
Vehicle control with light exposure | N/A | 139 J/cm2 | 155 mW/cm2 | 15 m | 30 m |
# | Rt (min) | MF | MMcal | [M+H]+cal | [M+H]+Exp | Error | [M+Na]+cal | [M+Na]+Exp | Error | [M-H]−cal | [M-H]−Exp | Error | [Ag+H]+cal | [Ag+H]+Exp | Error | [Ag-H]−cal | [Ag-H]−Exp | Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22.1 | C27H32O15 | 596.1744 | 597.1816 | 597.1806 | 1.7 | 619.1636 | 619.1625 | 1.7 | 595.1671 | 595.1655 | 2.7 | 273.0758 | 273.0764 | −2.0 | 271.0613 | no | |
2 | 22.2 | C26H34O14 | 570.1951 | 571.2024 | no | 593.1843 | 593.1827 | 2.7 | 569.1878 | 569.1856 | 3.9 | 247.0966 | 247.0949 | 6.8 | 245.0820 | no | ||
3 | 22.5 | C27H30O14 | 578.1638 | 579.1711 | 579.1700 | 1.8 | 601.1530 | 601.1519 | 1.8 | 577.1565 | 577.1541 | 4.2 | 255.0653 | 255.0662 | −3.7 | 253.0507 | 253.0511 | −1.6 |
4 a | 25.1 | C27H36O15 | 584.2108 | 585.2180 | 585.2172 | 1.4 | 607.2000 | 607.2015 | −2.5 | 583.2035 | 583.2029 | 1.0 | 261.1122 | 261.1137 | −5.6 | 259.0977 | 259.0970 | 2.6 |
5 a | 25.6 | C28H34O15 | 610.1900 | 611.1973 | 611.1957 | 2.6 | 633.1792 | 633.1794 | −0.2 | 609.1827 | 609.1829 | −0.3 | 287.0915 | 287.0929 | −4.9 | 285.0769 | 285.0782 | −4.4 |
6 | 35.0 | C27H32O15 | 402.0952 | 403.1025 | no | 425.0844 | no | 401.0869 | 401.0869 | 2.6 | 271.0602 | no | 269.0456 | 269.0443 | 4.9 | |||
7 | 35.9 | C15H8O9 | 284.0322 | 285.0394 | no | 307.0214 | no | 283.0249 | 283.0258 | −3.3 | ||||||||
8 b | 40.9 | C18H14O7 | 342.0741 | 343.0813 | no | 365.0633 | no | 341.0668 | no | |||||||||
9 c | 41.7 | nd |
Source | df | SS | MS | F | p-Value | Partial Eta-Squared |
---|---|---|---|---|---|---|
C. albicans | ||||||
Natural | 2 | 41.962 | 8.392 | 40,454.530 | <0.0001 | 0.999 |
Light | 4 | 807.071 | 201.768 | 972,589.111 | <0.0001 | 1.000 |
Natural * Light | 8 | 236.269 | 11.813 | 56,944.944 | <0.0001 | 1.000 |
C. acnes | ||||||
Natural | 2 | 363.708 | 90.927 | 96,920.627 | <0.0001 | 0.999 |
Light | 4 | 206.363 | 34.394 | 36,660.921 | <0.0001 | 0.999 |
Natural * Light | 8 | 617.759 | 25.740 | 27,436.665 | <0.0001 | 1.000 |
E. coli | ||||||
Natural | 2 | 83.123 | 16.625 | 67,991.599 | <0.0001 | 0.999 |
Light | 4 | 128.007 | 32.002 | 130,881.197 | <0.0001 | 1.000 |
Natural * Light | 8 | 443.141 | 22.157 | 90,618.118 | <0.0001 | 1.000 |
S. aureus | ||||||
Natural | 2 | 53.926 | 10.785 | 33,985.620 | <0.0001 | 0.999 |
Light | 4 | 1193.569 | 298.392 | 940,281.907 | <0.0001 | 0.999 |
Natural * Light | 8 | 270.422 | 13.521 | 42,607.197 | <0.0001 | 1.000 |
S. mutans | ||||||
Natural | 2 | 98.826 | 19.765 | 67,209.937 | <0.0001 | 0.999 |
Light | 4 | 458.872 | 114.718 | 390,090.696 | <0.0001 | 1.000 |
Natural * Light | 8 | 534.762 | 26.738 | 90,921.034 | <0.0001 | 1.000 |
Plant Extract at 0.05 mg/mL | Plant Extract at 0.5 mg/mL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Source | df | SS | MS | F | p-Value | df | SS | MS | F | p-Value |
C. albicans | ||||||||||
Natural | 2 | 0.001411 | 0.0007054 | 0.9024 | 0.4087 | 2 | <0.0001 | <0.0001 | 0.007861 | >0.9999 |
Light | 4 | 0.007407 | 0.00009259 | 1.184 | 0.3154 | 4 | <0.0001 | <0.0001 | 0.01032 | >0.9999 |
Natural * Light | 8 | 1320 | 329.9 | 422,019 | <0.0001 | 8 | 1310 | 327.5 | 399777 | <0.0001 |
C. acnes | ||||||||||
Natural | 2 | 0.0002585 | 0.0001293 | 0.09416 | 0.9102 | 2 | 0.9551 | 0.4775 | 266.3 | <0.0001 |
Light | 4 | 0.08292 | 0.02073 | 15.10 | <0.0001 | 4 | 8.881 | 2.220 | 1238.0 | <0.0001 |
Natural * Light | 8 | 0.03543 | 0.004428 | 3.226 | >0.05 | 8 | 4.433 | 0.5541 | 309.0 | <0.0001 |
E. coli | ||||||||||
Natural | 2 | 0.01247 | 0.003238 | 3.024 | 0.0528 | 2 | 0.003516 | 0.001758 | 1.587 | 0.2094 |
Light | 4 | 0.7337 | 0.1843 | 171.3 | <0.0001 | 4 | 0.4894 | 0.1223 | 110.4 | <0.0001 |
Natural * Light | 8 | 0.01247 | 0.001559 | 1.456 | 0.1823 | 8 | 0.008540 | 0.001068 | 0.9637 | 0.4585 |
S. aureus | ||||||||||
Natural | 2 | 0.01741 | 0.0005750 | 0.5820 | 0.5605 | 2 | 0.03358 | 0.01679 | 12.03 | <0.0001 |
Light | 4 | 0.1198 | 0.02996 | 30.32 | <0.0001 | 4 | 22.56 | 5.640 | 4039.00 | <0.0001 |
Natural * Light | 8 | 0.01741 | 0.002176 | 2.203 | >0.05 | 8 | 0.2952 | 0.03690 | 26.43 | <0.0001 |
S. mutans | ||||||||||
Natural | 2 | 0.5861 | 0.2930 | 327.9 | <0.0001 | 2 | 3.282 | 1.641 | 876.1 | <0.0001 |
Light | 4 | 5.119 | 1.280 | 1432.0 | <0.0001 | 4 | 36.26 | 9.065 | 4840.0 | <0.0001 |
Natural * Light | 8 | 2.950 | 0.3688 | 412.6 | <0.0001 | 8 | 17.79 | 2.223 | 1187.0 | <0.0001 |
Source | df | SS | MS | F | p-Value | Partial Eta-Squared |
---|---|---|---|---|---|---|
Non-light exposed | ||||||
Treatments * Natural | 10 | 348.5 | 34.85 | 0.9697 | 0.4702 | 0.999 |
Treatments | 5 | 197,814 | 39,563 | 1101 | <0.0001 | 1.000 |
Natural | 2 | 597.8 | 298.9 | 8.317 | 0.0003 | 1.000 |
Light exposed | ||||||
Treatments * Natural | 10 | 6559 | 65.59 | 1.717 | 0.0769 | 0.999 |
Treatments | 5 | 168,348 | 33,670 | 881.2 | <0.0001 | 1.000 |
Natural | 2 | 641.9 | 321.0 | 8.400 | 0.0003 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.B.d.; Ferrisse, T.M.; Annunzio, S.R.d.; Franca, M.G.A.; Silva, M.G.d.V.; Cavalheiro, A.J.; Fontana, C.R.; Brighenti, F.L. In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest. Pharmaceutics 2023, 15, 181. https://doi.org/10.3390/pharmaceutics15010181
Oliveira ABd, Ferrisse TM, Annunzio SRd, Franca MGA, Silva MGdV, Cavalheiro AJ, Fontana CR, Brighenti FL. In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest. Pharmaceutics. 2023; 15(1):181. https://doi.org/10.3390/pharmaceutics15010181
Chicago/Turabian StyleOliveira, Analú Barros de, Túlio Morandin Ferrisse, Sarah Raquel de Annunzio, Maria Gleiziane Araújo Franca, Maria Goretti de Vasconcelos Silva, Alberto José Cavalheiro, Carla Raquel Fontana, and Fernanda Lourenção Brighenti. 2023. "In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest" Pharmaceutics 15, no. 1: 181. https://doi.org/10.3390/pharmaceutics15010181
APA StyleOliveira, A. B. d., Ferrisse, T. M., Annunzio, S. R. d., Franca, M. G. A., Silva, M. G. d. V., Cavalheiro, A. J., Fontana, C. R., & Brighenti, F. L. (2023). In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest. Pharmaceutics, 15(1), 181. https://doi.org/10.3390/pharmaceutics15010181