Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. AgBDC MOF Synthesis and Characterization
2.2.1. Synthesis of MOF
2.2.2. MOF Characterization
2.3. MOF Stability Performance
2.3.1. AgBDC MOF Suspension
2.3.2. AgBDC MOF Thin Film
2.4. Bactericidal Activity and Biofilm Inhibition
2.4.1. Microorganism Tests
2.4.2. Inhibition Halo Experiments
2.4.3. Suspension Assay against Planktonic Bacteria
2.4.4. Thin-Film Assay against Sessile E. coli Biofilm
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. AgBDC Stability Suspended in Biological Media
3.3. AgBDC Thin-Film Stability in Biological Media
3.4. Determination of AgBDC Bactericidal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macià, M.D.; Luis, J.; Díez-aguilar, M. Microbiological Diagnosis of Biofilm-Related Infections. Enferm. Infecc. Microbiol. Clin. 2018, 36, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Bordi, C.; de Bentzmann, S. Hacking into Bacterial Biofilms: A New Therapeutic Challenge. Ann. Intensive Care 2011, 1, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habash, M.; Reid, G. Microbial Biofilms: Their Development and Significance for Medical Device-Related Infections. J. Clin. Pharmacol. 1999, 39, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Davies, D. Understanding Biofilm Resistance to Antibacterial Agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS Matrix: The “House of Biofilm Cells. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications. Drug Discov. Today 2016, 21, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121. [Google Scholar] [CrossRef]
- Arenas-Vivo, A.; Horcajada, P. Antimicrobial Metal Organic Frameworks. In Metal Organic Frameworks. Mittal, D.V., Ed.; Central West Publishing: Orange, Australia, 2019; pp. 1–34. ISBN 978-1-925823-57-8. [Google Scholar]
- Rojas, S.; Arenas-vivo, A.; Horcajada, P. Metal-Organic Frameworks: A Novel Platform for Combined Advanced Therapies. Coord. Chem. Rev. 2019, 388, 202–226. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Zirehpour, A.; Rahimpour, A.; Arabi, A.; Gh, M.S.; Soroush, M. Mitigation of Thin Film Composite Membrane Biofouling via Immobilizing Nano-Sized Biocidal Reservoirs in the Membrane Active Layer Mitigation of Thin Film Composite Membrane Biofouling via Immobilizing Nano-Sized Biocidal Reservoirs in the Membrane Active. Environ. Sci. Technol. 2017, 51, 5511–5522. [Google Scholar] [CrossRef]
- Firouzjaei, M.D.; Shamsabadi, A.A.; Aktij, S.A.; Seyedpour, S.F.; Sharifian, M.; Rahimpour, A.; Esfahani, M.R.; Ulbricht, M.; Soroush, M. Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework to Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes. ACS Appl. Mater. Interfaces 2018, 10, 42967–42978. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Rahimpour, A.; Najafpour, G. Facile in-Situ Assembly of Silver-Based MOFs to Surface Functionalization of TFC Membrane: A Novel Approach toward Long-Lasting Biofouling Mitigation. J. Memb. Sci. 2019, 573, 257–269. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Dadashi Firouzjaei, M.; Rahimpour, A.; Zolghadr, E.; Arabi Shamsabadi, A.; Das, P.; Akbari Afkhami, F.; Sadrzadeh, M.; Tiraferri, A.; Elliott, M. Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods. ACS Appl. Mater. Interfaces 2020, 12, 38285–38298. [Google Scholar] [CrossRef]
- Pejman, M.; Firouzjaei, M.D.; Aktij, S.A.; Das, P.; Zolghadr, E.; Jafarian, H.; Shamsabadi, A.A.; Elliott, M.; Esfahani, M.R.; Sangermano, M.; et al. Improved Antifouling and Antibacterial Properties of Forward Osmosis Membranes through Surface Modification with Zwitterions and Silver-Based Metal Organic Frameworks. J. Memb. Sci. 2020, 611, 118352. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, J.; Sun, Y.; Kang, J.; Liu, J.; Wang, Y.; Li, Y.; Zhang, L.; Ning, G. Electrospun Fibrous Mat Based on Silver (I) Metal-Organic Frameworks-Polylactic Acid for Bacterial Killing and Antibiotic-Free Wound Dressing. Chem. Eng. J. 2020, 390, 124523. [Google Scholar] [CrossRef]
- Travlou, N.A.; Algarra, M.; Alcoholado, C.; Cifuentes-Rueda, M.; Labella, A.M.; Lazaro-Martínez, J.M.; Rodríguez-Castellon, E.; Bandosz, T.J. Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal-Organic Framework Composites. ACS Appl. Bio Mater. 2018, 1, 693–707. [Google Scholar] [CrossRef]
- Chu, H.Y.; Fu, H.; Liu, A.; Wang, P.; Cao, Y.L.; Du, A.F.; Wang, C.C. Two Silver-Based Coordination Polymers Constructed from Organic Carboxylate Acids and 4, 4′-Bipyridine-like Bidentate Ligands: Synthesis, Structure, and Antimicrobial Performances. Polyhedron 2020, 188, 114684. [Google Scholar] [CrossRef]
- Pejman, M.; Dadashi Firouzjaei, M.; Aghapour Aktij, S.; Zolghadr, E.; Das, P.; Elliott, M.; Sadrzadeh, M.; Sangermano, M.; Rahimpour, A.; Tiraferri, A. Effective Strategy for UV-Mediated Grafting of Biocidal Ag-MOFs on Polymeric Membranes Aimed at Enhanced Water Ultrafiltration. Chem. Eng. J. 2021, 426, 130704. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Wang, D.; Zheng, Y.; Li, Y.; Meng, W.; Zhang, X.; Du, F.; Lee, S. Ag@MOF-Loaded Chitosan Nanoparticle and Polyvinyl Alcohol/sodium Alginate/chitosan Bilayer Dressing for Wound Healing Applications. Int. J. Biol. Macromol. 2021, 175, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ye, J.; Sun, Y.; Bogale, R.F.; Zhao, L.; Tian, P.; Ning, G. Ligand Effects on the Structural Dimensionality and Antibacterial Activities of Silver-Based Coordination Polymers. Dalton Trans. 2014, 43, 10104–10113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Multiple Topological Isomerism of Three-Connected Networks in Silver-Based Metal-Organoboron Frameworks. Chem. Commun. Camb. 2010, 46, 2608–2610. [Google Scholar] [CrossRef] [PubMed]
- Berchel, M.; Le Gall, T.; Denis, C.; Le Hir, S.; Quentel, F.; Elléouet, C.; Montier, T.; Rueff, J.-M.; Salaün, J.-Y.; Haelters, J.-P.; et al. A Silver-Based Metal–organic Framework Material as a “reservoir” of Bactericidal Metal Ions. New J. Chem. 2011, 35, 1000–1003. [Google Scholar] [CrossRef]
- Jaros, S.W.; Smoleński, P.; Guedes da Silva, M.F.C.; Florek, M.; Król, J.; Staroniewicz, Z.; Pombeiro, A.J.L.; Kirillov, A.M. New Silver BioMOFs Driven by 1,3,5-Triaza-7-Phosphaadamantane-7-Sulfide (PTA=S): Synthesis, Topological Analysis and Antimicrobial Activity. CrystEngComm 2013, 15, 8060–8064. [Google Scholar] [CrossRef]
- Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Feyisa, R.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. Silver Carboxylate Metal – Organic Frameworks with Highly Antibacterial Activity and Biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121. [Google Scholar] [CrossRef]
- Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K.; Rosal, R. Antimicrobial Activity of Cobalt Imidazolate Metal–Organic Frameworks. Chemosphere 2014, 113, 188–192. [Google Scholar] [CrossRef]
- Firouzjaei, M.D.; Shamsabadi, A.A.; Sharifian Gh., M.; Rahimpour, A.; Soroush, M. A Novel Nanocomposite with Superior Antibacterial Activity: A Silver-Based Metal Organic Framework Embellished with Graphene Oxide. Adv. Mater. Interfaces 2018, 5, 1701365. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Arabi Shamsabadi, A.; Khoshhal Salestan, S.; Dadashi Firouzjaei, M.; Sharifian Gh, M.; Rahimpour, A.; Akbari Afkhami, F.; Shirzad Kebria, M.R.; Elliott, M.A.; Tiraferri, A.; et al. Tailoring the Biocidal Activity of Novel Silver-Based Metal Azolate Frameworks. ACS Sustain. Chem. Eng. 2020, 8, 7588–7599. [Google Scholar] [CrossRef]
- Xie, B.P.; Chai, J.W.; Fan, C.; Ouyang, J.H.; Duan, W.J.; Sun, B.; Chen, J.; Yuan, L.X.; Xu, X.Q.; Chen, J.X. Water-Stable Silver-Based Metal-Organic Frameworks of Quaternized Carboxylates and Their Antimicrobial Activity. ACS Appl. Bio Mater. 2020, 3, 8525–8531. [Google Scholar] [CrossRef]
- Pejman, M.; Dadashi Firouzjaei, M.; Aghapour Aktij, S.; Das, P.; Zolghadr, E.; Jafarian, H.; Shamsabadi, A.A.; Elliott, M.; Sadrzadeh, M.; Sangermano, M.; et al. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS Appl. Mater. Interfaces 2020, 12, 36300. [Google Scholar] [CrossRef]
- Nakhaei, M.; Akhbari, K.; Phuruangrat, A. Synthesis and Characterization of Silver and Copper Metal–organic Hybrid Nanomaterials and Their Biological Application. Colloid Polym. Sci. 2021, 229, 773–781. [Google Scholar] [CrossRef]
- Yuan, G.; Tian, Y.; Wang, B.; You, X.; Liao, Y. Mitigation of Membrane Biofouling via Immobilizing Ag-MOFs on Composite Membrane Surface for Extractive Membrane Bioreactor. Water Res. 2022, 209, 117940. [Google Scholar] [CrossRef]
- Zang, Y.; Roberts, T.R.; Batchinsky, A.I.; Reynolds, M.M. Metal-Organic Framework Polymer Coating Inhibits Staphylococcus Aureus Attachment on Medical Circulation Tubing under Static and Dynamic Flow Conditions. ACS Appl. Bio Mater. 2020, 3, 3535–3543. [Google Scholar] [CrossRef]
- Gu, Q.; Albert Ng, T.C.; Sun, Q.; Kotb Elshahawy, A.M.; Lyu, Z.; He, Z.; Zhang, L.; Ng, H.Y.; Zeng, K.; Wang, J. Heterogeneous ZIF-L Membranes with Improved Hydrophilicity and Anti-Bacterial Adhesion for Potential Application in Water Treatment. RSC Adv. 2019, 9, 1591–1601. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, F.; Ren, J.; Qu, X. A Series of MOF/Ce-Based Nanozymes with Dual Enzyme-like Activity Disrupting Biofilms and Hindering Recolonization of Bacteria. Biomaterials 2019, 208, 21–31. [Google Scholar] [CrossRef]
- Qiu, H.; Pu, F.; Liu, Z.; Deng, Q.Q.; Sun, P.; Ren, J.; Qu, X. Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO2-Decorated Metal-Organic Frameworks. Small 2019, 15, 1902522. [Google Scholar] [CrossRef]
- Arenas-Vivo, A.; Amariei, G.; Aguado, S.; Rosal, R.; Horcajada, P. An Ag-Loaded Photoactive Nano-Metal Organic Framework as a Promising Biofilm Treatment. Acta Biomater. 2019, 97, 490–500. [Google Scholar] [CrossRef]
- Sun, D.; Cao, R.; Bi, W.; Weng, J.; Hong, M.; Liang, Y. Syntheses and Characterizations of a Series of Silver-Carboxylate Polymers. Inorg. Chim. Acta 2004, 357, 991–1001. [Google Scholar] [CrossRef]
- Martínez-Pastor, J.C.; Muñoz-Mahamud, E.; Vilchez, F.; García-Ramiro, S.; Bori, G.; Sierra, J.; Martínez, J.A.; Font, L.; Mensa, J.; Soriano, A. Outcome of Acute Prosthetic Joint Infections due to Gram-Negative Bacilli Treated with Open Debridement and Retention of the Prosthesis. Antimicrob. Agents Chemother. 2009, 53, 4772–4777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reffuveille, F.; Josse, J.; Vallé, Q.; Mongaret, C.; Gangloff, S.C. Staphylococcus Aureus Biofilms and Their Impact on the Medical Field. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus Aureus; InTech: London, UK, 2017. [Google Scholar]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia Coli Biofilm: Development and Therapeutic Strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, C.; Patil, K.M.; Wilson, B.H.; Hermanspahn, L.; Harvey-Reid, N.C.; Howard, B.I.; Kleinjan, C.; Kolien, J.; Payet, F.; Telfer, S.G.; et al. The Thermal Stability of Metal-Organic Frameworks. Coord. Chem. Rev. 2020, 419, 213388. [Google Scholar] [CrossRef]
- Lázaro, I.A. A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metal-Organic Framework Materials. Eur. J. Inorg. Chem. 2020, 2020, 4284–4294. [Google Scholar] [CrossRef]
- Quaresma, S.; André, V.; Antunes, A.M.M.; Vilela, S.M.F.; Amariei, G.; Arenas-Vivo, A.; Rosal, R.; Horcajada, P.; Duarte, M.T. Novel Antibacterial Azelaic Acid BioMOFs. Cryst. Growth Des. 2020, 20, 370–382. [Google Scholar] [CrossRef]
- Amariei, G.; Kokol, V.; Vivod, V.; Boltes, K.; Letón, P.; Rosal, R. Biocompatible Antimicrobial Electrospun Nanofibers Functionalized with ε-Poly-L-Lysine. Int. J. Pharm. 2018, 553, 141–148. [Google Scholar] [CrossRef]
- Amariei, G.; Kokol, V.; Boltes, K.; Letón, P.; Rosal, R. Incorporation of Antimicrobial Peptides on Electrospun Nanofibres for Biomedical Applications. RSC Adv. 2018, 8, 28013–28023. [Google Scholar] [CrossRef] [Green Version]
- González, B.; Colilla, M.; Díez, J.; Pedraza, D.; Guembe, M.; Izquierdo-Barba, I.; Vallet-Regí, M. Mesoporous Silica Nanoparticles Decorated with Polycationic Dendrimers for Infection Treatment. Acta Biomater. 2018, 68, 261–271. [Google Scholar] [CrossRef]
- Celis-Arias, V.; Garduño-Wilchis, I.A.; Alarcón, G.; González Chávez, F.; Garrido Guerrero, E.; Beltrán, H.I.; Loera-Serna, S. Room-Temperature Synthesis of Nanometric and Luminescent Silver-MOFs. Front. Chem. 2023, 10, 1065622. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Bowmaker, G.A.; Metson, J.B. The Thermal Decomposition of Silver (I, III) Oxide: A Combined XRD, FT-IR and Raman Spectroscopic Study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Vilela, S.; Salcedo-Abraira, P.; Colinet, I.; Salles, F.; de Koning, M.; Joosen, M.; Serre, C.; Horcajada, P. Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier. Nanomaterials 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Nanavati, S.P.; Willock, D.J.; Ananthakrishnan, R. Photoactive Ag(I)-Based Coordination Polymer as a Potential Semiconductor for Photocatalytic Water Splitting and Environmental Remediation: Experimental and Theoretical Approach. J. Phys. Chem. C 2019, 123, 23940–23950. [Google Scholar] [CrossRef]
- Cao, H. Silver Nanoparticles for Antibacterial Devices: Biocomparibility and Toxicity; Cao, H., Ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1498725333. [Google Scholar]
- Martín-Betancor, K.; Aguado, S.; Rodea-Palomares, I.; Tamayo-Belda, M.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Co, Zn and Ag-MOFs Evaluation as Biocidal Materials towards Photosynthetic Organisms. Sci. Total Environ. 2017, 595, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Maynes, M.; Silver, S. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia Coli. Appl. Environ. Microbiol. 1998, 64, 5042–5045. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J.; Kim, J.Y.; Kim, J.; Lee, J.-H.; Hahn, J.-S.; Gu, M.B.; Yoon, J. Silver-Ion-Mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity. Water Res. 2009, 43, 1027–1032. [Google Scholar] [CrossRef]
- Gong, J.-L.; Tan, Z.-K.; Fang, S.-Y.; Li, J.; Cao, W.-C.; Chen, Z.-P. Thin-Film Nanocomposite Membrane Incorporated by Ag-Mof: Improvement of Resistance to Biofouling for Dye Separation. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Stewart, P.S.; Murga, R.; Srinivasan, R.; de Beer, D. Biofilm Structural Heterogeneity Visualized by Three Microscopic Methods. Water Res. 1995, 29, 2006–2009. [Google Scholar] [CrossRef]
- Neu, T.R.; Kuhlicke, U.; Lawrence, J.R. Assessment of Fluorochromes for Two-Photon Laser Scanning Microscopy of Biofilms. Appl. Environ. Microbiol. 2002, 68, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chen, T.; Pan, X. Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano 2021, 15, 3808–3848. [Google Scholar] [CrossRef]
Media | Hydrodynamic Particle Size (nm) | Polydispersity Index (PdI) | ζ-Potential (mV) |
---|---|---|---|
H2O | 300 ± 130 | 0.30 ± 0.03 | −50 ± 5 |
NB | 100 ± 70 | 0.45 ± 0.01 | −30 ± 1 |
Planktonic Bacteria | Sessile Bacteria | ||||||
---|---|---|---|---|---|---|---|
Sample | Contact Time | CFU·mL−1 | Inhibition (%) | Log10 (CFU·mL−1) | CFU·mL−1 | Inhibition (%) | Log10 (CFU·mL−1) |
Control | <1 day | 2.70 × 109 | 0.0000 | 9.43 | 5.72 × 104 | 0.0000 | 4.76 |
AgBDC | 1.57 × 103 | 99.9999 | 3.20 | 9.17 × 101 | 99.84 | 1.96 | |
Control | 7 days | 2.42 × 1011 | 0.0000 | 11.38 | 1.53 × 1010 | 0.0000 | 10.18 |
AgBDC | 3.20 × 104 | 99.99999 | 4.51 | 3.38 × 103 | 99.9999 | 3.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas-Vivo, A.; Celis Arias, V.; Amariei, G.; Rosal, R.; Izquierdo-Barba, I.; Hidalgo, T.; Vallet-Regí, M.; Beltrán, H.I.; Loera-Serna, S.; Horcajada, P. Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition. Pharmaceutics 2023, 15, 301. https://doi.org/10.3390/pharmaceutics15010301
Arenas-Vivo A, Celis Arias V, Amariei G, Rosal R, Izquierdo-Barba I, Hidalgo T, Vallet-Regí M, Beltrán HI, Loera-Serna S, Horcajada P. Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition. Pharmaceutics. 2023; 15(1):301. https://doi.org/10.3390/pharmaceutics15010301
Chicago/Turabian StyleArenas-Vivo, Ana, Vanessa Celis Arias, Georgiana Amariei, Roberto Rosal, Isabel Izquierdo-Barba, Tania Hidalgo, María Vallet-Regí, Hiram I. Beltrán, Sandra Loera-Serna, and Patricia Horcajada. 2023. "Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition" Pharmaceutics 15, no. 1: 301. https://doi.org/10.3390/pharmaceutics15010301
APA StyleArenas-Vivo, A., Celis Arias, V., Amariei, G., Rosal, R., Izquierdo-Barba, I., Hidalgo, T., Vallet-Regí, M., Beltrán, H. I., Loera-Serna, S., & Horcajada, P. (2023). Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition. Pharmaceutics, 15(1), 301. https://doi.org/10.3390/pharmaceutics15010301