Interaction between Pharmaceutical Drugs and Polymer-Coated Fe3O4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Surface Pressure—Area Isotherms
2.2.2. Insertion Experiments
3. Results
3.1. Langmuir Monolayers
3.1.1. HTFPZ+:DSPA and DCFN−:DSPA Composite Langmuir Films
3.1.2. Surface Pressure Isotherms of MNPs:DSPA Containing HTFPZ+ in the Subphase
3.1.3. Surface Pressure Isotherms of MNPs:DSPA Containing DCFN− in the Subphase
3.2. Insertion Experiments on DSPA Pre-Formed Monolayer
3.2.1. Insertion of HTFPZ+ or DCFN− with Preformed DSPA Monolayer
3.2.2. Insertion of MNPs:HTFPZ+ or MNPs:DCFN− with Preformed DSPA Monolayer
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nobre, T.M.; Pavinatto, F.J.; Caseli, L.; Barros-Timmons, A.; Dynarowicz-Łątka, P.; Oliveira, O.N., Jr. Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 2015, 593, 158–188. [Google Scholar]
- Hąc-Wydro, K.; Dynarowicz-Łątka, P.; Żuk, R. Langmuir monolayer study towards combined antileishmanian therapy involving amphotericin B and Edelfosine. J. Phys. Chem. B 2009, 113, 14239–14246. [Google Scholar] [CrossRef] [PubMed]
- Gagoś, M.; Arczewska, M. Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Biochim. Biophys. Acta Biomembr 2010, 1798, 2124–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffrida, M.C.; Dosio, F.; Castelli, F.; Sarpietro, M.G. Lipophilic prodrug of paclitaxel: Interaction with a dimyristoylphosphatidylcholine monolayer. Int. J. Pharm. 2014, 475, 624–631. [Google Scholar] [CrossRef]
- Hąc-Wydro, K.; Dynarowicz-Łątka, P. Searching for the role of membrane sphingolipids in selectivity of antitumor ether lipid—Edelfosine. Colloids Surf. B Biointerfaces 2010, 81, 492–497. [Google Scholar] [CrossRef]
- Souza, S.M.B.; Oliveira, O.N., Jr.; Scarpa, M.V.; Oliveira, A.G. Study of the diclofenac/phospholipid interactions with liposomes and monolayers. Colloids Surf. B Biointerfaces 2004, 36, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Lygre, H.; Moe, G.; Holmsen, H. Interaction of ibuprofen with eukaryotic membrane lipids. Acta Odontol. Scand. 2003, 61, 303–309. [Google Scholar] [CrossRef]
- Jabłonowska, E.; Bilewicz, R. Interactions of ibuprofen with Langmuir monolayers of membrane lipids. Thin Solid Films 2007, 515, 3962–3966. [Google Scholar] [CrossRef]
- Micieli, D.; Giuffrida, M.C.; Pignatello, R.; Castelli, F.; Sarpietro, M.G. Interaction of naproxen amphiphilic derivatives with biomembrane models evaluated by differential scanning calorimetry and Langmuir–Blodgett studies. J. Colloid Interface Sci. 2011, 360, 359–369. [Google Scholar] [CrossRef]
- Choi, S.Y.; Oh, S.G.; Lee, J.S. Effects of lidocaine on the expansion of lipid monolayer at air/water interface in relation to the local anesthesia. Colloids Surf. B Biointerfaces 2000, 17, 255–264. [Google Scholar] [CrossRef]
- Hidalgo, A.A.; Caetano, W.; Tabak, M.; Oliveira, O.N. Interaction of two phenothiazine derivatives with phospholipid monolayers. Biophys. Chem. 2004, 109, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Colqui Quiroga, M.V.; Monzón, L.M.A.; Yudi, L.M. Interaction of triflupromazine with distearoylphosphatidylglycerol films studied by surface pressure isotherms and cyclic voltammetry at a 1,2-dichloroethane/water interface. Electrochim. Acta 2010, 55, 5840–5846. [Google Scholar] [CrossRef]
- Colqui Quiroga, M.V.; Monzón, L.M.A.; Yudi, L.M. Voltammetric study and surface pressure isotherms describing Flunitrazepam incorporation into a distearoylphosphatidic acid film adsorbed at air/water and water/1,2-dichloroethane interfaces. Electrochim. Acta 2011, 56, 7022–7028. [Google Scholar] [CrossRef]
- Gzyl-Malcher, B.; Handzlik, J.; Klekowska, E. Temperature dependence of the interaction of prazosin with lipid Langmuir monolayers. Colloids Surf. B Biointerfaces 2013, 112, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Brockman, H.; Graff, G.; Spellman, J.; Yanni, J. A comparison of the effects of olopatadine and ketotifen on model membranes. Acta Ophthalmol. Scand. 2000, 78, 10–15. [Google Scholar] [CrossRef]
- Rahdar, A.; Hajinezhad, M.R.; Sargazi, S.; Barani, M.; Karimi, P.; Velasco, B.; Taboada, P.; Pandey, S.; Bameri, Z.; Zarei, S. Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: Synthesis, characterization, biological, and in silico evaluations. J. Mol. Liq. 2022, 346, 118271. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Rahiman, N.; Hosseinikhah, S.M.; Barani, M.; Rahdar, A.; Jaafari, M.R.; Sargazi, S.; Zirak, M.R.; Pandey, S.; Bhattacharjee, R.; et al. Gupta, Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J. Drug Deliv. Sci. Technol. 2022, 73, 103459. [Google Scholar] [CrossRef]
- MBarani, M.; Sargazi, S.; Hajinezhad, M.R.; Rahdar, A.; Sabir, F.; Pardakhty, A.; Zargari, F.; Anwer, M.K.; Aboudzadeh, M.A. Aboudzadeh, Preparation of pH-Responsive Vesicular Deferasirox: Evidence from In Silico, In Vitro, and In Vivo Evaluations. ACS Omega 2021, 6, 24218–24232. [Google Scholar] [CrossRef]
- Massami Uehara, T.; Spolon Marangoni, V.; Pasquale, N.; Barbeitas Miranda, P.; Lee, K.; Zucolotto, V. A Detailed Investigation on the Interactions between Magnetic Nanoparticles and Cell Membrane Models. ACS Appl. Mater. Interfaces 2013, 5, 13063–13068. [Google Scholar] [CrossRef]
- Ábrahám, N.; Csapó, E.; Bohus, G.; Dékány, I. Interaction of biofunctionalized gold nanoparticles with model phospholipid membranes. Colloid Polym. Sci. 2014, 292, 2715–2725. [Google Scholar] [CrossRef]
- Moya Betancourt, S.N.; Cámara, C.I.; Juarez, A.V.; Pozo López, G.; Riva, J.S. Effect of magnetic nanoparticle coating on their electrochemical behaviour at a polarized liquid/liquid interface. J. Electroanal. Chem. 2022, 911, 116253. [Google Scholar] [CrossRef]
- Moya Betancourt, S.N.; Uranga, J.G.; Cámara, C.I.; Juarez, A.V.; Pozo López, G.; Riva, J.S. Effect of bare and polymeric-modified magnetic nanoparticles on the drug ion transfer across liquid/liquid interfaces. J. Electroanal. Chem. 2022, 919, 116502. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Rojewska, M.; Tim, B.; Prochaska, K. Interactions between silica particles and model phospholipid monolayers. J. Molecular Liquids 2022, 345, 116999. [Google Scholar] [CrossRef]
- Gaines, G.L. Insoluble Monolayers at Liquid-Gas Interfaces, 1st ed.; Interscience Publishers: New York, NY, USA, 1966. [Google Scholar]
- Vollhardt, D.; Fainerman, V.B. Progress in characterization of Langmuir monolayers by consideration of compressibility. Adv. Colloid Interface Sci. 2006, 127, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Cámara, C.I.; Yudi, L.M. Potential-mediated interaction between dextran sulfate and negatively charged phospholipids films at air/water and liquid/liquid interfaces. Electrochimica Acta 2013, 113, 644–652. [Google Scholar] [CrossRef]
- Geraldo, V.P.; Pavinatto, F.J.; Nobre, T.M.; Caseli, L.; Oliveira, O.N., Jr. Langmuir films containing ibuprofen and phospholipids. Chem. Phys. Lett. 2013, 559, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, M.E.; Lanterna, A.E.; Vico, R.V. Hydrophobic silver nanoparticles interacting with phospholipids and stratum corneum mimic membranes in Langmuir monolayers. J. Colloid Interface Sci. 2019, 543, 247–255. [Google Scholar] [CrossRef]
- Popescu, R.C.; Andronescu, E.; Grumezescu, A.M. In vivo evaluation of Fe3O4 nanoparticles. Rom. J. Morphol. Embryol. 2014, 55, 1013–1018. [Google Scholar]
- Ding, Y.; Shen, S.Z.; Sun, H.; Sun, K.; Liu, F.; Qi, Y.; Yan, J. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater. Sci. Eng. C 2015, 48, 487–498. [Google Scholar] [CrossRef]
- Uribe Madrid, S.I.; Pal, U.; Kang, Y.S.; Kim, J.; Kwon, H.; Kim, J. Fabrication of Fe3O4@mSiO2 core-shell composite nanoparticles for drug delivery applications. Nanoscale Res. Lett. 2015, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Yuan, M.; Yuan, H.; Huang, X.; Sui, X.; Cui, X.; Guo, Q. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int. J. Nanomedicine 2012, 7, 1697. [Google Scholar] [PubMed]
- Lin, J.; Zhang, H.; Chen, Z.; Zheng, Y. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 2010, 4, 5421–5429. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.S.; Gong, K.; Chew, J. Molecular interactions between a lipid and an antineoplastic drug paclitaxel (taxol) within the lipid monolayer at the air/water interface. Langmuir 2002, 18, 4061–4070. [Google Scholar] [CrossRef]
- Xie, B.; Hao, C.; Sun, R. Effect of fluoxetine at different concentrations on the adsorption behaviour of Langmuir monolayers. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183418. [Google Scholar] [CrossRef]
µL MNPs Dispersion:DSPA | Cs−1/mN m−1 | ||
---|---|---|---|
Subphase with: LiCl | Subphase with: HTPFZ+ | Subphase with: DCFN− | |
0 µL MNPs:DSPA | 275.69 | 100.00 | 261.09 |
3 µL Fe3O4@CHI:DSPA | - | 77.38 | 161.51 |
12 µL Fe3O4@CHI:DSPA | - | 65.91 | 130.24 |
15 µL Fe3O4@CHI:DSPA | - | 57.88 | 115.53 |
3 µL Fe3O4@DEAE-D:DSPA | - | 77.38 | 442.99 |
12 µL Fe3O4@DEAE-D:DSPA | - | 65.91 | 208.21 |
15 µL Fe3O4@DEAE-D:DSPA | - | 57.88 | 184.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya Betancourt, S.N.; Cámara, C.I.; Riva, J.S. Interaction between Pharmaceutical Drugs and Polymer-Coated Fe3O4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models. Pharmaceutics 2023, 15, 311. https://doi.org/10.3390/pharmaceutics15020311
Moya Betancourt SN, Cámara CI, Riva JS. Interaction between Pharmaceutical Drugs and Polymer-Coated Fe3O4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models. Pharmaceutics. 2023; 15(2):311. https://doi.org/10.3390/pharmaceutics15020311
Chicago/Turabian StyleMoya Betancourt, Sara Natalia, Candelaria Inés Cámara, and Julieta Soledad Riva. 2023. "Interaction between Pharmaceutical Drugs and Polymer-Coated Fe3O4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models" Pharmaceutics 15, no. 2: 311. https://doi.org/10.3390/pharmaceutics15020311
APA StyleMoya Betancourt, S. N., Cámara, C. I., & Riva, J. S. (2023). Interaction between Pharmaceutical Drugs and Polymer-Coated Fe3O4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models. Pharmaceutics, 15(2), 311. https://doi.org/10.3390/pharmaceutics15020311