Pharmacogenetic Guidelines for Psychotropic Drugs: Optimizing Prescriptions in Clinical Practice
Abstract
:1. Introduction
2. Theoretical Principles of Cytochrome Pharmacogenetics
2.1. From the Genotype to the Phenotype of CYP2D6
- Activity score for CYP2D6 (*1/*2) = 1 + 1 = 2
- Activity score for CYP2D6 (*4/*4) = 0 + 0 = 0
- Activity score for CYP2D6 (*3/*9) = 0 + 0.25 = 0.25
- Ultra-rapid metabolizer (UM) → Increased metabolism speed;
- Normal metabolizer (NM) → Standard metabolism speed;
- Intermediate metabolizer (IM) → Reduced metabolism speed;
- Poor metabolizer (PM) → Slow metabolism speed.
2.2. From the Genotype to the Phenotype of CYP2C19
- Ultra-rapid metabolizer (UM) → Highly increased rate of metabolism;
- Rapid metabolizer (RM) → Increased rate of metabolism;
- Normal metabolizer (NM) → Normal metabolization rate;
- Intermediate metabolizer (IM) → Reduced rate of metabolism;
- Poor metabolizer (PM) → Slow metabolizing rate.
2.3. From the Genotype to the Phenotype of CYP2B6
- Ultra-rapid metabolizer (UM) → Highly increased rate of metabolism;
- Rapid metabolizer (RM) → Increased rate of metabolism;
- Normal metabolizer (NM) → Normal metabolizing rate;
- Intermediate metabolizer (IM) → Reduced rate of metabolism;
- Poor metabolizer (PM) → Slow metabolizing rate.
2.4. From the Genotype to the Phenotype of CYP2B6
- Normal metabolizer (NM) → Standard metabolism speed;
- Intermediate metabolizer (IM) → Reduced metabolism speed;
- Poor metabolizer (PM) → Slow metabolism speed.
3. An Overview of Genetic Prescribing Guidelines for Antidepressants and Antipsychotics
3.1. Antidepressants
3.2. Antipsychotics
4. Summary of Prescription Recommendations Issued by the CPIC for Antidepressants and by DPWG for Antipsychotics
4.1. Prescription Recommendations for Antidepressants
4.2. Prescription Recommendations for Antipsychotics
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rush, A.J.; Williams, N.R.; Heifets, B.D.; Blasey, C.; Sudheimer, K.; Pannu, J.; Pankow, H.; Hawkins, J.; Birnbaum, J.; Lyons, D.M.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. AJP 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Stroup, T.S.; McEvoy, J.P.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Keefe, R.S.E.; Davis, S.M.; Davis, C.E.; Lebowitz, B.D.; et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 2005, 353, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.H.; Lam, R.W.; McIntyre, R.S.; Tourjman, S.V.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; MacQueen, G.M.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can. J. Psychiatry 2016, 61, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Swain, T.R.; Mohanty, M. Adverse drug reaction monitoring of antidepressants in the psychiatry outpatients department of a tertiary care teaching hospital. J. Clin. Diagn. Res. 2013, 7, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Adverse Effects of Antipsychotic Medications—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/20187598/ (accessed on 15 May 2023).
- Excess Mortality in Persons with Severe Mental Disorders: A Multilevel Intervention Framework and Priorities for Clinical Practice, Policy and Research Agendas—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269481/ (accessed on 15 May 2023).
- Perlis, R.H. Abandoning personalization to get to precision in the pharmacotherapy of depression. World Psychiatry 2016, 15, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Roses, A.D. Pharmacogenetics and the practice of medicine. Nature 2000, 405, 857–865. [Google Scholar] [CrossRef]
- Torrellas, C.; Carril, J.C.; Cacabelos, R. Optimization of Antidepressant use with Pharmacogenetic Strategies. Curr. Genom. 2017, 18, 442–449. [Google Scholar] [CrossRef]
- Zeier, Z.; Carpenter, L.L.; Kalin, N.H.; Rodriguez, C.I.; McDonald, W.M.; Widge, A.S.; Nemeroff, C.B. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am. J. Psychiatry 2018, 175, 873–886. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhang, Y.; An, Z. Effect of pharmacogenomics testing guiding on clinical outcomes in major depressive disorder: A systematic review and meta-analysis of RCT. BMC Psychiatry 2023, 23, 334. [Google Scholar] [CrossRef]
- Oslin, D.W.; Lynch, K.G.; Shih, M.-C.; Ingram, E.P.; Wray, L.O.; Chapman, S.R.; Kranzler, H.R.; Gelernter, J.; Pyne, J.M.; Stone, A.; et al. Effect of Pharmacogenomic Testing for Drug-Gene Interactions on Medication Selection and Remission of Symptoms in Major Depressive Disorder: The PRIME Care Randomized Clinical Trial. JAMA 2022, 328, 151–161. [Google Scholar] [CrossRef]
- Pérez, V.; Salavert, A.; Espadaler, J.; Tuson, M.; Saiz-Ruiz, J.; Sáez-Navarro, C.; Bobes, J.; Baca-García, E.; Vieta, E.; AB-GEN Collaborative Group; et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial. BMC Psychiatry 2017, 17, 250. [Google Scholar] [CrossRef]
- Han, C.; Wang, S.-M.; Bahk, W.-M.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Mandelli, L.; Pae, C.-U.; Serretti, A. A Pharmacogenomic-based Antidepressant Treatment for Patients with Major Depressive Disorder: Results from an 8-week, Randomized, Single-blinded Clinical Trial. Clin. Psychopharmacol. Neurosci. 2018, 16, 469–480. [Google Scholar] [CrossRef]
- Teng, Y.; Sandhu, A.; Liemburg, E.J.; Naderi, E.; Alizadeh, B.Z. The Progress and Pitfalls of Pharmacogenetics-Based Precision Medicine in Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis. JPM 2023, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, O. The pharmacogenetics of the new-generation antipsychotics—A scoping review focused on patients with severe psychiatric disorders. Front. Psychiatry 2023, 14, 1124796. [Google Scholar] [CrossRef] [PubMed]
- Płaza, O.; Gałecki, P.; Orzechowska, A.; Gałecka, M.; Sobolewska-Nowak, J.; Szulc, A. Pharmacogenetics and Schizophrenia—Can Genomics Improve the Treatment with Second-Generation Antipsychotics? Biomedicines 2022, 10, 3165. [Google Scholar] [CrossRef] [PubMed]
- Omura, T.; Sato, R. the carbon monoxide-binding pigment of liver microsomes. i. evidence for its hemoprotein nature. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar] [CrossRef]
- Wrighton, S.A.; Stevens, J.C. The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol. 1992, 22, 1–21. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Gene-Specific Information Tables for CYP2D6. PharmGKB. Available online: https://www.pharmgkb.org/page/cyp2d6RefMaterials (accessed on 1 August 2023).
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Relling, M.V.; Scott, S.A.; Hertz, D.L.; et al. Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef]
- Gene-Specific Information Tables for CYP2C19. PharmGKB. Available online: https://www.pharmgkb.org/page/cyp2c19RefMaterials (accessed on 1 August 2023).
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruano, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef]
- Gene-Specific Information Tables for CYP2B6. PharmGKB. Available online: https://www.pharmgkb.org/page/cyp2b6RefMaterials (accessed on 31 July 2023).
- Hulshof, E.C.; Deenen, M.J.; Nijenhuis, M.; Soree, B.; de Boer-Veger, N.J.; Buunk, A.M.; Houwink, E.J.F.; Risselada, A.; Rongen, G.A.P.J.M.; van Schaik, R.H.N.; et al. Dutch pharmacogenetics working group (DPWG) guideline for the gene-drug interaction between UGT1A1 and irinotecan. Eur. J. Hum. Genet. 2023, 31, 982–987, Erratum in: Eur. J. Hum. Genet. 2023. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E.; Gammal, R.S.; Whirl-Carrillo, M.; Hoffman, J.M.; Caudle, K.E. The Clinical Pharmacogenetics Implementation Consortium: 10 Years Later. Clin. Pharmacol. Ther. 2020, 107, 171–175. [Google Scholar] [CrossRef] [PubMed]
- DPWG. Dutch Pharmacogenetics Working Group Guideline. 2019. Available online: https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics (accessed on 31 July 2023).
- Yoon, D.Y.; Lee, S.; Ban, M.S.; Jang, I.-J.; Lee, S. Pharmacogenomic information from CPIC and DPWG guidelines and its application on drug labels. Transl. Clin. Pharmacol. 2020, 28, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.; Caudle, K.; Swen, J.; Gammal, R.; Whirl-Carrillo, M.; Klein, T.; Relling, M.; Guchelaar, H. A comparison of the guidelines of the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group. Clin. Pharmacol. Ther. 2018, 103, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2020, 11, 595219. [Google Scholar] [CrossRef]
- Pritchard, D.; Patel, J.N.; Stephens, L.E.; McLeod, H.L. Comparison of FDA Table of Pharmacogenetic Associations and Clinical Pharmacogenetics Implementation Consortium guidelines. Am. J. Health Syst. Pharm. 2022, 79, 993–1005. [Google Scholar] [CrossRef]
- Scoring of PharmGKB Variant Annotations. PharmGKB. Available online: https://www.pharmgkb.org/page/varAnnScoring (accessed on 31 July 2023).
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC®) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef]
- Brouwer, J.M.J.L.; Nijenhuis, M.; Soree, B.; Guchelaar, H.-J.; Swen, J.J.; van Schaik, R.H.N.; van der Weide, J.; Rongen, G.A.P.J.M.; Buunk, A.-M.; de Boer-Veger, N.J.; et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs. Eur. J. Hum. Genet. 2022, 30, 1114–1120. [Google Scholar] [CrossRef]
- Antidepressants. PharmGKB. Available online: https://www.pharmgkb.org/chemical/PA452229/clinicalAnnotation (accessed on 31 July 2023).
- Antipsychotics. PharmGKB. Available online: https://www.pharmgkb.org/chemical/PA452233 (accessed on 31 July 2023).
- Baldacci, A.; Saguin, E.; Annette, S.; Lahutte, B.; Colas, M.D.; Delacour, H. Cytochrome pharmacogenetics applied to the prescription of antidepressants: Instructions for use. Encephale 2022, 48, 462–471. [Google Scholar] [CrossRef]
- Mostafa, S.; Polasek, T.M.; ABousman, C.; Müeller, D.J.; Sheffield, L.J.; Rembach, J.; Kirkpatrick, C.M. Pharmacogenomics in psychiatry—The challenge of cytochrome P450 enzyme phenoconversion and solutions to assist precision dosing. Pharmacogenomics 2022, 23, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Smith, R.L. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: Hypothesis with implications for personalized medicine. Drug Metab. Dispos. 2015, 43, 400–410. [Google Scholar] [CrossRef]
- Montané, E.; Arellano, A.L.; Sanz, Y.; Roca, J.; Farré, M. Drug-related deaths in hospital inpatients: A retrospective cohort study. Br. J. Clin. Pharmacol. 2018, 84, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Cicali, E.J.; Elchynski, A.L.; Cook, K.J.; Houder, J.T.; Thomas, C.D.; Smith, D.M.; Elsey, A.; Johnson, J.A.; Cavallari, L.H.; Wiisanen, K. How to Integrate CYP2D6 Phenoconversion into Clinical Pharmacogenetics: A Tutorial. Clin. Pharmacol. Ther. 2021, 110, 677–687. [Google Scholar] [CrossRef]
- Wagner, E.; McMahon, L.; Falkai, P.; Hasan, A.; Siskind, D. Impact of smoking behavior on clozapine blood levels—A systematic review and meta-analysis. Acta Psychiatr. Scand. 2020, 142, 456–466. [Google Scholar] [CrossRef]
- Mostafa, S.; Kirkpatrick, C.M.J.; Byron, K.; Sheffield, L. An analysis of allele, genotype and phenotype frequencies, actionable pharmacogenomic (PGx) variants and phenoconversion in 5408 Australian patients genotyped for CYP2D6, CYP2C19, CYP2C9 and VKORC1 genes. J. Neural Transm. 2019, 126, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Research C for DE and. Drug Development and Drug Interactions|Table of Substrates, Inhibitors and Inducers. FDA. 2023. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 22 August 2023).
- Cytochrome P450 Drug Interaction Table. Available online: https://drug-interactions.medicine.iu.edu/MainTable.aspx (accessed on 22 August 2023).
- Hachad, H.; Ragueneau-Majlessi, I.; Levy, R.H. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database. Hum. Genom. 2010, 5, 61–72. [Google Scholar] [CrossRef]
- La Glycoprotéine P: Un Transporteur de Médicaments à ne pas Négliger. Revue Medicale Suisse. Available online: https://www.revmed.ch/revue-medicale-suisse/2004/revue-medicale-suisse-2476/la-glycoproteine-p-un-transporteur-de-medicaments-a-ne-pas-negliger (accessed on 9 January 2023).
- Karamperis, K.; Koromina, M.; Papantoniou, P.; Skokou, M.; Kanellakis, F.; Mitropoulos, K.; Vozikis, A.; Müller, D.J.; Patrinos, G.P.; Mitropoulou, C. Economic evaluation in psychiatric pharmacogenomics: A systematic review. Pharmacogenom. J. 2021, 21, 533–541. [Google Scholar] [CrossRef]
Activity Score | Variants | Allele Type |
---|---|---|
1 | *1, *2, *35, *39 | Normal |
0.5 | *14, *17, *29 | Reduced Activity |
0.25 | *10, *9, *41 | Significantly Reduced Activity |
0 | *3, *4, *5, *6, *7, *8, *11, *12, *15, *40 | No Activity |
Activity Score | Phenotype | Genotype | Example of Diplotype | Phenotype Frequency * |
---|---|---|---|---|
>2.25 | UM | Duplications of functional alleles | *1/*1 × N, *1/*2 × N, *2/*2 × N | 2% |
1.25 to 2.25 | NM | Two alleles of normal activity +One of normal activity +One of diminished activity, OR a duplication of normal alleles with an allele of very diminished activity. | *1/*10, *1/*41, *1/*9, *1/*1, *1/*2, *2 × 2/*10, *4/*10 | 49% |
0.25 to 1 | IM | Two alleles of diminished activity +Two of very diminished activity +One of normal activity +One of no activity, OR One of diminished activity +One of no activity OR One of very diminished activity +One of no activity OR One of diminished activity +One of very diminished activity. | *4/*41, *10/*10, *41/*41, *10/*41, *41/*41, *1/*5 | 38% |
0 | PM | An individual carrying only non-functional alleles | *3/*4, *4/*4, *5/*5, *5/*6 | 7% |
Variants | Allele Type |
---|---|
*17 | Increased activity |
*1 | Normal activity |
*9 | Reduced activity |
*2, *3 | No activity |
Phenotype | Genotype | Example of Diplotype | Phenotype Frequency * |
---|---|---|---|
UM | Two increased activity alleles | *17/*17 | 5% |
RM | One allele of normal activity +One allele of increased activity | *1/*17 | 27% |
NM | Two alleles of normal activity | *1/*1 | 40% |
IM | One normal function allele +One no function allele | *1/*2, *1/*3, *2/*17 | 19% |
PM | One increased function allele +One no function allele | *2/*2, *2/*3, *3/*3 | 2% |
Variants | Allele Type |
---|---|
*4 | Increased activity |
*1, *2, *5, *17 | Normal activity |
*6, *7, *9 | Reduced activity |
*18 | No activity |
Phenotype | Genotype | Example of Diplotype | Phenotype Frequency * |
---|---|---|---|
UM | Two increased activity alleles | *4/*4 | 0% |
RM | One allele of normal activity +One allele of increased activity | *1/*4 | 7% |
NM | Two alleles of normal activity | *1/*1 | 43% |
IM | One normal function allele +one decreased function allele OR One normal function allele +One no function allele OR One increased function allele +one decreased function allele OR One increased function allele +One no function allele | *1/*6, *1/*18, *4/*6, *4//18 | 39% |
PM | Two decreased function alleles OR One decreased function allele +One no function allele OR Two no function alleles | *6/*6, *18/*18, *6/*18 | 8% |
Phenotype | Genotype | Example of Diplotype |
---|---|---|
NM | Two alleles of normal activity | *1A/*1A, |
*1B/*1B, | ||
*1A/*1B, | ||
IM | One allele with normal activity OR One allele with increased activity +One allele with no activity | *1A/*22 |
PM | Two alleles with no activity | *22/*22 |
Drug | Gene | Affected Subgroups+ | Description of Gene–Drug Interaction |
---|---|---|---|
Pharmacogenetic Associations for which the Data Support Therapeutic Management Recommendations | |||
Aripiprazole | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations and higher adverse reaction risk. Dosage adjustment is recommended. Refer to FDA labelling for specific dosing recommendations. |
Atomoxetine | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations and higher adverse reaction risk. Adjust titration interval and increase dosage if tolerated. Refer to FDA labelling for specific dosing recommendations. |
Brexpiprazole | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations. Dosage adjustment is recommended. Refer to FDA labelling for specific dosing recommendations. |
Citalopram | CYP2C19 | Poor metabolizers | Results in higher systemic concentrations and adverse reaction risk (QT prolongation). The maximum recommended dose is 20 mg. |
Clozapine | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations. Dosage reductions may be necessary. |
Venlafaxine | CYP2D6 | Poor metabolizers | Alters systemic parent drug and metabolite concentrations. Consider dosage reductions. |
Vortioxetine | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations. The maximum recommended dose is 10 mg. |
Pharmacogenetic Associations for which the Data Demonstrate a Potential Impact on Pharmacokinetic Properties Only | |||
Amitriptyline | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Amoxapine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Clomipramine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Desipramine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Doxepin | CYP2C19 | Intermediate or poor metabolizers | Results in higher systemic concentrations. |
Doxepin | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Escitalopram | CYP2C19 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Fluvoxamine | CYP2D6 | Poor metabolizers | Results in higher systemic concentrations. Use with caution. |
Imipramine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Nortriptyline | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Paroxetine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
Risperidone | CYP2D6 | Poor metabolizers | Alters systemic parent drug and metabolite concentrations. |
Trimipramine | CYP2D6 | Ultra-rapid, intermediate, or poor metabolizers | May alter systemic concentrations. |
CYP450 | |||
---|---|---|---|
Antidepressant | CYP2C19 | CYP2D6 | CYP2B6 |
CITALOPRAM | ● | ||
ESCITALOPRAM | ● | ||
SERTRALINE | ● | ● | |
FLUVOXAMINE | ● | ||
PAROXETINE | ● | ||
TRICYCLIQUES | ● | ● | |
VENLAFAXINE | ● | ||
VORTIOXETINE | ● |
Color Code | Level of Evidence | Recommendation |
---|---|---|
1A | Drugs that can be used at the standard dosage. | |
No recommendation due to a lack of evidence. | ||
1A | Drugs that can be used with caution. | |
1A | drug not recommended for use. |
CYP 2C19\2D6 | 2D6 UM | 2D6 NM | 2D6 IM | 2D6 PM |
---|---|---|---|---|
2C19 UM | SERTRALINE | FLUVOXAMINE, PAROXETINE VENLAFAXINE, VORTIOXETINE, SERTRALINE | FLUVOXAMINE, VORTIOXETINE, SERTRALINE | SERTRALINE |
MIRTAZAPINE, DULOXETINE, FLUOXETINE, FLUVOXAMINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | |
/ | / | PAROXETINE (1) | PAROXETINE (2), VORTIOXETINE (2), FLUVOXAMINE (3) | |
AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM PAROXETINE, VORTIOXETINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM, VENLAFAXINE | |
2C19 RM | SERTRALINE | FLUVOXAMINE, PAROXETINE VENLAFAXINE, VORTIOXETINE, SERTRALINE | FLUVOXAMINE, VORTIOXETINE, SERTRALINE | SERTRALINE |
MIRTAZAPINE, DULOXETINE, FLUOXETINE, FLUVOXAMINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | |
CITALOPRAM/ESCITALOPRAM (A) | CITALOPRAM/ESCITALOPRAM (A) | PAROXETINE (1), CITALOPRAM/ESCITALOPRAM (A) | CITALOPRAM/ESCITALOPRAM (A), PAROXETINE (2), VORTIOXETINE (2), FLUVOXAMINE (3) | |
AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE PAROXETINE, VORTIOXETINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE, VENLAFAXINE | |
2C19 NM | CITALOPRAM, ESCITALOPRAM, SERTRALINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM, SERTRALINE FLUVOXAMINE, PAROXETINE VENLAFAXINE, VORTIOXETINE | CITALOPRAM, ESCITALOPRAM, SERTRALINE FLUVOXAMINE, PAROXETINE, VORTIOXETINE | CITALOPRAM, ESCITALOPRAM, SERTRALINE |
MIRTAZAPINE, DULOXETINE, FLUOXETINE, FLUVOXAMINE, VENLAFAXINE | MIRTAZAPIN, DULOXETINE, FLUOXETINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | |
/ | / | PAROXETINE (1), AMITRIPTYLINE/CLOMIPRAMINE/TRIMIPRAMINE (4) | PAROXETINE (2), VORTIOXETINE (2), FLUVOXAMINE (3) | |
AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE PAROXETINE, VORTIOXETINE | / | / | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE VENLAFAXINE, | |
2C19 IM | / | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE FLUVOXAMINE, PAROXETINE VENLAFAXINE, VORTIOXETINE | FLUVOXAMINE, VORTIOXETINE | / |
MIRTAZAPINE, DULOXETINE, FLUOXETINE, FLUVOXAMINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | |
CITALOPRAM/ESCITALOPRAM (5), SERTRALINE (5) | CITALOPRAM/ ESCITALOPRAM (5), SERTRALINE (5) | PAROXETINE (1), AMITRIPTYLINE/CLOMIPRAMINE/ TRIMIPRAMINE (4) CITALOPRAM/ESCITALOPRAM (5), SERTRALINE (5) | PAROXETINE (2), VORTIOXETINE (2), FLUVOXAMINE (3), CITALOPRAM/ESCITALOPRAM (5), SERTRALINE (5) | |
AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE, PAROXETINE, VORTIOXETINE | / | / | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE VENLAFAXINE, | |
2C19 PM | / | FLUVOXAMINE, PAROXETINE VENLAFAXINE, VORTIOXETINE | FLUVOXAMINE, VORTIOXETINE | / |
MIRTAZAPINE, DULOXETINE, FLUOXETINE, FLUVOXAMINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE, VENLAFAXINE | MIRTAZAPINE, DULOXETINE, FLUOXETINE | |
SERTRALINE (6) | SERTRALINE (6) | PAROXETINE (1), SERTRALINE (6) | PAROXETINE (2), VORTIOXETINE (2), FLUVOXAMINE (3), SERTRALINE (6) | |
AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM PAROXETINE, VORTIOXETINE | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM | AMITRIPTYLINE, CLOMIPRAMINE, TRIMIPRAMINE CITALOPRAM, ESCITALOPRAM, VENLAFAXINE, |
CYP 2C19\2B6 | 2B6 UM | 2B6 NM | 2B6 IM | 2B6 PM |
---|---|---|---|---|
2C19 UM/RM | (a) | |||
2C19 NM | (1) | (2) | ||
2C19 IM | (1) | (1) | (3) | |
2C19 PM | (3) | (3) | (3) |
CYP450 | ||
---|---|---|
Antipsychotic | CYP2D6 | CYP3A4 |
Aripiprazole | ● | |
Brexpiprazole | ● | |
Pimozide | ● | |
Quetiapine | ● | |
Risperidone | ● | |
Haloperidol | ● | |
Zuclopenthixol | ● |
Color Code | Level of Evidence | Recommendation |
---|---|---|
1A | Molecules that can be used at the standard dosage. | |
1A | Molecules that can be used with caution. | |
≤2 | No recommendation due to a lack of evidence. |
CYP 3A4\2D6 | 2D6 UM | 2D6 NM | 2D6 IM | 2D6 PM |
---|---|---|---|---|
3A4 NM | ARIPIPRAZOLE, BREXIPIPRAZOLE, PIMOZIDE, QUETIAPINE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, PIMOZIDE, QUETIAPINE, ZUCLOPENTHIXOL, RISPERIDONE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, QUETIAPINE, RISPERIDONE | QUETIAPINE |
HALOPERIDOL (a), ZUCLOPENTHIXOL (b), RISPERIDONE (c) | / | PIMOZIDE (4), ZUCLOPENTHIXOL (7) | ARIPIPRAZOLE (1), BREXIPIPRAZOLE (2), HALOPERIDOL (3), PIMOZIDE (5), ZUCLOPENTHIXOL (8), RISPERIDONE (9) | |
OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | |
3A4 IM | ARIPIPRAZOLE, BREXIPIPRAZOLE, PIMOZIDE, QUETIAPINE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, PIMOZIDE, QUETIAPINE, ZUCLOPENTHIXOL, RISPERIDONE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, QUETIAPINE, RISPERIDONE | QUETIAPINE |
HALOPERIDOL (a), ZUCLOPENTHIXOL (b), RISPERIDONE (c) | / | PIMOZIDE (4), ZUCLOPENTHIXOL (7) | ARIPIPRAZOLE (1), BREXIPIPRAZOLE (2), HALOPERIDOL (3), PIMOZIDE (5), ZUCLOPENTHIXOL (8), RISPERIDONE (9) | |
OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | |
3A4 PM | ARIPIPRAZOLE BREXIPIPRAZOLE, PIMOZIDE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, PIMOZIDE, ZUCLOPENTHIXOL, RISPERIDONE | ARIPIPRAZOLE, BREXIPIPRAZOLE, HALOPERIDOL, RISPERIDONE | / |
HALOPERIDOL (a), ZUCLOPENTHIXOL (b), RISPERIDONE (c), QUETIAPINE (6) | QUETIAPINE (6) | QUETIAPINE (6), PIMOZIDE (4), ZUCLOPENTHIXOL (7) | ARIPIPRAZOLE (1), BREXIPIPRAZOLE (2), HALOPERIDOL (3), PIMOZIDE (5), QUETIAPINE (6), ZUCLOPENTHIXOL (8), RISPERIDONE (9) | |
OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE | OLANZAPINE, CLOZAPINE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldacci, A.; Saguin, E.; Balcerac, A.; Mouchabac, S.; Ferreri, F.; Gaillard, R.; Colas, M.-D.; Delacour, H.; Bourla, A. Pharmacogenetic Guidelines for Psychotropic Drugs: Optimizing Prescriptions in Clinical Practice. Pharmaceutics 2023, 15, 2540. https://doi.org/10.3390/pharmaceutics15112540
Baldacci A, Saguin E, Balcerac A, Mouchabac S, Ferreri F, Gaillard R, Colas M-D, Delacour H, Bourla A. Pharmacogenetic Guidelines for Psychotropic Drugs: Optimizing Prescriptions in Clinical Practice. Pharmaceutics. 2023; 15(11):2540. https://doi.org/10.3390/pharmaceutics15112540
Chicago/Turabian StyleBaldacci, Antoine, Emeric Saguin, Alexander Balcerac, Stéphane Mouchabac, Florian Ferreri, Raphael Gaillard, Marie-Dominique Colas, Hervé Delacour, and Alexis Bourla. 2023. "Pharmacogenetic Guidelines for Psychotropic Drugs: Optimizing Prescriptions in Clinical Practice" Pharmaceutics 15, no. 11: 2540. https://doi.org/10.3390/pharmaceutics15112540
APA StyleBaldacci, A., Saguin, E., Balcerac, A., Mouchabac, S., Ferreri, F., Gaillard, R., Colas, M. -D., Delacour, H., & Bourla, A. (2023). Pharmacogenetic Guidelines for Psychotropic Drugs: Optimizing Prescriptions in Clinical Practice. Pharmaceutics, 15(11), 2540. https://doi.org/10.3390/pharmaceutics15112540