Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Animals and Ethics Clearance
2.3. Experimental Design
2.4. Lipid Profile, Liver Function Tests, Renal Function Tests, and Adipose-Derived Hormones
2.5. Histopathology and Immunohistochemistry Assessment
2.6. Statistical Analysis
3. Results
3.1. Animal Body Mass and Liver Mass Measurement, Food, and Water Intake
3.2. Effects of Carob Extract on Lipid Profile
3.3. Effects of Carob Extract on Adipocyte-Produced Hormones
3.4. Effects of Carob Extract on Serum Biochemical Parameters
3.5. Histological, Immunohistochemical and Morphometric Analysis of Liver Tissue
4. Discussion
4.1. Effects on Obesity
4.2. Effects on Dyslipidemia
4.3. Effects on Liver and Kidney Function Tests
4.4. Effect on Histological and Immunohistochemical Features of Liver Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, D.L.; Riche, D.M. Dyslipidemia. In Pharmacotherapy: A Pathophysiologic Approach, 11e; DiPiro, J.T., Yee, G.C., Posey, L.M., Haines, S.T., Nolin, T.D., Ellingrod, V., Eds.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Eckel, R.H.; Krauss, R.M. American Heart Association call to action: Obesity as a major risk factor for coronary heart disease. Circulation 1998, 97, 2099–2100. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Obesity and Dyslipidemia; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Rašković, A.; Ćućuz, V.; Torović, L.; Tomas, A.; Gojković-Bukarica, L.; Ćebović, T.; Milijašević, B.; Stilinović, N.; Hogervorst, J.C. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharm. J. 2019, 27, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Pappan, N.; Rehman, A. Dyslipidemia; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Garg, R.; Aggarwal, S.; Kumar, R.; Sharma, G. Association of atherosclerosis with dyslipidemia and co-morbid conditions: A descriptive study. J. Nat. Sci. Biol. Med. 2015, 6, 163–168. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; Whelton, S.P.; Blumenthal, R.S. 38—Dyslipidemia. In Hypertension: A Companion to Braunwald’s Heart Disease, 3rd ed.; Bakris, G.L., Sorrentino, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 353–360. [Google Scholar]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; Ferranti, S.D.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018, 139, e1082–e1143. [Google Scholar] [PubMed]
- Adel Mehraban, M.S.; Tabatabaei-Malazy, O.; Rahimi, R.; Daniali, M.; Khashayar, P.; Larijani, B. Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. J. Ethnopharmacol. 2021, 280, 114407. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Maravić, N.; Teslić, N.; Nikolić, D.; Dimić, I.; Šereš, Z.; Pavlić, B. From agricultural waste to antioxidant-rich extracts: Green techniques in extraction of polyphenols from sugar beet leaves. Sustain. Chem. Pharm. 2022, 28, 100728. [Google Scholar] [CrossRef]
- Silaev, A.A. Carob (Ceratonia siliqua): Health, medicine and chemistry. Eur. Chem. Bull. 2017, 6, 456–469. [Google Scholar]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Maravić, N.; Smole Možina, S.; Luskar, L.; Luković, J. Challenges in determination of rheological properties of wheat dough supplemented with industrial by-products: Carob pod flour and sugar beet fibers. J. Food Meas. Charact. 2021, 15, 914–922. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Griz, A.; Sterniša, M.; Smole Možina, S. The food industry by-products in bread making: Single and combined effect of carob pod flour, sugar beet fibers and molasses on dough rheology, quality and food safety. J. Food Sci. Technol. 2022, 59, 1429–1439. [Google Scholar] [CrossRef]
- Nemet, M.; Vasilić, M.; Tomas, A. Lipid-Lowering Effects of Carob Extracts (Ceratonia siliqua): Proposed Mechanisms and Clinical Importance. Front. Pharmacol. 2022, 13, 921123. [Google Scholar] [CrossRef] [PubMed]
- Sanaa, H.; Mohsen, A. Changes in lipid profile using carob extract in hyperlipidemic, hypercholesterolimic albino rats. Med. J. Cairo Univ. 2006, 74, 279–281. [Google Scholar]
- Hassanein, K.M.A.; Youssef, M.K.E.; Ali, H.M.; El-Manfaloty, M.M. The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp. Clin. Pathol. 2015, 24, 1509–1513. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Al-Seeni, M.N.; Al-Ghamdi, H.B. Comparison between the Hypolipidemic Activity of Parsley and Carob in Hypercholesterolemic Male Rats. BioMed Res. Int. 2017, 2017, 3098745. [Google Scholar] [CrossRef]
- Sour, S.; Chahinez, F.; Taif, A. Beneficial effects of carob pulp (Ceratonia siliqua) on lipids profile and oxidant/antioxidant status in obese rats. Rev. Agrobiol. 2019, 9, 1200–1206. [Google Scholar]
- Zunft, H.; Lüder, W.; Harde, A.; Haber, B.; Graubaum, H.; Koebnick, C.; Grünwald, J. Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur. J. Nutr. 2003, 42, 235–242. [Google Scholar] [CrossRef]
- Jaffari, H.; Abedi, B.; Fatolah, H. The effect of 8 weeks of carob supplementation and resistance training on lipid profile and irisin in obese men. IJSEHR 2020, 4, 91–95. [Google Scholar] [CrossRef]
- Ruiz-Roso, B.; Quintela, J.C.; de la Fuente, E.; Haya, J.; Pérez-Olleros, L. Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Food Hum. Nutr. 2010, 65, 50–56. [Google Scholar] [CrossRef]
- Gruendel, S.; Garcia, A.L.; Otto, B.; Wagner, K.; Bidlingmaier, M.; Burget, L.; Weickert, M.O.; Dongowski, G.; Speth, M.; Katz, N. Increased acylated plasma ghrelin, but improved lipid profiles 24-h after consumption of carob pulp preparation rich in dietary fibre and polyphenols. Br. J. Nutr. 2007, 98, 1170–1177. [Google Scholar] [CrossRef]
- Valero-Muñoz, M.; Martín-Fernández, B.; Ballesteros, S.; Lahera, V.; de las Heras, N. Carob Pod Insoluble Fiber Exerts Anti-Atherosclerotic Effects in Rabbits through Sirtuin-1 and Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α. J. Nutr. 2014, 144, 1378–1384. [Google Scholar] [CrossRef]
- Abu Hafsa, S.H.; Ibrahim, S.A.; Hassan, A.A. Carob pods (Ceratonia siliqua L.) improve growth performance, antioxidant status and caecal characteristics in growing rabbits. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Valero-Muñoz, M.; Ballesteros, S.; Ruiz-Roso, B.; Pérez-Olleros, L.; Martín-Fernández, B.; Lahera, V.; de las Heras, N. Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. Eur. J. Nutr. 2019, 58, 357–366. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente-Fernández, M.; González-Hedström, D.; Amor, S.; Tejera-Muñoz, A.; Fernández, N.; Monge, L.; Almodóvar, P.; Andrés-Delgado, L.; Santamaría, L.; Prodanov, M. Supplementation with a carob (Ceratonia siliqua L.) fruit extract attenuates the cardiometabolic alterations associated with metabolic syndrome in mice. Antioxidants 2020, 9, 339. [Google Scholar] [CrossRef]
- Macho-González, A.; Garcimartín, A.; López-Oliva, M.E.; Celada, P.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Carob-fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. J. Funct. Foods 2020, 64, 103600. [Google Scholar] [CrossRef]
- Nassar, I.Y. Chronic Carob Molasses Intake and Its Impact on Blood Lipemia and Glycemia in the Rat Model.(c2007). Ph.D. Thesis, Lebanese American University, Lausanne, Switzerland, 2007. [Google Scholar]
- Nguyen, T.M.D. Adiponectin: Role in Physiology and Pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Fujita, K.; Norikura, T.; Matsui-Yuasa, I.; Kumazawa, S.; Honda, S.; Sonoda, T.; Kojima-Yuasa, A. Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ. PLoS ONE 2021, 16, e0248073. [Google Scholar] [CrossRef]
- De la Fuente-Fernández, M.; de la Fuente-Muñoz, M.; Román-Carmena, M.; Amor, S.; García-Redondo, A.B.; Blanco-Rivero, J.; González-Hedström, D.; Espinel, A.E.; García-Villalón, Á.L.; Granado, M. Carob Extract Supplementation Together with Caloric Restriction and Aerobic Training Accelerates the Recovery of Cardiometabolic Health in Mice with Metabolic Syndrome. Antioxidants 2022, 11, 1803. [Google Scholar] [CrossRef]
- Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019, 11, 2704. [Google Scholar] [CrossRef]
- Ulbricht, C.; Chao, W.; Costa, D.; Rusie-Seamon, E.; Weissner, W.; Woods, J. Clinical evidence of herb-drug interactions: A systematic review by the natural standard research collaboration. Curr. Drug Metab. 2008, 9, 1063–1120. [Google Scholar] [CrossRef]
- Martić, N.; Zahorec, J.; Stilinović, N.; Andrejić-Višnjić, B.; Pavlić, B.; Kladar, N.; Šoronja-Simović, D.; Šereš, Z.; Vujčić, M.; Horvat, O.; et al. Hepatoprotective Effect of Carob Pulp Flour (Ceratonia siliqua L.) Extract Obtained by Optimized Microwave-Assisted Extraction. Pharmaceutics 2022, 14, 657. [Google Scholar] [CrossRef]
- Forestieri, A.M.; Galati, E.M.; Trovato, A.; Tumino, G. Effects of guar and carob gums on glucose, insulin and cholesterol plasma levels in the rat. Phytother. Res. 1989, 3, 1–4. [Google Scholar] [CrossRef]
- Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash, O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes Metab. Syndr. Obes. 2019, 12, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Cline, D.L.; Glavas, M.M.; Covey, S.D.; Kieffer, T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2020, 42, 1–28. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, F.; Jones, P. Effects of statins on high-density lipoproteins: A potential contribution to cardiovascular benefit. Cardiovasc. Drugs Ther. 2008, 22, 321–338. [Google Scholar] [CrossRef]
- Barter, P.J.; Brandrup-Wognsen, G.; Palmer, M.K.; Nicholls, S.J. Effect of statins on HDL-C: A complex process unrelated to changes in LDL-C: Analysis of the VOYAGER Database. J. Lipid Res. 2010, 51, 1546–1553. [Google Scholar] [CrossRef]
- Koh, K.K.; Park, S.M.; Quon, M.J. Leptin and Cardiovascular Disease. Circulation 2008, 117, 3238–3249. [Google Scholar] [CrossRef]
- Stadler, J.T.; Marsche, G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int. J. Mol. Sci. 2020, 21, 8985. [Google Scholar] [CrossRef]
- Averbukh, L.D.; Turshudzhyan, A.; Wu, D.C.; Wu, G.Y. Statin-induced Liver Injury Patterns: A Clinical Review. J. Clin. Transl. Hepatol. 2022, 10, 543–552. [Google Scholar] [CrossRef]
- Mustafa, M. Biochemical studies on nephroprotective effect of carob (Ceratonia siliqua L.) growing in Egypt. Nat. Sci. 2010, 8, 41–47. [Google Scholar]
- Khader, S.A.; KHadrah, N.M. Effect of Tamarind and Carob in Treatment of Kidney Functions Induced–Gentamicin in Rats. J. Home Econ. 2019, 29, 24–31. [Google Scholar]
- Yoshii, D.; Nakagawa, T.; Komohara, Y.; Kawaguchi, H.; Yamada, S.; Tanimoto, A. Phenotypic changes in macrophage activation in a model of nonalcoholic fatty liver disease using microminipigs. J. Ather. Thromb. 2021, 28, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, J.; Xu, Y.; Cao, H. Role of macrophages in experimental liver injury and repair in mice. Exp. Ther. Med. 2019, 17, 3835–3847. [Google Scholar] [CrossRef]
- Abdelmegeed, M.A.; Banerjee, A.; Yoo, S.H.; Jang, S.; Gonzalez, F.J.; Song, B.J. Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J. Hepatol. 2012, 57, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Abdelmegeed, M.A.; Choi, Y.; Godlewski, G.; Ha, S.K.; Banerjee, A.; Jang, S.; Song, B.J. Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci. Rep. 2017, 7, 39764. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tan, W.; Liu, X.; Deng, L.; Huang, L.; Wang, X.; Gao, X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother. 2021, 137, 111326. [Google Scholar] [CrossRef] [PubMed]
Group Order | Group Name | Treatment Received | Numbers of Animals | Treatment Duration |
---|---|---|---|---|
Group I | Control group | saline, 1 mL/kg (p.o.) | 8 | 4 weeks |
Group II | Hypercholesterolemic animals treated with saline | saline, 1 mL/kg (p.o.) | 8 | 4 weeks |
Group III | Hypercholesterolemic animals treated with carob extract | carob, 400 mg/kg (p.o.) | 8 | 4 weeks |
Group IV | Hypercholesterolemic animals treated with simvastatin | simvastatin, 10 mg/kg | 8 | 4 weeks |
Group V | Hypercholesterolemic animals treated with the combination of carob extract and simvastatin | carob, 400 mg/kg (p.o.) + simvastatin, 10 mg/kg (p.o.) | 8 | 4 weeks |
Variable | Group I | Group II | Group III | Group IV | Group V |
---|---|---|---|---|---|
Initial body weight (g) | 214.4 ± 23.7 | 257.8 ± 19.4 | 250.2 ± 15.2 | 207.8 ± 35.6 | 235.6 ± 17.6 |
Final body weight (g) | 366.2 ± 37.3 | 452.2 ± 11.3 | 405.4 ± 32.1 | 390.4 ± 37.7 | 413.8 ± 27.7 |
Weight gain (g) | 151.8 | 194.4 *,§ | 155.2 † | 182.6 *,§ | 178.2 *,§ |
Liver weight (g) | 11.20 ± 1.98 | 21.16 ± 2.38 *,§ | 16.36 ± 1.57 *,† | 17.19 ± 2.24 *,† | 16.77 ± 2.12 *,† |
Food intake, g/24 h/animal | 28.69 ± 1.78 | 21.75 ± 2.13 * | 20.94 ± 1.87 * | 21.18 ± 1.96 * | 22.10 ± 2.08 * |
Water intake, ml/24 h/animal | 53.74 ± 2.57 | 60.77 ± 3.34 *,§ | 70.40 ± 3.03 * | 62.75 ± 2.64 *,§ | 62.30 ± 2.85 *,§ |
Variable | Group I | Group II | Group III | Group IV | Group V |
---|---|---|---|---|---|
Triglycerides (mmol/L) | 1.23 ± 0.42 | 0.99 ± 0.55 | 1.02 ± 0.26 | 0.82 ± 0.20 | 0.94 ± 0.40 |
Total cholesterol (mmol/L) | 1.90 ± 0.11 | 3.93 ± 0.59 * | 3.21 ± 0.39 * | 2.55 ± 0.48 *,† | 2.44 ± 0.40 *,† |
HDL cholesterol (mmol/L) | 0.74 ± 0.15 | 0.49 ± 0.11 * | 0.61 ± 0.18 | 0.66 ± 0.17 | 0.71 ± 0.10 † |
LDL cholesterol (mmol/L) | 0.62 ± 0.28 | 3.45 ± 0.48 * | 2.79 ± 0.41 * | 2.03 ± 1.04 *,† | 1.86 ± 0.99 *,† |
LDL/HDL ratio | 0.83 ± 0.38 | 5.15 ± 0.83 * | 4.36 ± 0.95 * | 2.73 ± 1.63 *,† | 2.06 ± 0.46 *,† |
Variable | Group I | Group II | Group III | Group IV | Group V |
---|---|---|---|---|---|
AST (U/I) | 98.80 ± 6.72 | 91.00 ± 6.58 | 83.17 ± 9.70 * | 93.22 ± 13.71 | 92.14 ± 13.46 |
ALT (U/I) | 46.0 ± 6.82 | 45.90 ± 7.07 | 32.71 ± 6.40 *,† | 47.10 ± 7.72 § | 43.71 ± 7.34 |
Total bilirubin (µmol/L) | 1.65 ± 0.15 | 1.69 ± 0.17 | 1.63 ± 0.10 | 1.82 ± 0.11 | 1.68 ± 0.12 |
Urea (mmol/L) | 7.22 ± 0.50 | 5.54 ± 0.61 * | 4.88 ± 0.54 * | 5.41 ± 0.77 * | 5.34 ± 0.47 * |
Creatinine (μmol/L) | 42.92 ± 3.19 | 46.24 ± 2.04 | 47.60 ± 3.11 | 47.91 ± 1.62 | 48.41 ± 2.87 |
Uric acid (μmol/L) | 7.00 ± 1.0 | 6.71 ± 0.95 | 7.43 ± 1.51 | 7.00 ± 1.32 | 7.75 ± 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rašković, A.; Martić, N.; Tomas, A.; Andrejić-Višnjić, B.; Bosanac, M.; Atanasković, M.; Nemet, M.; Popović, R.; Krstić, M.; Vukmirović, S.; et al. Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model. Pharmaceutics 2023, 15, 2611. https://doi.org/10.3390/pharmaceutics15112611
Rašković A, Martić N, Tomas A, Andrejić-Višnjić B, Bosanac M, Atanasković M, Nemet M, Popović R, Krstić M, Vukmirović S, et al. Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model. Pharmaceutics. 2023; 15(11):2611. https://doi.org/10.3390/pharmaceutics15112611
Chicago/Turabian StyleRašković, Aleksandar, Nikola Martić, Ana Tomas, Bojana Andrejić-Višnjić, Milana Bosanac, Marko Atanasković, Marko Nemet, Radmila Popović, Marko Krstić, Saša Vukmirović, and et al. 2023. "Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model" Pharmaceutics 15, no. 11: 2611. https://doi.org/10.3390/pharmaceutics15112611
APA StyleRašković, A., Martić, N., Tomas, A., Andrejić-Višnjić, B., Bosanac, M., Atanasković, M., Nemet, M., Popović, R., Krstić, M., Vukmirović, S., & Stilinović, N. (2023). Carob Extract (Ceratonia siliqua L.): Effects on Dyslipidemia and Obesity in a High-Fat Diet-Fed Rat Model. Pharmaceutics, 15(11), 2611. https://doi.org/10.3390/pharmaceutics15112611