The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Animals
2.3. Preparation of SFN Granules
2.4. Characterization of SFN Granules
2.4.1. Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy Analysis of SFN Granules
2.4.2. Measurement of Drug Loading in SFN Granules
2.5. Characterization of Particles Released from SFN Granules
2.5.1. Determination of Particle Size and Size Distribution
2.5.2. Determination of the Percentage of SFN Entrapped in Particles
2.5.3. Evaluation of Morphology for SFN-Loaded Particles
2.6. Short-Term Particle Size Stability of SFN-Loaded Particles at 37 °C in Physiologically Relevant Media
2.7. Long-Term Stability of SFN Granules
2.8. In Vitro Dissolution Studies
2.9. Pharmacokinetic Study
2.10. Tissue Distribution Study
2.11. Statistical Analysis
3. Results
3.1. Characterization of SFN Granules and SFN-Loaded Particles
3.2. Physical state of SFN in SFN Granules
3.3. Short-Term Particle Stability of SFN-Loaded Particles in Physiological Conditions
3.4. Two-Step In Vitro Dissolution
3.5. Pharmacokinetics and Tissue Distribution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099. [Google Scholar] [CrossRef]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Chapter Four—Sorafenib. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 239–266. [Google Scholar]
- Chen, F.; Fang, Y.; Chen, X.; Deng, R.; Zhang, Y.; Shao, J. Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J. Pharm. Sci. 2020, 16, 318–336. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Z.; Chen, Y.; Lu, J.; Li, Y.; Wang, S.; Wu, G.; Qian, F. Improving Oral Bioavailability of Sorafenib by Optimizing the “Spring” and “Parachute” Based on Molecular Interaction Mechanisms. Mol. Pharm. 2016, 13, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Ahiwale, R.J.; Chellampillai, B.; Pawar, A.P. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J. Dispers. Sci. Technol. 2021, 43, 1568–1586. [Google Scholar] [CrossRef]
- Pamu, S.; Pamu, P.; Darna, V.R.N.B. Self Nanoemulsifying Drug Delivery System of Sorafenib Tosylate: Development and In VivoStudies. Pharm. Nanotechnol. 2020, 8, 471–484. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.-M.; Yan, S.-J. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int. J. Nanomed. 2012, 7, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- La Vine, D.B.T.; Coleman, T.A.; Davis, C.H.; Carbonell, C.E.; Davis, W.B. Frequent Dose Interruptions are Required for Patients Receiving Oral Kinase Inhibitor Therapy for Advanced Renal Cell Carcinoma. Am. J. Clin. Oncol. 2010, 33, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-J.; Zheng, B.; Wang, H.-Y.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin. 2017, 38, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Z.-H.; Qu, X.-J. The Adverse Effects of Sorafenib in Patients with Advanced Cancers. Basic Clin. Pharmacol. Toxicol. 2015, 116, 216–221. [Google Scholar] [CrossRef]
- Boudou-Rouquette, P.; Ropert, S.; Mir, O.; Coriat, R.; Billemont, B.; Tod, M.; Cabanes, L.; Franck, N.; Blanchet, B.; Goldwasser, F. Variability of sorafenib toxicity and exposure over time: A pharmacokinetic/pharmacodynamic analysis. Oncologist 2012, 17, 1204–1212. [Google Scholar] [CrossRef]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.-Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.-H.; Tak, W.Y.; et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344–1354. [Google Scholar] [CrossRef]
- Khan, M.A.; Raza, A.; Ovais, M.; Sohail, M.F.; Ali, S. Current state and prospects of nano-delivery systems for sorafenib. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 1105–1115. [Google Scholar] [CrossRef]
- Park, S.Y.; Kang, Z.; Thapa, P.; Jin, Y.S.; Park, J.W.; Lim, H.J.; Lee, J.Y.; Lee, S.-W.; Seo, M.-H.; Kim, M.-S.; et al. Development of sorafenib loaded nanoparticles to improve oral bioavailability using a quality by design approach. Int. J. Pharm. 2019, 566, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.; Haes, A.J. What Does Nanoparticle Stability Mean? J. Phys. Chem. C Nanomater Interfaces 2019, 123, 16495–16507. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Nguyen, N.T.D.; Chen, Y.A.; Hsieh, J.T.; Dong, X. Quantitative measurements of IR780 in formulations and tissues. J. Pharm. Biomed. Anal. 2021, 194, 113780. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Pham, K.; Li, D.; Penzak, S.R.; Dong, X. Novel in situ self-assembly nanoparticles for formulating a poorly water-soluble drug in oral solid granules, improving stability, palatability, and bioavailability. Int. J. Nanomed. 2016, 11, 1451–1460. [Google Scholar] [CrossRef]
- Le, S.; Chang, C.M.; Nguyen, T.; Liu, Y.; Chen, Y.A.; Hernandez, E.; Kapur, P.; Hsieh, J.-T.; Johnston, K.; Dong, X. Anticancer Efficacy of Oral Docetaxel Nanoformulation for Metronomic Chemotherapy in Metastatic Lung Cancer. J. Biomed. Nanotechnol. 2020, 16, 583–593. [Google Scholar] [CrossRef]
- Pham, K.; Li, D.; Guo, S.; Penzak, S.; Dong, X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J. Control. Release Off. J. Control. Release Soc. 2016, 226, 88–97. [Google Scholar] [CrossRef]
- Bobin-Dubigeon, C.; Heurgue-Berlot, A.; Bouche, O.; Amiand, M.B.; Le Guellec, C.; Bard, J.M. A new rapid and sensitive LC-MS assay for the determination of sorafenib in plasma: Application to a patient undergoing hemodialysis. Ther. Drug Monit. 2011, 33, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Dong, X. Design and evaluation of two-step biorelevant dissolution methods for docetaxel oral formulations. AAPS PharmSciTech 2022, 23, 113. [Google Scholar] [CrossRef] [PubMed]
- Ali Khan, A.; Mudassir, J.; Mohtar, N.; Darwis, Y. Advanced drug delivery to the lymphatic system: Lipid-based nanoformulations. Int. J. Nanomed. 2013, 8, 2733–2744. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Lee, J. Liposomal formulations for enhanced lymphatic drug delivery. Asian J. Pharm. Sci. 2013, 8, 96–103. [Google Scholar] [CrossRef]
Parameters | Day 0 | Two Weeks | One Month | Two Months | Three Months |
---|---|---|---|---|---|
Measured DL% | 9.7 ± 0.1 | 9.5 ± 0.4 | 9.5 ± 0.3 | 9.2 ± 0.2 | 9.4 ± 0.2 |
Degradation% | 0 | 0 | 0 | 0 | 0 |
Entrapped SFN% | 99.9 ± 0.029 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 99.9 ± 0.018 |
Particle size (nm) | 145 ± 5 | 146 ± 1 | 147 ± 4 | 160 ± 8 | 162 ± 22 |
P.I. | 0.266 ± 0.045 | 0.272 ± 0.028 | 0.29 ± 0.062 | 0.262 ± 0.05 | 0.268 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mans, J.C.; Dong, X. The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib. Pharmaceutics 2023, 15, 2691. https://doi.org/10.3390/pharmaceutics15122691
Mans JC, Dong X. The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib. Pharmaceutics. 2023; 15(12):2691. https://doi.org/10.3390/pharmaceutics15122691
Chicago/Turabian StyleMans, Jaylen C., and Xiaowei Dong. 2023. "The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib" Pharmaceutics 15, no. 12: 2691. https://doi.org/10.3390/pharmaceutics15122691
APA StyleMans, J. C., & Dong, X. (2023). The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib. Pharmaceutics, 15(12), 2691. https://doi.org/10.3390/pharmaceutics15122691