Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Selection of SMEDDS Components
2.2.1. Solubility Assessment
2.2.2. Transmittance and the Efficiency of Emulsification
2.3. Phase Diagram
2.4. Fabrication of MT-102-Loaded SMEDDSs
2.5. In Vitro Characterization of MT-102-Loaded SMEDDSs
2.5.1. Droplet Size, Zeta Potential, and Shape
2.5.2. Self-Emulsification Efficiency and Robustness to Dilution
2.5.3. Stability
2.5.4. In Vitro Drug Release
2.6. In Vivo Efficacy in Ulcerative Colitis-Induced Mice
2.7. Histological Analysis and Pro-Inflammatory Cytokine Secretion
2.8. HPLC Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Screening of SMEDDS Components
3.2. Construction of a Pseudoternary Phase Diagram
3.3. Fabrication and In Vitro Characterization of the MT-102-Loaded SMEDDSs
3.3.1. Preparation of Drug-Loaded SMEDDSs
3.3.2. Thermodynamic Stability and Robustness to Dilution
3.3.3. Morphology
3.3.4. In Vitro Drug Release
3.4. In Vivo Efficacy Studies in DSS-Induced Colitis Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Riansuwan, W.; Limsrivilai, J. Current status of IBD and surgery of Crohn’s disease in Thailand. Ann. Gastroenterol. Surg. 2021, 5, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. J. Clin. Gastroenterol. 2018, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochim. Biophys. Acta Gen. 2009, 1790, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Ju, S.; Park, S.; Jung, Y. 5-[(3-Carboxy-4-hydroxyphenyl) diazenyl] nicotinic acid, an azo-linked mesalazine-nicotinic acid conjugate, is a colon-targeted mutual prodrug against dextran sulfate sodium-induced colitis in mice. J. Pharm. Investig. 2021, 51, 317–325. [Google Scholar] [CrossRef]
- Bajracharya, R.; Song, J.G.; Lee, S.H.; Jeong, S.H.; Han, H.-K. Enhanced Oral Bioavailability of MT-102, a New Anti-inflammatory Agent, via a Ternary Solid Dispersion Formulation. Pharmaceutics 2022, 14, 1510. [Google Scholar] [CrossRef]
- Baral, K.C.; Song, J.G.; Lee, S.H.; Bajracharya, R.; Sreenivasulu, G.; Kim, M.; Lee, K.; Han, H.-K. Enhanced Bioavailability of AC1497, a Novel Anticancer Drug Candidate, via a Self-Nanoemulsifying Drug Delivery System. Pharmaceutics 2021, 13, 1142. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Madan, J.R.; Patil, K.; Awasthi, R.; Dua, K. Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 100–116. [Google Scholar] [CrossRef]
- Sunazuka, Y.; Ueda, K.; Higashi, K.; Tanaka, Y.; Moribe, K. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int. J. Pharm. 2018, 546, 263–271. [Google Scholar] [CrossRef]
- Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)–challenges and road ahead. Drug Deliv. 2015, 22, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hussain, A.; Hussain, M.S.; Mirza, M.A.; Iqbal, Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev. Ind. Pharm. 2013, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Q.; Yang, Q.; Wei, Q.; Man, N.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Enhancement of Oral Bioavailability and Anti-hyperuricemic Activity of Isoliquiritigenin via Self-Microemulsifying Drug Delivery System. AAPS Pharm. Sci. Tech. 2019, 20, 218. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.S.; Chen, L.; Hu, Y.N.; Dai, J.L.; Ma, B.; Tang, Q.F.; Tan, X.M. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int. J. Nanomedicine 2020, 15, 2059–2070. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Jantratid, E.; Janssen, N.; Reppas, E.; Dressman, J.B. Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update. Pharm. Res. 2008, 25, 1663. [Google Scholar] [CrossRef]
- Bou-Chacra, N.; Melo, K.; Morales, I.; Stippler, E.S.; Kesisoglou, F.; Yazdanian, M.; Löbenberg, R. Evolution of Choice of Solubility and Dissolution Media After Two Decades of Biopharmaceutical Classification System. AAPS J. 2017, 19, 989–1001. [Google Scholar] [CrossRef]
- Krstić, M.; Medarevic, D.; Jelena, D.; Ibric, S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In Lipid Nanocarriers for Drug Targeting; Grumezesecu, A.M., Ed.; Elsevier: Oxford, UK, 2018; pp. 473–508. [Google Scholar]
- Mohsin, K. Design of Lipid-Based Formulations for Oral Administration of Poorly Water-Soluble Drug Fenofibrate: Effects of Digestion. AAPS Pharm. Sci. Tech. 2012, 13, 637–646. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of medium-chain fatty acids: A concise review. J. Food Sci. Technol. 2023, 60, 2143–2152. [Google Scholar] [CrossRef]
- Parveen, R.; Baboota, S.; Ali, J.; Ahuja, A.; Vasudev, S.S.; Ahmad, S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int. J. Pharm. 2011, 413, 245–253. [Google Scholar] [CrossRef]
- Singh, A.K.; Chaurasiya, A.; Awasthi, A.; Mishra, G.; Asati, D.; Khar, R.K.; Mukherjee, R. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS Pharm. Sci. Tech. 2009, 10, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Joyce, P.; Parrow, A.; Jõemetsa, S.; Höök, F.; Larsson, P.; Bergström, C.A. Influence of Bile Composition on Membrane Incorporation of Transient Permeability Enhancers. Mol. Pharmaceutics 2020, 17, 4226–4240. [Google Scholar] [CrossRef]
- Gao, W.; Guo, Y.; Wang, C.; Lin, Y.; Yu, L.; Sheng, T.; Wu, Z.; Gong, Y. Indirubin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice through the inhibition of inflammation and the induction of Foxp3-expressing regulatory T cells. Acta Histochem. 2016, 118, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Ma, R.; Li, L.; Wu, W.; Cai, D.; Lu, Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol. Res. 2022, 175, 105972. [Google Scholar] [CrossRef]
- Tokuyasu, N.; Shosmori, K.; Amano, K.; Honjo, S.; Sakamoto, T.; Watanabe, J.; Amisaki, M.; Morimoto, M.; Uchinaka, E.; Yagyu, T.; et al. Indirubin, a Constituent of the Chinese Herbal Medicine Qing-Dai, Attenuates Dextran Sulfate Sodium-induced Murine Colitis. Yonago Acta Med. 2018, 61, 128–136. [Google Scholar] [CrossRef]
- Atukuri, D.; Mujavar, P.H. Recent Update on the Pharmacological Significance of Isatis tinctoria L. (Brassicaceae) Extracts. Polycycl. Aromat. Compd. 2022, 42, 4843–4861. [Google Scholar] [CrossRef]
- Xie, J.; Tian, S.; Liu, J.; Huang, S.; Yang, M.; Yang, X.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Combination Therapy with Indigo and Indirubin for Ulcerative Colitis via Reinforcing Intestinal Barrier Function. Oxid. Med. Cell. Longev. 2023, 2023, 2894695. [Google Scholar] [CrossRef]
No. of Inversions | % Transmittance | |
---|---|---|
Surfactants | ||
Labrafil 1944 CS | 36 | 29.53 ± 3.21 |
Labrafil 2125 CS | 28 | 32.78 ± 1.60 |
Kolliphor ELP | 29 | 98.64 ± 0.51 |
Kolliphor RH40 | 21 | 99.37 ± 0.10 |
Labrasol | 10 | 20.04 ± 0.77 |
Kolliphor HS 15 | 12 | 92.21± 6.99 |
Tween 80 | 11 | 99.63 ± 0.61 |
Cosurfactants | ||
Ethanol | 11 | 99.85 ± 0.20 |
PEG 200 | 18 | 100.01 ± 0.41 |
Propylene Glycol | 14 | 99.25 ± 0.24 |
Transcutol HP | 11 | 99.40 ± 0.81 |
Capmul PG8 | 38 | 95.80 ± 1.60 |
Ratio (w/w) | Size (nm) | PDI | Zeta-Potential (mV) | Indirubin Content (µg/g) | Emulsification Time (s) | Transmittance (%) | |
---|---|---|---|---|---|---|---|
Oil | Smix (1:1) | ||||||
15 | 85 | 177.5 ± 2.80 | 0.24 ± 0.01 | −7.34 ± 0.33 | 275.21 ± 5.58 | 27 | 90.56 ± 0.021 |
Treatment | Clarity * | Size (nm) | PDI | Zeta Potential (mV) | Indirubin Content (µg/g) |
---|---|---|---|---|---|
Centrifugation | Clear | 176.6 ± 6.14 | 0.21 ± 0.01 | −7.41 ± 0.47 | 267.62 ± 12.99 |
Heat and cool cycle | Clear | 190.6 ± 3.51 | 0.21 ± 0.01 | −8.26 ± 0.41 | 261.86 ± 4.61 |
Freeze–thaw cycle | Clear | 171.3 ± 3.93 | 0.22 ± 0.02 | −8.22 ± 0.26 | 238.96 ± 14.53 |
Distilled Water | 0.1 N HCl | Phosphate Buffer (pH 6.8) | |||||||
---|---|---|---|---|---|---|---|---|---|
Dilution Fold | 10 | 100 | 1000 | 10 | 100 | 1000 | 10 | 100 | 1000 |
Clarity | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear |
Size (nm) | 191.9 ± 2.44 | 169.2 ± 1.14 | 156.1 ± 6.62 | 190.1 ± 0.90 | 168.8 ± 4.09 | 165.4 ± 3.16 | 181.2 ± 0.49 | 170.4 ± 2.65 | 159.0 ± 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baral, K.C.; Lee, S.H.; Song, J.G.; Jeong, S.H.; Han, H.-K. Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics 2023, 15, 2720. https://doi.org/10.3390/pharmaceutics15122720
Baral KC, Lee SH, Song JG, Jeong SH, Han H-K. Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics. 2023; 15(12):2720. https://doi.org/10.3390/pharmaceutics15122720
Chicago/Turabian StyleBaral, Kshitis Chandra, Sang Hoon Lee, Jae Geun Song, Seong Hoon Jeong, and Hyo-Kyung Han. 2023. "Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice" Pharmaceutics 15, no. 12: 2720. https://doi.org/10.3390/pharmaceutics15122720
APA StyleBaral, K. C., Lee, S. H., Song, J. G., Jeong, S. H., & Han, H. -K. (2023). Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics, 15(12), 2720. https://doi.org/10.3390/pharmaceutics15122720