30-Year Development of Inactivated Virus Vaccine in China
Abstract
:1. Overview of Inactivated Vaccines in China
2. Inactivated Tick-Borne Encephalitis Vaccine
3. Inactivated Hemorrhagic Fever with Renal Syndrome Vaccine
4. Hepatitis A Vaccine
5. Inactivated Rabies Vaccine for Human Use
6. Inactivated Japanese Encephalitis Vaccine
7. Inactivated Enterovirus Type 71 Vaccine
8. Inactivated Poliomyelitis Vaccine
9. Quadrivalent Influenza Lysis Vaccine
10. Inactivated 2019-nCoV Vaccine
11. Challenges and Prospects
11.1. Challenges
11.2. Prospects
11.2.1. Development of Novel Cell Substrates
11.2.2. Development of Novel Virus Inactivation Modalities and Novel Adjuvants
11.2.3. Development of Polyvalent Inactivated Vaccines
11.2.4. A Variety of Means to Reduce Manufacturing Costs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huan, Y.; Bi, Y. Research progress and prospect of vaccines for the coronavirus disease 2019 (COVID-19). Sci. Sin. Vitae 2022, 52, 237–248. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Zou, S. Development of culture process for large-scale preparation of inactivated tick-borne encephalitis vaccine (hamster kidney cells) by cell factory. Chin. J. Biol. 2021, 34, 5. [Google Scholar]
- Song, Z.; Liu, Y. Research progress on forest encephalitis vaccine. Prog. Microbiol. Immunol. 2005, 33, 56–59. [Google Scholar]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic fever with renal syndrome: Pathogenesis and clinical picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef]
- You, J.; Zhang, Z. Research progress of hanta virus vaccine. Chin. J. Hyg. Insect. Equip. 2022, 28, 90–93. [Google Scholar]
- Hu, H.; Du, H.; Yi, H. Advances in antiviral treatment and vaccine development of hemorrhagic fever with renal syndrome. Infect. Dis. Info. 2020, 33, 4. [Google Scholar] [CrossRef]
- Luo, J. Evaluation of the Effectiveness of Live Attended and Inactivated Hepatitis A Vaccine; Institute of Medical Biology, Chinese Academy of Medical Sciences: Kunming, China, 2017. [Google Scholar]
- Yang, X.-M. Seventy years of review of vaccine research and development in New China. Chin. J. Biol. 2019, 32, 8. [Google Scholar]
- Meng, Y.; Jiang, H. Research progress on Hepatitis A vaccine. Jiangxi Chem. Ind. 2020, 94–95. [Google Scholar] [CrossRef]
- Yin, W.; He, D. HealiveTM Inactivated Domestic Hepatitis A Vaccine: Production and Application. Chin. J. Vaccines Immun. 2004, 10, 174–177. [Google Scholar] [CrossRef]
- Chen, E.; Ma, B.; Wei, S. The study on adaptation of hepatitis A virusYN5 strain in Vero cell. Prog. Microbiol. Immunol. 2003, 1–4. [Google Scholar]
- Ma, B.; Wu, K.; Tan, S. The stability of Vero cell adapted HAV strain (YN5) during passage cultivation. J. Yunnan Univ. 2007, 29, 335–337. [Google Scholar]
- Li, Y.; Zhang, Y.; Nong, Y. Safety and immunogenicity of hepatitis A vaccine (vero cells) in humans. Appl. Prev. Med. 2009, 15, 183–185. [Google Scholar]
- Zhang, F. An Evaluation on Safety and Immunogenicity of Two Different Cell Matrix Radians Vacuines; Hebei Medical University: Shijiazhuang, China, 2016. [Google Scholar]
- Wu, X.; Smith, T.G.; Rupprecht, C.E. From brain passage to cell adaptation: The road of human rabies vaccine development. Expert Rev. Vaccines 2011, 10, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Malerczyk, C.; Detora, L.; Gniel, D. Imported human rabies cases in Europe, the United States and Japan, 1990 to 2010. J. Travel Med. 2011, 18, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Gao, Z.; Liu, H.; Fang, Q.; Ji, Z.; Zheng, S.; Zhang, Q.; Liu, Y.; Zhang, R.; Dai, F.; et al. Preparation Method of Human Diploid Cell Rabies Vaccine Virus Solution. Patent No. CN103060276B, 3 December 2014. [Google Scholar]
- Zhang, F.; Ma, S.; Xing, Y. Research progress on Japanese encephalitis virus vaccine. J. Anyang Inst. Technol. 2022, 21, 105–108. [Google Scholar]
- Wang, H.; Liang, G. Comparison of nucleotide and deduced amino acid sequences of E gene of the newly isolated Japanese encephalitis virus strains and inactivated vaccine strain P3. Chin. J. Exp. Clin. Virol. 2006, 20, 5. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Sun, Y.; Han, D.; Zhou, L.; Fan, X.; Wang, Y. Preparation of Purified Japanese Encephalitis Vaccine with Vero Cells by Using Bioreactor. Chin. J. Biol. 2009, 22, 591–592. [Google Scholar]
- Li, Q.; Yang, Y.; Wang, L.; Chen, J.; Yang, J.; You, D. Method and Vaccine for Preparing Inactivated Japanese Encephalitis Vaccine for Human Use. Patent No. CN114272366A, 5 April 2022. [Google Scholar]
- Cai, Y.; Hou, W. Human Embryonic Lung Fibroblast Japanese Encephalitis Vaccine and Its Preparation Method. Patent No. CN101524536B, 10 October 2012. [Google Scholar]
- Li, Q.; Li, P.; Yu, H.; Wu, Z.; Zeng, X.; Bai, Z. A Freeze-Dried Preparation of Inactivated Japanese Encephalitis Vaccine and Its Preparation Method. Patent No. CN109395074A, 1 March 2019. [Google Scholar]
- Li, T.; Deng, L. Research progress on EV71 related vaccines. Beijing Med. J. 2015, 37, 3. [Google Scholar] [CrossRef]
- Wang, J.; Xu, G. Research progress on human enterovirus 71 vaccine. Zhejiang Prev. Med. 2011, 23, 5. [Google Scholar] [CrossRef]
- Chen, L.; Sun, X.; Wei, J.; Zheng, X.; Li, W.; Wang, Z. Active and passive surveillance on post-marketing safety of enterovirus 71 inactivated vaccine. J. Wenzhou Med. Univ. 2020, 50, 149–153. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, G. Current status of research on poliovirus and poliomyelitis vaccine. Chin. J. Biol. 2020, 33, 4. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, L.; Zhou, L.; Liu, L. Safety of domestic Sabin strain inactivated poliovirus vaccine. Chin. J. Vaccines Immun. 2017, 23, 383–386. [Google Scholar]
- Xie, Q.; Liu, Y.; Lu, W. Progress in research on multivalent influenza vaccine and universal influenza vaccine. Chin. J. Biol. 2021, 34, 475–480. [Google Scholar]
- Liu, S.; Meng, L.; Xi, P.; Zhang, Y.; Fan, B.; Li, C.; Xia, S.; Pan, R. Safety and immunogenicity of a split-virion quadrivalent influenza vaccine. Prev. Med. 2020, 32, 5. [Google Scholar] [CrossRef]
- Ma, F.; Kang, B.; Ma, C.; Liu, Z.; Yang, D.; Qiao, Z.; Wang, M.; Ma, Z.; Wang, J. Review of Vero Cell-Based Influenza Vaccine. Biotechnol. Bull. 2022, 38, 137–143. [Google Scholar]
- Zhang, Z.; Wang, L.; Li, Q. Technical Guidelines for Influenza Vaccination in China (2022–2023). J. Hebei Med. Univ. 2023, 44, 373–375+391. [Google Scholar]
- Xiao, Y.; Guo, X.; Han, S. Post-marketing evaluation on safety and immunogenicity of influenzavirus vaccine (split virion), inactivated, quadrivalent. Chin. J. Biol. 2020, 32, 1091–1095. [Google Scholar]
- Lin, J.; Shen, J.; Cao, G. Category and working mechanisms of SARS-CoV-2 vaccines and their effectiveness in clinical trials. Shanghai J. Prev. Med. 2021, 33, 1088–1095. [Google Scholar] [CrossRef]
- Yao, Y.F.; Wang, Z.J.; Jiang, R.D.; Hu, X.; Zhang, H.J.; Zhou, Y.W.; Shi, Z.L. Protective efficacy of inactivated vaccine against SARS-CoV-2 infection in mice and non-human primates. Virol. Sin. 2021, 36, 879–889. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Yang, X. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Ella, R.; Vadrevu, K.M.; Jogdand, H.; Prasad, S.; Reddy, S.; Sarangi, V.; Bhargava, B. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: A double-blind, randomised, phase 1 trial. Lancet Infect. Dis. 2021, 21, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Ella, R.; Reddy, S.; Jogdand, H.; Sarangi, V.; Ganneru, B.; Prasad, S.; Das, D.; Raju, D.; Praturi, U.; Sapkal, G.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: Interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect. Dis. 2021, 21, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Zhao, M.; Tian, X.; Chen, D.; Zhang, Y.T.; Jin, P.F. Global research and development of COVID-19 vaccine and therapeutics: Status and trend. Chin. J. New Drugs 2022, 31, 8. [Google Scholar] [CrossRef]
- Rosenblum, H.G.; Gee, J.; Liu, R.; Marquez, P.L.; Zhang, B.; Strid, P.; Abara., W.E.; McNeil, M.M.; Myers, T.R.; Hause, A.M.; et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: An observational study of reports to the Vaccine Adverse Event Reporting System and V-Safe. Lancet Infect. Dis. 2022, 22, 802–812. [Google Scholar] [CrossRef]
- Kulkarni, R. Antibody-dependent enhancement of viral infections. In Dynamics of Immune Activation in Viral Diseases; Springer: Singapore, 2020; pp. 9–41. [Google Scholar] [CrossRef]
- Deng, S.Q.; Yang, X.; Wei, Y.; Chen, J.T.; Wang, X.J.; Peng, H.J. A review on dengue vaccine development. Vaccines 2020, 8, 63. [Google Scholar] [CrossRef]
- Jeyapalan, S.; Fernando, V.N.; Jahan, N.K.; Yap, C.G.; Pillai, N. Challenges Associated with Dengue Vaccine Development. Sci. Res. J. Clin. Med. Sci. 2021, 1, 11–18. [Google Scholar]
- Wilder-Smith, A. Dengue vaccine development: Challenges and prospects. Curr. Opin. Infect. Dis. 2022, 35, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Palese, P. Universal epitopes of influenza virus hemagglutinins? Nat. Struct. Mol. Biol. 2009, 16, 233–234. [Google Scholar] [CrossRef]
- Sharma, A.R.; Lee, Y.H.; Nath, S.; Lee, S.S. Recent developments and strategies of Ebola virus vaccines. Curr. Opin. Pharmacol. 2021, 60, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Takada, A.; Kawaoka, Y.; Feldmann, H. Response of immune cells to Ebola virus infection: Implications for immunopathogenesis. J. Infect. Dis. 2003, 188, 221–231. [Google Scholar]
- Gupta, T.; Gupta, S.K. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int. Immunopharmacol. 2020, 86, 106717. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ma, X.F.; Shao, H.J.; Li, N.; Yu, X.H.; Zhang, J.C. Recent research progress on subtypes of Omicron. J. Hainan Med. Coll. 2022, 28, 961–965. [Google Scholar]
- World Health Organization. Interim Recommendations for Heterologous COVID-19 Vaccine Schedules: Interim Guidance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Yang, H.; Dong, Y.; Bian, Y.; Xu, N.; Wu, Y.; Yang, F.; Liu, X. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. Nat. Commun. 2022, 13, 6288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Cheng, A.; Wang, M.; Wu, Y.; Yang, Q.; Tian, B.; Chen, S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front. Immunol. 2022, 13, 1088690. [Google Scholar] [CrossRef]
- Collins, D.R.; Gaiha, G.D.; Walker, B.D. CD8+ T cells in HIV control, cure and prevention. Nat. Rev. Immunol. 2020, 20, 471–482. [Google Scholar] [CrossRef]
- Su, J.; Jing, L.; Zou, W. Analysis on R&D and production of novel coronavirus vaccine in China: Take inactivated vaccine as an example. South China J. Prev. Med. 2021, 47, 861–864. [Google Scholar] [CrossRef]
- Ling, Y. Safety Risk Assessment and Quality Control of Adventitious Agents Throughout the Life Cycle of Vaccine Products. China Pharm. 2022, 31, 16–20. [Google Scholar]
- Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705–713. [Google Scholar] [CrossRef]
- Rosa, S.S.; Prazeres, D.M.; Azevedo, A.M.; Marques, M.P. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Yang, H. Challenges and Prospect of mRNA Tumor Vaccine Research and Development. Prog. Pharm. Sci. 2022, 46, 339–346. [Google Scholar]
- Wang, M.; Liu, W.; Qiao, Z.; Wang, J. Status of safety assessment of cell substrate for production of vaccines for human use. Chin. J. Biol. 2021, 34, 362–371. [Google Scholar] [CrossRef]
- Bockstal, V.; Tiemessen, M.M.; Achterberg, R.; Van Wordragen, C.; Knaapen, A.M.; Serroyen, J.; Zahn, R. An inactivated poliovirus vaccine using Sabin strains produced on the serum-free PER. C6® cell culture platform is immunogenic and safe in a non-human primate model. Vaccine 2018, 36, 6979–6987. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Leroux-Roels, G.; Shukarev, G.; Schuitemaker, H.; Cahill, C.; de Rooij, R.; Jacquet, J.M. Safety and immunogenicity of a new Sabin inactivated poliovirus vaccine candidate produced on the PER. C6® cell-line: A phase 1 randomized controlled trial in adults. Hum. Vaccines Immunother. 2021, 17, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Bellamy, D.; Flaxman, A.; Mair, C.; Ellis, C.; Ramon, R.L.; Ramos Lopez, F.; Mitton, C.; Baker, M.; Poulton, I.; et al. Safety and immunogenicity of the heterosubtypic influenza A vaccine MVA-NP+M1 manufactured on the AGE1. CR. pIX avian cell line. Vaccines 2019, 7, 33. [Google Scholar] [CrossRef]
- Trabelsi, K.; Zakour, M.B.; Jordan, I.; Sandig, V.; Rourou, S.; Kallel, H. Development of an efficient veterinary rabies vaccine production process in the avian suspension cell line AGE1. CR. pIX. BMC Biotechnol. 2022, 22, 17. [Google Scholar] [CrossRef]
- Hegde, N.R. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum. Vaccines Immunother. 2015, 11, 1223–1234. [Google Scholar] [CrossRef]
- Nikolay, A.; Léon, A.; Schwamborn, K.; Genzel, Y.; Reichl, U. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl. Microbiol. Biotechnol. 2018, 102, 8725–8737. [Google Scholar] [CrossRef]
- Aubrit, F.; Perugi, F.; Léon, A.; Guéhenneux, F.; Champion-Arnaud, P.; Lahmar, M.; Schwamborn, K. Cell substrates for the production of viral vaccines. Vaccine 2015, 33, 5905–5912. [Google Scholar] [CrossRef] [PubMed]
- Coussens, P.M.; Smith, K.A.; Weber, P.S.; Colvin, C.J. Immortalized chick embryo cell line adapted to serum-free growth conditions and capable of replicating human and reassortant H5N1 influenza strains for vaccine production. Vaccine 2011, 29, 8661–8668. [Google Scholar] [CrossRef]
- Petiot, E.; Proust, A.; Traversier, A.; Durous, L.; Dappozze, F.; Gras, M.; Guillard, C.; Balloul, J.M.; Rosa-Calatrava, M. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccine 2018, 36, 3101–3111. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Shuang, F.; Weng, S.; He, J. Cloning of a new fibroblast cell line from an early primary culture from mandarin fish (Siniperca chuatsi) fry for efficient proliferation of megalocytiviruses. Cytotechnology 2014, 66, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Ragan, I.K.; Hartson, L.M.; Dutt, T.S.; Obregon-Henao, A.; Maison, R.M.; Gordy, P.; Fox, A.; Karger, B.R.; Cross, S.T.; Kapuscinski, M.L.; et al. A whole virion vaccine for COVID-19 produced via a novel inactivation method and preliminary demonstration of efficacy in an animal challenge model. Vaccines 2021, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Lockerble, O.; Kell, S.D.; Ruane, P.H.; Platz, M.S.; Martin, C.B.; Ravanat, J.L.; Cadet, J.; Goodrich, R.P. Riboflavin and UV-light based pathogen reduction: Extent and consequence of DNA damage at the molecular level. Photochem. Photobiol. 2004, 80, 15–21. [Google Scholar]
- Sir Karakus, G.; Tastan, C.; Dilek Kancagi, D.; Yurtsever, B.; Tumentemur, G.; Demir, S.; Turan, R.D.; Abanuz, S.; Cakirsoy, D.; Seyis, U.; et al. Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates. Sci. Rep. 2021, 11, 5804. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W.J.; Kim, J.Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef]
- Fabrizi, F.; Cerutti, R.; Garcia-Agudo, R.; Bellincioni, C.; Porata, G.; Frontini, G.; Messa, P. Adjuvanted recombinant HBV vaccine (HBV-AS04) is effective over extended follow-up in dialysis population. An open-label non randomized trial. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 905–912. [Google Scholar] [CrossRef]
- McKeage, K.; Romanowski, B. AS04-adjuvanted human papillomavirus (HPV) types 16 and 18 vaccine (cervarix®) a review of its use in the prevention of premalignant cervical lesions and cervical cancer causally related to certain oncogenic HPV types. Drugs 2011, 71, 465–488. [Google Scholar]
- Cacciottolo, M.; Nice, J.B.; Li, Y.; LeClaire, M.J.; Twaddle, R.; Mora, C.L.; Adachi, S.Y.; Chin, E.R.; Young, M.; Angeles, J.; et al. Exosome-Based Multivalent Vaccine: Achieving Potent Immunization, Broadened Reactivity, and Strong T-Cell Responses with Nanograms of Proteins. Microbiol. Spectr. 2023, 11, e00503-23. [Google Scholar] [CrossRef] [PubMed]
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
1958 | Changchun Institute of Biological Products Co., Ltd. | Chick embryo cell | Chicken embryo cells replace mouse brain tissue |
1967 | Changchun Institute of Biological Products Co., Ltd. | Hamster kidney cell | Hamster kidney cells replace chicken embryo cells |
2001 | Changchun Institute of Biological Products Co., Ltd. | Hamster kidney cell | Continuous flow centrifugation, ultrafiltration concentration, and column chromatography purification were used to develop a purified vaccine |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
2002 | Changchun Institute of Biological Products Co., Ltd. | Hamster kidney cell | Bivalent vaccine replace Monovalent vaccine |
2003 | Royal (Wuxi) Biopharmaceuticals Co., Ltd. | Vero cell | Vero cell replace Hamster kidney cell |
2005 | Zhejiang Tianyuan Biopharmaceuticals Co., Ltd. | Gerbil kidney cell | Gerbil kidney cell replace Hamster kidney cell |
2014 | Jilin YaTai Biopharmaceuticals Co., Ltd. | Vero cell | Improve the ultrafiltration purification technology and improve the concentration and deployment method of bivalent vaccine |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
2002 | National Institutes for Food and Drug Control and the Beijing Sinovac Biotech Co., Ltd. | 2BS cell | The first inactivated hepatitis A vaccine with independent intellectual property rights was marketed |
2003 | Walvax Biotechnology Co., Ltd. | Vero cell | Vero cells replace human embryonic lung diploid cells and are still under investigation |
2005 | Beijing Sinovac Biotech Co., Ltd. | 2BS cell | Hepatitis A and B combined vaccine |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
1999 | Jilin Yatai Biological Pharmaceutical Co., Ltd. | Hamster kidney cell | First domestic listing |
2003 | Liaoning Yisheng Biopharma Co., Ltd. | Vero cell | Vero cells replace hamster kidney cells |
2012 | Chengdu Kanghua Biological Products Co., Ltd. | Human diploid cell | Human diploid cells replace Vero cells |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
1968 | National Vaccine and Serum Institute | Hamster kidney cell | First domestic listing |
2008 | Liaoning Chengda Biotechnology Co., Ltd. | Vero cell | Vero cells replace hamster kidney cells |
2009 | Chengdu Kanghua Biological Products Co., Ltd. | Human diploid cell | Human diploid cells replace hamster kidney cells and are still under investigation |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
2015 | Institute of Medical Biology, Chinese Academy of Medical Sciences | KMB17 cell | The world’s first inactivated EV71 vaccine |
2015 | Beijing Sinovac Biotech Co., Ltd. | Vero cell | Vero cells replace KMB17 cells |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
2015 | Institute of Medical Biology, Chinese Academy of Medical Sciences | Vero cell | The world’s first sIPV vaccine |
2017 | Sinopharm National Vaccine and Serum Institute | Vero cell | Pre certification by WHO in 2022 |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
2007 | Beijing Sinovac Biotech Co., Ltd. | Chick embryo | China’s first human H5N1 pandemic influenza vaccine |
2009 | Beijing Sinovac Biotech Co., Ltd. | Chick embryo | The world’s first vaccine for influenza A (H1N1) virus cleavage |
2018 | Hualan Biological Bacterin Inc. | chick embryo | Qurivalent influenza lysis vaccines replace monovalent vaccines |
2022 | Wuhan Institute of Biological Products | MDCK cell | MDCK cells replaces chick embryo |
Time (Year) | Production Unit | Cell Line | Stage of Development |
---|---|---|---|
April 2020 | Wuhan Institute of Biological Products | Vero cell | The world’s first inactivated 2019-nCoV Vaccine |
December 2020 | National Vaccine and Serum Institute | Vero cell | Obtained WHO emergency use authorization on 7 May 2021 |
March 2021 | Beijing Kexing Zhongwei Biological Technology Co., Ltd. (China) | Vero cell | Obtained WHO emergency use authorization in June 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Shen, A.; Cheng, Y.; Zhang, C.; Yang, X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics 2023, 15, 2721. https://doi.org/10.3390/pharmaceutics15122721
Shi J, Shen A, Cheng Y, Zhang C, Yang X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics. 2023; 15(12):2721. https://doi.org/10.3390/pharmaceutics15122721
Chicago/Turabian StyleShi, Jinrong, Ailin Shen, Yao Cheng, Chi Zhang, and Xiaoming Yang. 2023. "30-Year Development of Inactivated Virus Vaccine in China" Pharmaceutics 15, no. 12: 2721. https://doi.org/10.3390/pharmaceutics15122721
APA StyleShi, J., Shen, A., Cheng, Y., Zhang, C., & Yang, X. (2023). 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics, 15(12), 2721. https://doi.org/10.3390/pharmaceutics15122721