Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparations of TEF
2.3. Preparation of TEF-Loaded Ethosomes
2.4. Optimization and Development of TEF-Loaded Ethosomes Using the QbD Approach
2.5. Vesicle Size, Polydispersity Index (PDI)
2.6. Entrapment Efficiency
2.7. Characterization of Optimized Ethosomal Formulation
2.7.1. Morphology of the Ethosomes by Transmission Electron Microscopy (TEM)
2.7.2. Zeta Potential
2.8. Stability Studies
2.9. Fabrication of TEF-Loaded Ethosomal Gel
2.10. Fabrication of Conventional TEF-Loaded Gel
2.11. Evaluation of TEF-Loaded Ethosomal Gel
2.11.1. Homogeneity
2.11.2. Drug Content
2.11.3. Rheological Characterization
2.11.4. Texture Analysis
2.12. In Vitro Drug Release Study
2.13. Ex Vivo Skin Permeation Study
2.14. Skin Permeation Dynamics
2.14.1. DSC Analysis of Skin
2.14.2. FTIR Analysis of Skin
2.14.3. Histological Investigation of the Skin
2.15. Assessment of Depth of Skin Permeation
2.16. Skin Irritation Studies
3. Result and Discussion
3.1. Extractive Value
3.2. Preparation of TEF-Loaded Ethosomal Gel
3.3. Optimization and Development of TEF-Loaded Ethosomal Gel
3.4. Particle Size and Polydispersity Index (PDI)
3.5. Entrapment Efficiency
3.6. Characterization of Ethosomes
3.6.1. Morphology of the Ethosomal Formulation with Transmission Electron Microscopy (TEM)
3.6.2. Zeta Potential
3.7. Stability Studies
3.8. Evaluation of TEF-Loaded Ethosomal Gel
3.8.1. Homogeneity
3.8.2. Drug Content
3.9. Rheology
3.10. Texture Analysis
3.11. In Vitro Drug Release Study
3.12. Ex Vivo Skin Permeation Study
3.13. Skin Permeation Dynamics
3.13.1. DSC Analysis
3.13.2. FTIR Analysis
3.13.3. Histological Investigation of the Skin
3.13.4. Assessment of Depth of Skin Permeation
3.14. Skin Irritation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohapatra, S.; Iqbal, Z.; Ahmad, S.; Kohli, K.; Farooq, U.; Padhi, S.; Kabir, M.; Panda, A.K. Menopausal Remediation and Quality of Life (QoL) Improvement: Insights and Perspectives. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1624–1636. [Google Scholar] [CrossRef] [PubMed]
- Zakir, F.; Mohapatra, S.; Farooq, U.; Mirza, M.A.; Iqbal, Z. Introduction to metabolic disorders. In Drug Delivery Systems for Metabolic Disorders; Academic Press: Cambridge, MA, USA, 2022; pp. 1–20. [Google Scholar]
- Singh, M.; Mohapatra, S.; Sanskriti; Kaur, N.; Mushtaq, A.; Zahid, S.; Pandith, A.A.; Mansoor, S.; Iqbal, Z. Harnessing the Potential of Phytochemicals for Breast Cancer Treatment. In Dietary Phytochemicals; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Stournaras, E.; Tziomalos, K. Herbal medicine-related hepatotoxicity. World J. Hepatol. 2015, 7, 2189. [Google Scholar] [CrossRef] [PubMed]
- Amadi, C.N.; Orisakwe, O.E. Herb-induced liver injuries in developing nations: An update. Toxics 2018, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenzel, C.; Teschke, R. Herbal Hepatotoxicity: Clinical characteristics and listing compilation. Int. J. Mol. Sci. 2016, 17, 588. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.F.; Wen, K.C.; Hsiao, M.L. Adulteration by synthetic therapeutic substances of traditional Chinese medicines in Taiwan. J. Clin. Pharmacol. 1997, 37, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Ma, C.; Motley, T.; Kronenberg, F.; Kennelly, E.J. Phytochemical fingerprinting to thwart black cohosh adulteration: A 15 Actaea species analysis. Phytochem. Anal. 2011, 22, 339–351. [Google Scholar] [CrossRef]
- Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv. 2010, 1, 109–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.; Galloway, A.; Rolland, J.; Pohlhaus, P.; Schorzman, D.; Hunter, M.; Desimone, J.; Clark, C. Compositions and Methods for Intracellular Delivery and Release of Cargo. International Patent Application No. PCT/US2009/041559, 29 October 2009. [Google Scholar]
- Ainbinder, D.; Touitou, E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. J. Deliv. Target. Ther. Agents 2005, 12, 297–303. [Google Scholar] [CrossRef]
- Fu, X.; Shi, Y.; Wang, H.; Zhao, X.; Sun, Q.; Huang, Y.; Qi, T.; Lin, G. Ethosomal gel for improving transdermal delivery of thymosin β-4. Int. J. Nanomed. 2019, 14, 9275–9284. [Google Scholar] [CrossRef]
- Masada-Atsumi, S.; Kumeta, Y.; Takahashi, Y.; Hakamatsuka, T.; Goda, Y. Evaluation of the botanical origin of black cohosh products by genetic and chemical analyses. Biol. Pharm. Bull. 2014, 37, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, S. Benefits of Black Cohosh (Cimicifuga racemosa) for Women Health: An Up-Close and In-Depth Review. Pharmaceuticals 2022, 15, 278. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Acharya, S.; Acharya, N. Optimization of size controlled poly (lactide-co-glycolic acid) nanoparticles using quality by design concept. Asian J. Pharm. 2015, 9, 152. [Google Scholar] [CrossRef]
- Almuqbil, R.M.; Sreeharsha, N.; Nair, A.B. Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics 2022, 14, 1419. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 2003; Volume 2, ISBN 9241545178.
- Jain, K.A. A Mechanistic Approach to Determination of Anti-diabetic activity of Calystegia sepium R.Br. Flowering plants in normal and Streptozotocin induced rats. Asian J. Res. Pharm. Sci. 2014, 4, 55–70. [Google Scholar]
- Quezon, M.L.; Ysrae, M.C. Antidiabetic, Antioxidant and Hepatoprotective Activities of the Ethanolicextract of the leaves of Diospyros pilosanthera blanco (Family: Ebenaceae) and Its Preformulation Development. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 1266–1279. [Google Scholar]
- Schubert, M.A.; Müller-Goymann, C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles—Evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003, 55, 125–131. [Google Scholar] [CrossRef]
- Kis, N.; Kovács, A.; Budai-Szűcs, M.; Gácsi, A.; Csányi, E.; Csóka, I.; Berkó, S. Investigation of silicone-containing semisolid in situ film-forming systems using QbD tools. Pharmaceutics 2019, 11, 660. [Google Scholar] [CrossRef] [Green Version]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef] [Green Version]
- Esposito, E.; Drechsler, M.; Huang, N.; Pavoni, G.; Cortesi, R.; Santonocito, D.; Puglia, C. Ethosomes and organogels for cutaneous administration of crocin. Biomed. Microdevices 2016, 18, 108. [Google Scholar] [CrossRef] [Green Version]
- Ganta, S.; Amiji, M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol. Pharm. 2009, 6, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Monawwar, S.; Mohapatra, S.; Alex, T.S.; Ahmed, A.; Taleuzzaman, M.; Ali, A.; Ansari, M.J.; Mirza, M.A.; Iqbal, Z. In silico drug screening based development of novel formulations for onychomycosis management. Gels 2021, 7, 221. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Vyas, T.; Amiji, M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J. Pharm. Sci. 2008, 97, 2745–2756. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Jain, P.; Mohapatra, S.; Mustafa, G.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. A Novel Approach of Targeting Linezolid Nanoemulsion for the Management of Lymph Node Tuberculosis. ACS Omega 2022, 7, 15688–15694. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.G.; Kapoor, C.; Sanjana, A. Formulation and evaluation of oral sustained in situ gelling system of roxatidine. Indones. J. Pharm. 2017, 28, 178. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, S.; Mirza, M.A.; Hilles, A.R.; Zakir, F.; Gomes, A.C.; Ansari, M.J.; Iqbal, Z.; Mahmood, S. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review. Gels 2021, 7, 207. [Google Scholar] [CrossRef]
- Bashir, S.; Teo, Y.Y.; Naeem, S.; Ramesh, S.; Ramesh, K. PH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil. PLoS ONE 2017, 12, e0179250. [Google Scholar] [CrossRef] [Green Version]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Mahdi, W.A.; Bukhari, S.I.; Imam, S.S.; Alshehri, S.; Zafar, A.; Yasir, M. Formulation and optimization of butenafine-loaded topical nano lipid carrier-based gel: Characterization, irritation study, and anti-fungal activity. Pharmaceutics 2021, 13, 1087. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Khuroo, T.; Verma, D.; Khuroo, A.; Ali, A.; Iqbal, Z. Simultaneous delivery of paclitaxel and erlotinib from dual drug loaded PLGA nanoparticles: Formulation development, thorough optimization and in vitro release. J. Mol. Liq. 2018, 257, 52–68. [Google Scholar] [CrossRef]
- Anjum, F.; Zakir, F.; Verma, D.; Aqil, M.; Singh, M.; Jain, P.; Mirza, M.A.; Anwer, M.K.; Iqbal, Z. Exploration of Nanoethosomal Transgel of Naproxen Sodium for the Treatment of Arthritis. Curr. Drug Deliv. 2020, 17, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Hooda, A.; Sradhanjali, M. Popsy Formulation and Evaluation of Novel Solid Lipid Microparticles for the Sustained Release of Ofloxacin. Pharm. Nanotechnol. 2017, 5, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ouyang, W.Q.; Wei, Y.P.; Syed, S.F.; Hao, C.S.; Wang, B.Z.; Shang, Y.H. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study. Int. J. Nanomed. 2016, 11, 5971–5987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchagnula, R.; Bokalial, R.; Sharma, P.; Khandavilli, S. Transdermal delivery of naloxone: Skin permeation, pharmacokinetic, irritancy and stability studies. Int. J. Pharm. 2005, 293, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Dobó, D.G. Pharmaceutical Development and Design of Thermosensitive Liposomes Based on the QbD Approach. Molecules 2022, 27, 1536. [Google Scholar] [CrossRef]
- Zakir, F.; Ahmad, A.; Farooq, U.; Mirza, M.A.; Tripathi, A.; Singh, D.; Shakeel, F.; Mohapatra, S.; Ahmad, F.J.; Kohli, K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine 2020, 15, 1167–1187. [Google Scholar] [CrossRef]
- Sudhakar, K.; Mishra, V.; Jain, S.; Rompicherla, N.C.; Malviya, N.; Tambuwala, M.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int. J. Pharm. 2021, 610, 121226. [Google Scholar] [CrossRef]
- Iqbal, Z. Oral Formulation of Paclitaxel and Erlotinib Polymeric Nanoparticles: A Potential Combination to Treat Breast Cancer. Biomed. J. Sci. Tech. Res. 2020, 31, 24338–24340. [Google Scholar] [CrossRef]
- Ansari, S.; Rashid, M.A.I.; Waghmare, P.R.; Nobes, D.S. Measurement of the flow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel. SN Appl. Sci. 2020, 2, 1787. [Google Scholar] [CrossRef]
- Prasad, P.S.; Imam, S.S.; Aqil, M.; Sultana, Y.; Ali, A. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv. 2016, 23, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, S.; Tilak, A.; Sharma, J.; Dave, V.; Sharma, S.; Yadav, R.; Patel, S.; Verma, K.; Tak, K. Flurbiprofen loaded ethosomes—Transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis. 2019, 18, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaiah, Y.S.R.; Satyanarayana, V.; Karthikeyan, R.S. Effect of the solvent system on the in vitro permeability of nicardipine hydrochloride through excised rat epidermis. J. Pharm. Pharm. Sci. 2002, 5, 123–130. [Google Scholar] [PubMed]
- Garidel, P. Mid-FTIR-microspectroscopy of stratum corneum single cells and stratum corneum tissue. Phys. Chem. Chem. Phys. 2002, 4, 5671–5677. [Google Scholar] [CrossRef]
- Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci. 2013, 92, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Klauda, J.B. Models for the Stratum Corneum Lipid Matrix: Effects of Ceramide Concentration, Ceramide Hydroxylation, and Free Fatty Acid Protonation. J. Phys. Chem. B 2018, 122, 11996–12008. [Google Scholar] [CrossRef]
- Panchagnula, R.; Salve, P.S.; Thomas, N.S.; Jain, A.K.; Ramarao, P. Transdermal delivery of naloxone: Effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int. J. Pharm. 2001, 219, 95–105. [Google Scholar] [CrossRef]
- Froebe, C.L.; Simion, F.A.; Rhein, L.D.; Cagan, R.H.; Kligman, A. Stratum corneum lipid removal by surfactants: Relation to in vivo irritation. Dermatology 1990, 181, 277–283. [Google Scholar] [CrossRef]
- Endo, M.; Yamamoto, T.; Ijuin, T. Effect of nonionic surfactants on the percutaneous absorption of Tenoxicam. Chem. Pharm. Bull. 1996, 44, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.C.; Maibach, H.I. Animal models for percutaneous absorption. J. Appl. Toxicol. 2015, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Salmannejad, F.; Tayebeh Ghari, T.T. Formulation and evaluation of ethosomes for transdermal delivery of clonazepam. Int. J. Biosci. 2015, 6, 308–316. [Google Scholar] [CrossRef]
QTPP Elements | Targets | CQAs | Justification |
---|---|---|---|
Dosage form | Ethosomal Gel | - | Semisolid dosage form for ↑ the patient compliance |
Route of administration | Transdermal | - | Permeate through the skin without systemic side effects |
Dosage strength | Good | - | Influence the frequency of application |
Vesicular size | Small (˂100 nm) | yes | Affect the drug permeation, drug release & content uniformity |
PDI | Uniform | yes | Affect the drug permeation, drug release & content uniformity |
Ethanol concentration | ˂50% | yes | Affect the vesicular size, PDI, drug entrapment & skin irritation |
Lipid concentration | Optimized | yes | Influence the vesicular size, PDI & drug entrapment |
Surfactant concentration of | Minimum | yes | Affect the vesicular size, PDI, drug entrapment & stability of the formulation |
pH | Compatible with skin | Yes | Affect the physiochemical stability & irritability |
Temperature | Optimized | Yes | Impacts the vesicular size & PDI |
Solubility | - | Yes | Impacts the formulation process & drug permeation |
Log P | - | Yes | Impacts the drug release, skin permeation & retention |
Drug entrapment | High | Yes | Affecting drug delivery, dermal dissemination & dosing frequency |
Drug release | Good | Yes | Affect the formulation success |
Needle type | Small size | Yes | Impacts the vesicular size & PDI |
Injection rate | Optimized | Yes | Affects the vesicular size & PDI |
Stirring speed | Optimized | Yes | Impacts the vesicular size & PDI |
Stirring time | Optimized | Yes | Influences the vesicular size & PDI |
Parameter | Optimized Value |
---|---|
Stirring time | 10–15 min |
Stirring Speed | 2200–2300 rpm |
Temperature | 30° |
Concentration of Surfactant | 1% |
Factors | Levels and Ranges | ||
---|---|---|---|
−1 | 0 | +1 | |
Concentration of ethanol(% v/v) | 25 | 35 | 45 |
Concentration of lipid (Lipod S 100) (% v/v) | 2 | 4 | 6 |
Factors | Coded Levels | |
---|---|---|
Independent Variables | Low Level (−1) | High Level (+1) |
A: Concentration of ethanol (% v/v) | 25 | 45 |
B: Concentration of lipid (Lipoid S 100) (% v/v) | 2 | 6 |
Dependent Variables | Constraints | |
Response 1 = Particle Size (nm) (Priority set at: +++++) | 80–421 | |
Response 2 = PDI (Priority set at: +++) | 0.16–0.45 | |
Drug Entrapment (Priority set at: +++++) | 94–98.5 |
Quality Attributes (Range of Acceptance) | Reason for Criticality |
---|---|
Particle size (≤200 nm) | Good Skin Penetrability |
PDI (≤0.3) | Size Uniformity |
% Drug Entrapment (100) | Maximum drug utilization |
S No. | Formulation Code | Lipid (% w/v) | Ethanol (% v/v) | Particle Size (nm) Mean ± SD (n = 3) | PDI Mean ± SD (n = 3) | Drug Entrapment (%) Mean ± SD (n = 3) |
---|---|---|---|---|---|---|
1 | F 01 | 4 | 35 | 413 ± 2.08 | 0.41 ± 0.04 | 95.8 ± 0.75 |
2 | F 02 | 6.82843 | 35 | 421 ± 2.08 | 0.45 ± 0.07 | 98 ± 1.81 |
3 | F 03 | 2 | 45 | 80 ± 2.08 | 0.16 ± 0.03 | 93.5 ± 1.74 |
4 | F 04 | 4 | 35 | 416 ± 1.52 | 0.43 ± 0.02 | 96.5 ± 2 |
5 | F 05 | 6 | 45 | 342 ± 2.08 | 0.35 ± 0.05 | 96 ± 2.3 |
6 | F 06 | 6 | 25 | 380 ± 3.05 | 0.39 ± 0.05 | 98.7 ± 2.8 |
7 | F 07 | 2 | 25 | 310 ± 2.64 | 0.3 ± 0.06 | 96.5 ± 2.2 |
8 | F 08 | 1.17157 | 35 | 188 ± 1.52 | 0.268 ± 0.04 | 92 ± 2.7 |
9 | F 09 | 4 | 20.8579 | 350 ± 3.78 | 0.38 ± 0.06 | 97 ± 4 |
10 | F 010 | 4 | 49.1421 | 163 ± 1.15 | 0.25 ± 0.07 | 93 ± 2.6 |
11 | F 011 | 4 | 35 | 408 ± 4.04 | 0.36 ± 0.03 | 95 ± 2.6 |
12 | F 012 | 4 | 35 | 410 ± 2 | 0.41 ± 0.05 | 95.7 ± 3.2 |
13 | F 013 | 4 | 35 | 414 ± 2.08 | 0.43 ± 0.06 | 94.5 ± 3.5 |
Parameters | 0 Week | 1st Week | 2nd Week | 3rd Week | 4th Week |
---|---|---|---|---|---|
Size | 84 ± 1.88 | 89 ± 3 | 96 ± 2.4 | 103 ± 3.30 | 108 ± 1.98 |
PDI | 0.128 ± 0.03 | 0.243 ± 0.06 | 0.286 ± 0.07 | 0.312 ± 0.01 | 0.311 ± 0.03 |
Drug entrapment | 94.5% ± 1.54% | 94.2% ± 2.1% | 93% ± 1.9% | 92.12% ± 1.5% | 92.2% ± 2.1% |
Firmness (g) Force 1 | Consistency (g. s) Area F-T 1:2 | Cohesiveness (g) Force 2 | Work of Cohesion (g. s) Area F-T2:3 |
---|---|---|---|
257.93 | 530.31 | −104.30 | −349.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, S.; Mirza, M.A.; Ahmad, S.; Farooq, U.; Ansari, M.J.; Kohli, K.; Iqbal, Z. Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables. Pharmaceutics 2023, 15, 465. https://doi.org/10.3390/pharmaceutics15020465
Mohapatra S, Mirza MA, Ahmad S, Farooq U, Ansari MJ, Kohli K, Iqbal Z. Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables. Pharmaceutics. 2023; 15(2):465. https://doi.org/10.3390/pharmaceutics15020465
Chicago/Turabian StyleMohapatra, Sradhanjali, Mohd. Aamir Mirza, Sayeed Ahmad, Uzma Farooq, Mohammad Javed Ansari, Kanchan Kohli, and Zeenat Iqbal. 2023. "Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables" Pharmaceutics 15, no. 2: 465. https://doi.org/10.3390/pharmaceutics15020465
APA StyleMohapatra, S., Mirza, M. A., Ahmad, S., Farooq, U., Ansari, M. J., Kohli, K., & Iqbal, Z. (2023). Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables. Pharmaceutics, 15(2), 465. https://doi.org/10.3390/pharmaceutics15020465