Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Nanoemulsions
2.3. Characterization of Nanoemulsions
2.4. HPLC–UV Method Validation
2.5. Stability
2.6. In Vitro Skin Permeation Studies
2.7. Scale-Up
2.8. Antioxidant Activity
2.9. Tyrosinase Inhibition Assay
2.10. Cell Viability Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Formulation Development and Characterization
3.3. Stability
3.4. In Vitro Permeation Studies
3.5. Scale-Up
3.6. Antioxidant Activity
3.7. Tyrosinase Inhibition Assay
3.8. Cell Viability Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, S.-H.; Hwang, Y.-J.; Lee, S.-K.; Park, K.-C. Heterogeneous pathology of melasma and its clinical implications. Int. J. Mol. Sci. 2016, 17, 824. [Google Scholar] [CrossRef]
- Passeron, T.; Picardo, M. Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 2018, 31, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ephrem, E.; Elaissari, H.; Greige-Gerges, H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int. J. Pharm. 2017, 526, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, A.; Salvador, A.; Chisvert, A. A rapid and reliable size-exclusion chromatographic method for determination of kojic dipalmitate in skin-whitening cosmetic products. Talanta 2008, 75, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Gonçalez, M.L.; Marcussi, D.G.; Calixto, G.M.F.; Corrêa, M.A.; Chorilli, M. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded W/O/W multiple emulsions intended for skin disorders. BioMed Res. Int. 2015, 2015, 304591. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Gazzi, R.P.; Contri, R.V.; Pohlmann, A.R.; Guterres, S.S.; Frank, L.A. Pharmaceutical Nanocarriers. ADME Encycl. 2021, 1–16. [Google Scholar] [CrossRef]
- Aledresi, S.S.; Alshaibani, A.J.; Abood, A.N. Enhancing the loading capacity of kojic acid dipalmitate in liposomes. Lat. Am. J. Pharm. 2020, 39, 1333–1339. [Google Scholar]
- Al-Edresi, S.; Baie, S. Formulation and stability of whitening VCO-in-water nano-cream. Int. J. Pharm. 2009, 373, 174–178. [Google Scholar] [CrossRef]
- Al-Edresi, S.; Baie, S. In-vitro and in-vivo evaluation of a photo-protective kojic dipalmitate loaded into nano-creams. Asian J. Pharm. Sci. 2010, 5, 251–265. [Google Scholar]
- Tanveer, N.; Khan, H.M.S.; Akhtar, N. Whitening effect of kojic acid dipalmitate loaded nanosized ethosomal gel for the treatment of hyperpigmentation: In vitro and in vivo characterization. J. Cosmet. Dermatol. 2022, 21, 6850–6862. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.S.; Vieira, A.B.D.; Kamada, I. A Rosa Mosqueta no tratamento de feridas abertas: Uma revisão. Rev. Bras. Enferm. 2009, 62, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Contri, R.V.; Kulkamp-Guerreiro, I.C.; da Silva, S.J.; Frank, L.A.; Pohlmann, A.R.; Guterres, S.S. Nanoencapsulation of rose-hip oil prevents oil oxidation and allows obtainment of gel and film topical formulations. AAPS PharmSciTech 2016, 17, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; Pinelo, M.; Sineiro, J.; Núñez, M.J. Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. Bioresour. Technol. 2007, 98, 3506–3512. [Google Scholar] [CrossRef]
- Kayath, H.; Dhawan, S.; Nanda, S. In-vitro estimation of photo-protective potential of rosehip seed oil and QbD based development of a nanoformulation. Curr. Nanomed. 2019, 9, 216–231. [Google Scholar] [CrossRef]
- De Godoi, S.N.; Quatrin, P.M.; Sagrillo, M.R.; Nascimento, K.; Wagner, R.; Klein, B.; Santos, R.C.V.; Ourique, A.F. Evaluation of stability and in vitro security of nanoemulsions containing eucalyptus globulus oil. BioMed Res. Int. 2017, 2017, 2723418. [Google Scholar] [CrossRef] [Green Version]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- United States Pharmacopeia. <841>Specific Gravity. In The United States Pharmacopoeia and National Formulary USP 42-NF 37; USP: Rockville, MD, USA, 2019; p. 7041. [Google Scholar]
- Tazesh, S.; Tamizi, E.; Shadbad, M.S.; Mostaghimi, N.; Monajjemzadeh, F. Comparative stability of two anti-hyperpigmentation agents: Kojic acid as a natural metabolite and its di-palmitate ester, under oxidative stress; application to pharmaceutical formulation design. Adv. Pharm. Bull. 2021, 12, 329–335. [Google Scholar] [CrossRef]
- Ich Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology, Q2 (R1); Somatek Inc.: San Diego, CA, USA, 1995. [Google Scholar]
- Pohlmann, A.R.; Mezzalira, G.; Venturini, C.G.; Cruz, L.; Bernardi, A.; Jäger, E.; Battastini, A.M.O.; da Silveira, N.P.; Guterres, S.S. Determining the simultaneous presence of drug nanocrystals in drug-loaded polymeric nanocapsule aqueous suspensions: A relation between light scattering and drug content. Int. J. Pharm. 2008, 359, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.M.; Contri, R.V.; Jornada, D.S.; Pohlmann, A.R.; Guterres, S.S. Vitamin K1–Loaded lipid-core nanocapsules: Physicochemical characterization and in vitro skin permeation. Ski. Res. Technol. 2013, 19, e223–e230. [Google Scholar] [CrossRef] [PubMed]
- Lajis, A.F.B.; Hamid, M.; Ariff, A.B. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J. Biomed. Biotechnol. 2012, 2012, 952452. [Google Scholar] [CrossRef] [Green Version]
- Jacobus Berlitz, S.; De Villa, D.; Maschmann Inácio, L.A.; Davies, S.; Zatta, K.C.; Guterres, S.S.; Külkamp-Guerreiro, I.C. Azelaic acid-loaded nanoemulsion with hyaluronic acid—A new strategy to treat hyperpigmentary skin disorders. Drug Dev. Ind. Pharm. 2019, 45, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Schmaltz, C.; Santos, J.V.; Guterres, S.S. Nanocápsulas como uma tendência promissora na área cosmética: A imensa potencialidade deste pequeno grande recurso. Infarma Ciências Farm. 2005, 16, 80–85. [Google Scholar]
- Contri, R.V.; Fiel, L.A.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Transport of substances and nanoparticles across the skin and in vitro models to evaluate skin permeation and/or penetration. In Nanocosmetics and Nanomedicines: New Approaches for Skin Care; Beck, R., Guterres, S., Pohlmann, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–36. ISBN 978-3-642-19791-8. [Google Scholar]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.S.; Frank, L.A.; Contri, R.V.; Longhi, M.S.; Pohlmann, A.R.; Guterres, S.S. Nanotechnology-based alternatives for the topical delivery of immunosuppressive agents in psoriasis. Int. J. Pharm. 2023, 631, 122535. [Google Scholar] [CrossRef]
- Syed Azhar, S.N.A.; Ashari, S.E.; Salim, N. Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment. Int. J. Nanomed. 2018, 13, 6465–6479. [Google Scholar] [CrossRef] [Green Version]
- Roselan, M.A.; Ashari, S.E.; Faujan, N.H.; Mohd Faudzi, S.M.; Mohamad, R. An Improved Nanoemulsion Formulation Containing Kojic Monooleate: Optimization, Characterization and In Vitro Studies. Molecules 2020, 25, 2616. [Google Scholar] [CrossRef]
- Barradas, T.N.; de Campos, V.E.B.; Senna, J.P.; Coutinho, C.S.C.; Tebaldi, B.S.; Silva, K.G.H.; Mansur, C.R.E. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 214–221. [Google Scholar] [CrossRef]
- Martínez-Pla, J.J.; Martín-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Evaluation of the pH effect of formulations on the skin permeability of drugs by biopartitioning micellar chromatography. J. Chromatogr. A 2004, 1047, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Basniwal, P.K.; Shrivastava, P.K.; Jain, D. Hydrolytic degradation profile and RP-HPLC estimation of cilostazol in tablet dosage form. Indian J. Pharm. Sci. 2008, 70, 222. [Google Scholar] [CrossRef]
- Waterman, K.C.; Adami, R.C.; Alsante, K.M.; Antipas, A.S.; Arenson, D.R.; Carrier, R.; Hong, J.; Landis, M.S.; Lombardo, F.; Shah, J.C.; et al. Hydrolysis in pharmaceutical formulations. Pharm. Dev. Technol. 2002, 7, 113–146. [Google Scholar] [CrossRef]
- Khezri, K.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Hedayatizadeh-Omran, A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: Kojic acid nanostructured lipid carrier. Artif. Cells Nanomed. Biotechnol. 2021, 49, 38–47. [Google Scholar] [CrossRef]
- Ezzat, H.; Rady, M.; Hathout, R.M.; Abdel-Halim, M.; Mansour, S. Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J. Drug Deliv. Sci. Technol. 2021, 64, 102625. [Google Scholar] [CrossRef]
- Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2019, 110, 582–593. [Google Scholar] [CrossRef]
- Le Guyader, G.; Do, B.; Vieillard, V.; Andrieux, K.; Paul, M. Comparison of the in vitro and ex vivo permeation of existing topical formulations used in the treatment of facial angiofibroma and characterization of the variations observed. Pharmaceutics 2020, 12, 1060. [Google Scholar] [CrossRef]
- Park, K.M.; Kwon, K.M.; Lee, S.H. Evaluation of the antioxidant Activities and tyrosinase inhibitory property from mycelium culture extracts. Evid.-Based Complement. Altern. Med. 2015, 2015, 616298. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Thng, S.T.G.; Verma, N.K.; Gautam, H.K. Melanogenesis inhibitors. Acta Derm. Venereol. 2018, 98, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Roselan, M.A.; Zakaria, N.; Faujan, N.H.; Latif, M.A.M.; Faudzi, S.M.M.; Ab Hadi, H.; Ashari, S.E. In vitro cytotoxicity assay, mushroom tyrosinase inhibitory activity and release analysis of kojic monooleate nanodelivery system and in silico molecular docking study against 2Y9X target enzyme. J. Drug Deliv. Sci. Technol. 2021, 66, 102764. [Google Scholar] [CrossRef]
- Zaid, A.N.; Al Ramahi, R. Depigmentation and anti-aging treatment by natural molecules. Curr. Pharm. Des. 2019, 25, 2292–2312. [Google Scholar] [CrossRef] [PubMed]
- Contri, R.V.; Fiel, L.A.; Alnasif, N.; Pohlmann, A.R.; Guterres, S.S.; Schäfer-Korting, M. Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int. J. Pharm. 2016, 507, 12–20. [Google Scholar] [CrossRef] [PubMed]
Formulation | NERO | NERO1KDP | NERO2KDP |
---|---|---|---|
Average size (nm) (laser diffraction) | 123 ± 2 | 117 ± 2 | 122 ± 5 |
Span value | 0.842 ± 0.009 | 0.827 ± 0.003 | 0.918 ± 0.135 |
Average size (nm) (dynamic light scattering) | 72 ± 2 | 74 ± 1 | 73 ± 1 |
PDI | 0.281 ± 0.020 | 0.269 ± 0.004 | 0.273 ± 0.004 |
Zeta potential (mV) | −8.57 ± 1.92 | −9.44 ± 0.53 | −10.24 ± 0.66 |
Ph | 6.7 ± 0.1 | 6.8 ± 0.1 | 6.7 ± 0.1 |
Density (g/mL) | 0.9983 ± 0.0002 | 0.9975 ± 0.0005 | 0.9977 ± 0.0007 |
KDP content (%) | - | 101.29 ± 1.62 | 96.67 ± 4.96 |
Incorporation efficiency (%) | - | 97.79 ± 2.01 | 97.60 ± 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilles, J.C.; Duarte, L.P.; Ruaro, T.C.; Zimmer, A.R.; Kulkamp-Guerreiro, I.C.; Contri, R.V. Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics 2023, 15, 468. https://doi.org/10.3390/pharmaceutics15020468
Zilles JC, Duarte LP, Ruaro TC, Zimmer AR, Kulkamp-Guerreiro IC, Contri RV. Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics. 2023; 15(2):468. https://doi.org/10.3390/pharmaceutics15020468
Chicago/Turabian StyleZilles, Júlia Capp, Larissa Pedron Duarte, Thaís Carine Ruaro, Aline Rigon Zimmer, Irene Clemes Kulkamp-Guerreiro, and Renata Vidor Contri. 2023. "Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma" Pharmaceutics 15, no. 2: 468. https://doi.org/10.3390/pharmaceutics15020468
APA StyleZilles, J. C., Duarte, L. P., Ruaro, T. C., Zimmer, A. R., Kulkamp-Guerreiro, I. C., & Contri, R. V. (2023). Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics, 15(2), 468. https://doi.org/10.3390/pharmaceutics15020468