Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CQ-Loaded Nanocarrier
2.2. Nanocarrier Characterization
2.3. Drug Content
2.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.5. Thermal Analysis
2.6. Fungal Strains
2.7. In Vitro Antifungal Susceptibility Testing
2.8. Time Kill Assay
2.9. Sorbitol Protection Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Nanostructure Characterization
3.2. In Vitro Antifungal Susceptibility Testing
3.3. Time Kill Assay
3.4. Sorbitol Protection Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayette, M.-P.; Sacheli, R. Dermatophytosis, Trends in Epidemiology and Diagnostic Approach. Curr. Fungal Infect. Rep. 2015, 9, 164–179. [Google Scholar] [CrossRef]
- Kaul, S.; Yadav, S.; Dogra, S. Treatment of Dermatophytosis in Elderly, Children, and Pregnant Women. Indian Dermatol. Online J. 2017, 8, 310–318. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, F.; Zeng, M.; Mao, Y.; Song, Z. Drug Repurposing Strategies in the Development of Potential Antifungal Agents. Appl. Microbiol. Biotechnol. 2021, 105, 5259–5279. [Google Scholar] [CrossRef]
- Flores Dalla Lana, D.; Neiva Lavorato, S.; Minussi Giuliani, L.; Cruz, L.; Lopes, W.; Henning Vainstein, M.; Camargo Fontana, I.; Rigon Zimmer, A.; de Araújo Freitas, M.; de Andrade, S.F.; et al. Discovery of a Novel and Selective Fungicide That Targets Fungal Cell Wall to Treat Dermatomycoses: 1,3-Bis(3,4-Dichlorophenoxy)Propan-2-Aminium Chloride. Mycoses 2020, 63, 197–211. [Google Scholar] [CrossRef]
- de Souza, A.L.R.; Kiill, C.P.; Kolenyak dos Santos, F.; Marielli da Luz, G.M.; Rocha e Silva, H.; Chorilli, M.; Palmira Daflon Gremiao, M. Nanotechnology-Based Drug Delivery Systems for Dermatomycosis Treatment. Curr. Nanosci. 2012, 8, 512–519. [Google Scholar] [CrossRef]
- Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorg. Med. Chem. 2012, 20, 5678–5698. [Google Scholar] [CrossRef]
- Fuentefria, A.M.; Pippi, B.; Dalla Lana, D.F.; Donato, K.K.; de Andrade, S.F. Antifungals Discovery: An Insight into New Strategies to Combat Antifungal Resistance. Lett. Appl. Microbiol. 2018, 66, 2–13. [Google Scholar] [CrossRef]
- Bareggi, S.R.; Cornelli, U. Clioquinol: Review of Its Mechanisms of Action and Clinical Uses in Neurodegenerative Disorders. CNS Neurosci. Ther. 2012, 18, 41–46. [Google Scholar] [CrossRef]
- Pippi, B.; Reginatto, P.; Machado, G.D.R.M.; Bergamo, V.Z.; Lana, D.F.D.; Teixeira, M.L.; Franco, L.L.; Alves, R.J.; Andrade, S.F.; Fuentefria, A.M. Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design. Med. Mycol. 2017, 55, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Schimmer, A.D. The Toxicology of Clioquinol. Toxicol. Lett. 2008, 182, 1–6. [Google Scholar] [CrossRef] [PubMed]
- WHO. ATC Classification Index with DDDs, 2020th ed.; World Health Organization: Oslo, Norway, 2021. [Google Scholar]
- Barcia, E.; Salama, A.; Fernández-Carballido, A.; Negro, S. Protective Effects of Clioquinol on Human Neuronal-like Cells: A New Formulation of Clioquinol-Loaded PLGA Microspheres for Alzheimer’s Disease. J. Drug Target. 2011, 19, 637–646. [Google Scholar] [CrossRef]
- Oliveri, V.; Vecchio, G. 8-Hydroxyquinolines in Medicinal Chemistry: A Structural Perspective. Eur. J. Med. Chem. 2016, 120, 252–274. [Google Scholar] [CrossRef] [PubMed]
- Olaleye, O.A.; Kaur, M.; Onyenaka, C.; Adebusuyi, T. Discovery of Clioquinol and Analogues as Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 Infection, ACE2 and ACE2—Spike Protein Interaction in Vitro. Heliyon 2021, 7, e06426. [Google Scholar] [CrossRef]
- Zhu, Y.; Chang, J.; Tan, K.; Huang, S.K.; Liu, X.; Wang, X.; Cao, M.; Zhang, H.; Li, S.; Duan, X.; et al. Clioquinol Attenuates Pulmonary Fibrosis through Inactivation of Fibroblasts via Iron Chelation. Am. J. Respir. Cell Mol. Biol. 2021, 65, 189–200. [Google Scholar] [CrossRef]
- da Costa, B.; Pippi, B.; Berlitz, S.J.; Carvalho, A.R.; Teixeira, M.L.; Külkamp-Guerreiro, I.C.; Andrade, S.F.; Fuentefria, A.M. Evaluation of Activity and Toxicity of Combining Clioquinol with Ciclopirox and Terbinafine in Alternative Models of Dermatophytosis. Mycoses 2021, 64, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Pippi, B.; Joaquim, A.R.; Merkel, S.; Zanette, R.A.; Nunes, M.E.M.; da Costa Silva, D.G.; Schimith, L.E.; Teixeira, M.L.; Franco, J.L.; Fernandes de Andrade, S.; et al. Antifungal Activity and Toxicological Parameters of 8-Hydroxyquinoline-5-Sulfonamides Using Alternative Animal Models. J. Appl. Microbiol. 2021, 130, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- de Chaves, M.A.; Ferreira do Amaral, T.; Monteiro da Silva Rodrigues Coutinho, N.; Fernanda Andrzejewski Kaminski, T.; Teixeira, M.L.; Flavio Souza de Oliveira, L.; de Andrade, S.F.; Fuentefria, A.M. Synergistic Association of Clioquinol with Antifungal Drugs against Biofilm Forms of Clinical Fusarium Isolates. Mycoses 2020, 63, 1069–1082. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Refat, M.S. Ligational Behavior of Clioquinol Antifungal Drug towards Ag(I), Hg(II), Cr(III) and Fe(III) Metal Ions: Synthesis, Spectroscopic, Thermal, Morphological and Antimicrobial Studies. J. Mol. Struct. 2015, 1085, 222–234. [Google Scholar] [CrossRef]
- Ignatova, M.; Nachev, N.; Spasova, M.; Manolova, N.; Rashkov, I.; Naydenov, M. Electrospun 5-Chloro-7-Iodo-8-Hydroxyquinoline (Clioquinol)-Containing Poly(3-Hydroxybutyrate)/Polyvinylpyrrolidone Antifungal Materials Prospective as Active Dressings against Esca. Polymers 2022, 14, 367. [Google Scholar] [CrossRef]
- You, Z.; Zhang, C.; Ran, Y. The Effects of Clioquinol in Morphogenesis, Cell Membrane and Ion Homeostasis in Candida Albicans. BMC Microbiol. 2020, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Ran, X.; Dai, Y.; Ran, Y. Clioquinol, an Alternative Antimicrobial Agent against Common Pathogenic Microbe. J. Mycol. Med. 2018, 28, 492–501. [Google Scholar] [CrossRef]
- Leonardelli, F.; Macedo, D.; Dudiuk, C.; Theill, L.; Cabeza, M.; Gamarra, S.; Garcia-Effron, G. In Vitro Activity of Zinc Chelators Combined with Antifungals against Mucormycetes. Int. J. Infect. Dis. 2018, 73, 6. [Google Scholar] [CrossRef]
- Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-Virulence, Antiviral and Anti-Parasitic Agents BT. In Advances in Microbiology, Infectious Diseases and Public Health; Donelli, G., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 14, pp. 37–69. ISBN 978-3-030-53647-3. [Google Scholar]
- Araujo, V.H.S.; Delello Di Filippo, L.; Duarte, J.L.; Spósito, L.; de Camargo, B.A.F.; da Silva, P.B.; Chorilli, M. Exploiting Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery against Cutaneous Fungal Infections. Crit. Rev. Microbiol. 2021, 47, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent Advances in Topical Carriers of Anti-Fungal Agents. Heliyon 2020, 6, e04663. [Google Scholar] [CrossRef]
- Fuochi, V.; Carbone, C.; Petronio Petronio, G.; Avola, R.; Tibullo, D.; Giallongo, C.; Puglisi, F.; Patamia, I.; Pignatello, R.; Furneri, P.M. Biological Properties of Itraconazole-SLN. Biointerface Res. Appl. Chem. 2018, 8, 3624–3627. [Google Scholar]
- Arafa, K.; Shamma, R.N.; El-Gazayerly, O.N.; El-Sherbiny, I.M. Facile Development, Characterization, and Optimization of New Metformin-Loaded Nanocarrier System for Efficient Colon Cancer Adjunct Therapy. Drug Dev. Ind. Pharm. 2018, 44, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.S.; Frank, L.A.; Contri, R.V.; Longhi, M.S.; Pohlmann, A.R.; Guterres, S.S. Nanotechnology-Based Alternatives for the Topical Delivery of Immunosuppressive Agents in Psoriasis. Int. J. Pharm. 2023, 631, 122535. [Google Scholar] [CrossRef]
- Chevalier, M.T.; Garona, J.; Sobol, N.T.; Farina, H.G.; Alonso, D.F.; Álvarez, V.A. In Vitro and in Vivo Evaluation of Desmopressin-Loaded Poly(D,L-Lactic-Co-Glycolic Acid) Nanoparticles for Its Potential Use in Cancer Treatment. Nanomedicine 2018, 13, 2835–2849. [Google Scholar] [CrossRef]
- Lengert, E.V.; Talnikova, E.E.; Tuchin, V.V.; Svenskaya, Y.I. Prospective Nanotechnology-Based Strategies for Enhanced Intra- and Transdermal Delivery of Antifungal Drugs. Ski. Pharmacol. Physiol. 2020, 33, 261–269. [Google Scholar] [CrossRef]
- Zoabi, A.; Touitou, E.; Margulis, K. Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids Interfaces 2021, 5, 18. [Google Scholar] [CrossRef]
- Mohd Nordin, U.U.; Ahmad, N.; Salim, N.; Mohd Yusof, N.S. Lipid-Based Nanoparticles for Psoriasis Treatment: A Review on Conventional Treatments, Recent Works, and Future Prospects. RSC Adv. 2021, 11, 29080–29101. [Google Scholar] [CrossRef]
- Campos, I.M.F.; de Barros, I.R.; Ferraz, H.C.; Pinto, J.C. P(MMA-Co-AA) Nanoparticles Loaded with Clioquinol and Functionalized with TAT Peptide. Macromol. React. Eng. 2020, 14, 1900046. [Google Scholar] [CrossRef]
- Kulkarni, P.V.; Roney, C.A.; Antich, P.P.; Bonte, F.J.; Raghu, A.V.; Aminabhavi, T.M. Quinoline-n-Butylcyanoacrylate-Based Nanoparticles for Brain Targeting for the Diagnosis of Alzheimer’s Disease. WIREs Nanomed. Nanobiotechnol. 2010, 2, 35–47. [Google Scholar] [CrossRef]
- Yang, H.; Mu, W.; Wei, D.; Zhang, Y.; Duan, Y.; Gao, J.; Gong, X.; Wang, H.; Wu, X.; Tao, H.; et al. A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer’s Disease. Adv. Sci. 2020, 7, 1902906. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.S.V.; Mendonça, D.V.C.; Pereira, I.A.G.; Oliveira-da-Silva, J.A.; Ramos, F.F.; Lage, D.P.; Machado, A.S.; Carvalho, L.M.; Reis, T.A.R.; Perin, L.; et al. A Clioquinol-Containing Pluronic® F127 Polymeric Micelle System Is Effective in the Treatment of Visceral Leishmaniasis in a Murine Model. Parasite 2020, 27, 29. [Google Scholar] [CrossRef] [PubMed]
- Gugleva, V.; Ivanova, N.; Sotirova, Y.; Andonova, V. Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals 2021, 14, 837. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as Pharmaceutical Carrier for Dermal and Transdermal Drug Delivery: Formulation Development, Stability Issues, Basic Considerations and Applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.S.; Loureiro, K.C.; Rezende, P.S.; Andrade, L.N.; de Melo Barbosa, R.; Santini, A.; Santos, A.C.; Ferreira da Silva, C.; Souto, E.B.; de Sousa, D.P.; et al. Innovative Nanocompounds for Cutaneous Administration of Classical Antifungal Drugs: A Systematic Review. J. Dermatolog. Treat. 2019, 30, 617–626. [Google Scholar] [CrossRef]
- Kulkarni, C.V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A Magic Lipid? Phys. Chem. Chem. Phys. 2011, 13, 3004–3021. [Google Scholar] [CrossRef]
- Milak, S.; Zimmer, A. Glycerol Monooleate Liquid Crystalline Phases Used in Drug Delivery Systems. Int. J. Pharm. 2015, 478, 569–587. [Google Scholar] [CrossRef]
- Chan, Y.; Singh, S.K.; Gulati, M.; Wadhwa, S.; Prasher, P.; Kumar, D.; Kumar, A.P.; Gupta, G.; Kuppusamy, G.; Haghi, M.; et al. Advances and Applications of Monoolein as a Novel Nanomaterial in Mitigating Chronic Lung Diseases. J. Drug Deliv. Sci. Technol. 2022, 74, 103541. [Google Scholar] [CrossRef]
- Ganem-Quintanar, A.; Quintanar-Guerrero, D.; Buri, P. Monoolein: A Review of the Pharmaceutical Applications. Drug Dev. Ind. Pharm. 2000, 26, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Krindges, A.; Jahno, V.D.; Morisso, F. Incorporation of Micro/Nanoparticles of PCL with Essential Oil of Cymbopogon Nardus in Bacterial Cellulose. Int. J. Adv. Med. Biotechnol. IJAMB 2018, 1, 37. [Google Scholar] [CrossRef]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, I. In Validation of Analytical Procedures: Text and Methodology Q2(R1); ICH: London, UK, 2005.
- Diefenthaeler, H.S.; Bianchin, M.D.; Marques, M.S.; Nonnenmacher, J.L.; Bender, E.T.; Bender, J.G.; Nery, S.F.; Cichota, L.C.; Külkamp-Guerreiro, I.C. Omeprazole Nanoparticles Suspension: Development of a Stable Liquid Formulation with a View to Pediatric Administration. Int. J. Pharm. 2020, 589, 119818. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Fuentefria, A.; Andrade, S.; Silveira, G.; Külkamp, I.; Pippi, B.; Machado, M.; Oliveira, L.; Cruz, L.; Frizzo, C. Susceptibility Profile to Azole Antifungal of a Mycoteca for Strategies to Oppose Candidemia. J. Infect. Control 2016, 5, 1–14. [Google Scholar]
- CLSI M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard-Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- CLSI M38-A2; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved Standard—Second Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 28. p. 29.
- Machado, G.D.R.M.; Fernandes de Andrade, S.; Pippi, B.; Bergamo, V.Z.; Jacobus Berlitz, S.; Lopes, W.; Lavorato, S.N.; Clemes Külkamp Guerreiro, I.; Vainstein, M.H.; Teixeira, M.L.; et al. Chloroacetamide Derivatives as a Promising Topical Treatment for Fungal Skin Infections. Mycologia 2019, 111, 612–623. [Google Scholar] [CrossRef]
- Machado, G.D.R.M.; Pippi, B.; Berlitz, S.; Diedrich, D.; Defferrari, D.; Lopes, W.; Gnoatto, S.C.B.; Kulkamp-Guerreiro, I.C.; Vainstein, M.H.; Jean, M.; et al. Ex Vivo Potential of a Quinoline-Derivative Nail Lacquer as a New Alternative for Dermatophytic Onychomycosis Treatment. J. Med. Microbiol. 2021, 70, 1314. [Google Scholar] [CrossRef]
- Pippi, B.; Lopes, W.; Reginatto, P.; Silva, F.É.K.; Joaquim, A.R.; Alves, R.J.; Silveira, G.P.; Vainstein, M.H.; Andrade, S.F.; Fuentefria, A.M. New Insights into the Mechanism of Antifungal Action of 8-Hydroxyquinolines. Saudi Pharm. J. 2019, 27, 41–48. [Google Scholar] [CrossRef]
- Barradas, T.N.; de Campos, V.E.B.; Senna, J.P.; Coutinho, C.D.S.C.; Tebaldi, B.S.; e Silva, K.G.D.H.; Mansur, C.R.E. Development and Characterization of Promising o/w Nanoemulsions Containing Sweet Fennel Essential Oil and Non-Ionic Sufactants. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 214–221. [Google Scholar] [CrossRef]
- Daudt, R.M.; Back, P.I.; Cardozo, N.S.M.; Marczak, L.D.F.; Külkamp-Guerreiro, I.C. Pinhão Starch and Coat Extract as New Natural Cosmetic Ingredients: Topical Formulation Stability and Sensory Analysis. Carbohydr. Polym. 2015, 134, 573–580. [Google Scholar] [CrossRef]
- Lippacher, A.; Müller, R.H.; Mäder, K. Semisolid SLNTM Dispersions for Topical Application: Influence of Formulation and Production Parameters on Viscoelastic Properties. Eur. J. Pharm. Biopharm. 2002, 53, 155–160. [Google Scholar] [CrossRef]
- Lippacher, A.; Müller, R.H.; Mäder, K. Preparation of Semisolid Drug Carriers for Topical Application Based on Solid Lipid Nanoparticles. Int. J. Pharm. 2001, 214, 9–12. [Google Scholar] [CrossRef]
- Faghihzadeh, F.; Anaya, N.M.; Schifman, L.A.; Oyanedel-Craver, V. Fourier Transform Infrared Spectroscopy to Assess Molecular-Level Changes in Microorganisms Exposed to Nanoparticles. Nanotechnol. Environ. Eng. 2016, 1, 1. [Google Scholar] [CrossRef]
- Tyagi, T.; Garlapati, P.K.; Yadav, P.; Naika, M.; Mallya, A.; Kandangath Raghavan, A. Development of Nano-Encapsulated Green Tea Catechins: Studies on Optimization, Characterization, Release Dynamics, and in-Vitro Toxicity. J. Food Biochem. 2021, 45, e13951. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.C.; Calvo, S.; Torre, M.H.; Baran, E.J. Vibrational Spectra of Clioquinol and Its Cu(II) Complex. J. Raman Spectrosc. 2007, 38, 373–376. [Google Scholar] [CrossRef]
- Sureshkumar, B.; Mary, Y.S.; Resmi, K.S.; Panicker, C.Y.; Armaković, S.; Armaković, S.J.; Van Alsenoy, C.; Narayana, B.; Suma, S. Spectroscopic Analysis of 8-Hydroxyquinoline Derivatives and Investigation of Its Reactive Properties by DFT and Molecular Dynamics Simulations. J. Mol. Struct. 2018, 1156, 336–347. [Google Scholar] [CrossRef]
- Shahraki, O.; Shayganpour, M.; Hashemzaei, M.; Daneshmand, S. Solid Lipid Nanoparticles (SLNs), the Potential Novel Vehicle for Enhanced in Vivo Efficacy of Hesperidin as an Anti-Inflammatory Agent. Bioorg. Chem. 2023, 131, 106333. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, P.; Ye, K.; He, Y.; Chen, S.; Yuan, A.; Chen, F.; Yang, W. Preparation, Characterization, In Vitro Release, and Antibacterial Activity of Oregano Essential Oil Chitosan Nanoparticles. Foods 2022, 11, 3756. [Google Scholar] [CrossRef]
- Wilhelm Romero, K.; Quirós, M.I.; Vargas Huertas, F.; Vega-Baudrit, J.R.; Navarro-Hoyos, M.; Araya-Sibaja, A.M. Design of Hybrid Polymeric-Lipid Nanoparticles Using Curcumin as a Model: Preparation, Characterization, and In Vitro Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin-Loaded Nanoparticles. Polymers 2021, 13, 4207. [Google Scholar] [CrossRef]
- Agnish, S.; Sharma, A.D.; Kaur, I. Nanoemulsions (O/W) Containing Cymbopogon Pendulus Essential Oil: Development, Characterization, Stability Study, and Evaluation of in Vitro Anti-Bacterial, Anti-Inflammatory, Anti-Diabetic Activities. Bionanoscience 2022, 12, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Berlitz, S.J.; De Villa, D.; Augusto, L.; Inácio, M.; Davies, S.; Zatta, K.C.; Guterres, S.S.; Külkamp-guerreiro, C.; Davies, S.; Zatta, K.C.; et al. Azelaic Acid-Loaded Nanoemulsion with Hyaluronic Acid—A New Strategy to Treat Hyperpigmentary Skin Disorders. Drug Dev. Ind. Pharm. 2019, 45, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal Resistance and New Strategies to Control Fungal Infections. Int. J. Microbiol. 2012, 2012, 713687. [Google Scholar] [CrossRef] [PubMed]
- Frost, D.J.; Brandt, K.D.; Cugier, D.; Goldman, R. A Whole-Cell Candida Albicans Assay for the Detection of Inhibitors towards Fungal Cell Wall Synthesis and Assembly. J. Antibiot. 1995, 48, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin Loaded Nanostructured Lipid Carriers for Enhanced Skin Retained Topical Delivery: Optimization, Scale-up, in-Vitro Characterization and Assessment of Ex-Vivo Skin Deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [Google Scholar] [CrossRef] [PubMed]
Strains/Agents | LBN-CQ (µg/mL) | CQ (µg/mL) | LBN-BL | |
---|---|---|---|---|
MIC Increase after Addition of Sorbitol | ||||
ATCC 750 | 0.24 | * | 1.0 | - |
ATCC 6258 | 0.24 | = | 1.0 | - |
CA MT07 | 0.48 | ** | 0.5 | - |
CG MT04 | 0.48 | **** | 1.0 | - |
CP MT12 | 0.48 | ** | 1.0 | - |
MCA HCPA 12 | 0.97 | ** | 4.0 | - |
MGY50 | 0.48 | ** | 2.0 | - |
TME15 | 0.97 | ** | 1.0 | - |
ATCC 28188 | 0.48 | ** | 1.0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobus Berlitz, S.; Reginatto, P.; Machado, G.d.R.M.; Fuentefria, A.M.; Morisso, F.D.P.; Contri, R.V.; Külkamp-Guerreiro, I.C. Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis. Pharmaceutics 2023, 15, 531. https://doi.org/10.3390/pharmaceutics15020531
Jacobus Berlitz S, Reginatto P, Machado GdRM, Fuentefria AM, Morisso FDP, Contri RV, Külkamp-Guerreiro IC. Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis. Pharmaceutics. 2023; 15(2):531. https://doi.org/10.3390/pharmaceutics15020531
Chicago/Turabian StyleJacobus Berlitz, Simone, Paula Reginatto, Gabriella da Rosa Monte Machado, Alexandre Meneghello Fuentefria, Fernando Dal Pont Morisso, Renata Vidor Contri, and Irene Clemes Külkamp-Guerreiro. 2023. "Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis" Pharmaceutics 15, no. 2: 531. https://doi.org/10.3390/pharmaceutics15020531
APA StyleJacobus Berlitz, S., Reginatto, P., Machado, G. d. R. M., Fuentefria, A. M., Morisso, F. D. P., Contri, R. V., & Külkamp-Guerreiro, I. C. (2023). Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis. Pharmaceutics, 15(2), 531. https://doi.org/10.3390/pharmaceutics15020531