Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Lipid Nanocapsules
2.3. Measurement of Particle Size and Polydispersity Index (PDI)
2.4. Determination of Zeta Potential
2.5. Determination of Drug Content in Asenapine-Maleate-Loaded LNCs
2.6. Ex Vivo Skin Permeation and Deposition Study of ASP-Loaded LNCs
2.7. Evaluation of the Physical Stability of the Selected Asenapine-Maleate-Loaded LNCs upon Storage
2.8. Microscopic Examination of the Selected Asenapine-Maleate-Loaded LNCs Using High-Resolution Transmission Electron Microscopy (HR-TEM)
2.9. Fourier-Transform Infrared (FTIR) Spectroscopy
2.10. Bioavailability Study on the Selected LNC Formulations
2.10.1. Animals
2.10.2. Pharmacokinetic Analysis
2.10.3. Histopathological Study of Rat Skin after Topical Administration of the Selected LNC Formulation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of Blank LNCs
3.1.1. Particle Size and PDI
3.1.2. Zeta Potential
3.2. Preparation and Characterization of Asenapine-Maleate-Loaded LNCs
3.2.1. Particle Size and PDI
3.2.2. Zeta Potential
3.2.3. Drug Content
3.3. Ex Vivo Skin Permeation and Deposition Study
3.4. Evaluation of the Physical Stability of the Selected ASP-Loaded LNCs upon Storage
3.5. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.6. Fourier-Transform Infrared (FTIR) Spectroscopy
3.7. Bioavailability Study
3.7.1. In Vivo Pharmacokinetic Analysis
3.7.2. Lipid Nanocapsules Versus Invasomes for Transdermal Drug Delivery
3.7.3. Histological Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. A Novel Phase Inversion-Based Process for the Preparation of Lipid Nanocarriers. Pharm. Res. 2002, 19, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Blanco, J.; Torres-Suárez, A.-I. Glioblastoma Multiforme and Lipid Nanocapsules: A Review. J. Biomed. Nanotechnol. 2015, 11, 1283–1311. [Google Scholar] [CrossRef] [PubMed]
- Dulieu, C.; Bazile, D. Influence of Lipid Nanocapsules Composition on Their Aptness to Freeze-Drying. Pharm. Res. 2005, 22, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; Passirani, C.; Saulnier, P.; Benoit, J. Lipid nanocapsules: A new platform for nanomedicine. Int. J. Pharm. 2009, 379, 201–209. [Google Scholar] [CrossRef]
- Hanma, N. Composition for External Application Comprising Aripirazole and Organic Acid as Active Ingredients. U.S. Patent 8,815,261, 26 August 2014. [Google Scholar]
- Lacoeuille, F.; Hindre, F.; Moal, F.; Roux, J.; Passirani, C.; Couturier, O.; Calès, P.; Le Jeune, J.; Lamprecht, A.; Benoit, J. In vivo evaluation of lipid nanocapsules as a promising colloidal carrier for paclitaxel. Int. J. Pharm. 2007, 344, 143–149. [Google Scholar] [CrossRef]
- Weyland, M.; Manero, F.; Paillard, A.; Grée, D.; Viault, G.; Jarnet, D.; Menei, P.; Juin, P.; Chourpa, I.; Benoit, J.-P.; et al. Mitochondrial targeting by use of lipid nanocapsules loaded with SV30, an analogue of the small-molecule Bcl-2 inhibitor HA14-1. J. Control. Release. 2011, 151, 74–82. [Google Scholar] [CrossRef]
- Lamprecht, A.; Saumet, J.-L.; Roux, J.; Benoit, J.-P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm. 2004, 278, 407–414. [Google Scholar] [CrossRef]
- Morille, M.; Passirani, C.; Dufort, S.; Bastiat, G.; Pitard, B.; Coll, J.-L.; Benoit, J.-P. Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials. 2011, 32, 2327–2333. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Lacoeuille, F.; Roux, J.; Aubé, C.; Garcion, E.; Lepareur, N.; Oberti, F.; Bouchet, F.; Noiret, N.; Garin, E.; et al. Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model. PLoS ONE 2011, 6, e16926. [Google Scholar] [CrossRef]
- Peltier, S.; Oger, J.-M.; Lagarce, F.; Couet, W.; Benoît, J.-P. Enhanced Oral Paclitaxel Bioavailability After Administration of Paclitaxel-Loaded Lipid Nanocapsules. Pharm. Res. 2006, 23, 1243–1250. [Google Scholar] [CrossRef]
- Hussein, A.; Abdel-Mottaleb, M.M.; El-Assal, M.; Sammour, O. Novel biocompatible essential oil-based lipid nanocapsules with antifungal properties. J. Drug Deliv. Sci. Technol. 2020, 56, 101605. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef]
- El-Tokhy, F.S.; Abdel-Mottaleb, M.M.; El-Ghany, E.A.; Geneidi, A.S. Transdermal delivery of second-generation antipsychotics for management of schizophrenia; disease overview, conventional and nanobased drug delivery systems. J. Drug Deliv. Sci. Technol. 2020, 61, 102104. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, M.; Neumann, D.; Lamprecht, A. In vitro drug release mechanism from lipid nanocapsules (LNC). Int. J. Pharm. 2010, 390, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomed. 2017, 12, 5087–5108. [Google Scholar] [CrossRef] [PubMed]
- Panwar, P.; Pandey, B.; Lakhera, P.C.; Singh, K.P. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomed. 2010, 5, 101. [Google Scholar] [CrossRef]
- Govindarajan, N.R.; Koulagari, S.; Methuku, A.; Podhuturi, S. Method development and validation of RP-HPLC method for determination of new antipsychotic agent asenapine maleate in bulk and pharmaceutical formulation. Der Pharm. Lett. 2012, 4, 1805–1810. [Google Scholar]
- Manikkath, J.; Shenoy, G.G.; Pandey, S.; Mutalik, S. Response Surface Methodology for Optimization of Ultrasound-Assisted Transdermal Delivery and Skin Retention of Asenapine Maleate. J. Pharm. Innov. 2019, 14, 391–399. [Google Scholar] [CrossRef]
- Awad, A.A.; Abdelkareem, A.M.; Hamedelnie, E.I. Studies on the development of transdermal patches of asenapine: In vitro and in vivo evaluation. Int. J. Innov. Appl. Res. 2017, 5, 75–90. [Google Scholar]
- Zsikó, S.; Csányi, E.; Kovács, A.; Budai-Szűcs, M.; Gácsi, A.; Berkó, S. Methods to Evaluate Skin Penetration In Vitro. Sci. Pharm. 2019, 87, 19. [Google Scholar] [CrossRef]
- Subongkot, T.; Sirirak, T. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surf. B Biointerfaces 2020, 193, 111103. [Google Scholar] [CrossRef] [PubMed]
- Molaahmadi, M.R.; Varshosaz, J.; Taymouri, S.; Akbari, V. Lipid Nanocapsules for Imatinib Delivery: Design, Optimization and Evaluation of Anticancer Activity Against Melanoma Cell Line. Iran. J. Pharm. Res. IJPR 2019, 18, 1676–1693. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Dadhania, P.; Vuddanda, P.R.; Jain, A.; Velaga, S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: Formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv. 2016, 6, 2032–2045. [Google Scholar] [CrossRef]
- Managuli, R.S.; Wang, J.T.; Faruqu, F.N.; Kushwah, V.; Raut, S.Y.; Shreya, A.B.; Al-Jamal, K.; Jain, S.; Mutalik, S. Asenapine maleate-loaded nanostructured lipid carriers: Optimization and in vitro, ex vivo and in vivo evaluations. Nanomedicine 2019, 14, 889–910. [Google Scholar] [CrossRef] [PubMed]
- Abo-El-Sooud, K. Absolute and Relative Bioavailability. In Drug Discovery and Evaluation: Methods in Clinical Pharmacology, Hock, F., Gralinski, M., Eds.; Springer: Cham, Switzerland, 2011. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef]
- Maupas, C.; Moulari, B.; Béduneau, A.; Lamprecht, A.; Pellequer, Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int. J. Pharm. 2011, 411, 136–141. [Google Scholar] [CrossRef]
- Sanghvi, S.P.; Nairn, J.G. Phase Diagram Studies for Microencapsulation of Pharmaceuticals Using Cellulose Acetate Trimellitate. J. Pharm. Sci. 1991, 80, 394–398. [Google Scholar] [CrossRef]
- Baig, M.H.; Sudhakar, D.R.; Kalaiarasan, P.; Subbarao, N.; Wadhawa, G.; Lohani, M.; Khan, M.K.A.; Khan, A.U. Insight into the Effect of Inhibitor Resistant S130G Mutant on Physico-Chemical Properties of SHV Type BetaLactamase: A Molecular Dynamics Study. PLoS ONE 2014, 9, e112456. [Google Scholar] [CrossRef]
- Martins, S.; Tho, I.; Souto, E.; Ferreira, D.; Brandl, M. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. Eur. J. Pharm. Sci. 2012, 45, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar] [CrossRef]
- Mura, S.; Manconi, M.; Valenti, D.; Sinico, C.; Vila, A.O.; Fadda, A.M. Transcutol containing vesicles for topical delivery of minoxidil. J. Drug Target. 2010, 19, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, M.M.; Neumann, D.; Lamprecht, A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 2011, 79, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Q.; Zhang, Q.; Sun, C.; Liu, G.-Y. Ifosfamide-loaded lipid-core-nanocapsules to increase the anticancer efficacy in MG63 osteosarcoma cells. Saudi J. Biol. Sci. 2018, 25, 1140–1145. [Google Scholar] [CrossRef]
- Patel, M.R.; Hirani, S.N.; Patel, R.B. Microemulsion for nasal delivery of Asenapine maleate in treatment of schizophrenia: Formulation considerations. J. Pharm. Investig. 2017, 48, 301–312. [Google Scholar] [CrossRef]
- Matsaridou, I.; Barmpalexis, P.; Salis, A.; Nikolakakis, I. The Influence of Surfactant HLB and Oil/Surfactant Ratio on the Formation and Properties of Self-emulsifying Pellets and Microemulsion Reconstitution. AAPS PharmSciTech. 2012, 13, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Samfira, I.; Rodino, S.; Petrache, P.; Cristina, R.T.; Butu, M.; Butnariu, M. Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry. Dig. J. Nanomater. Biostructures. 2015, 10, 557–566. [Google Scholar]
- Predoi, D.; Groza, A.; Iconaru, S.L.; Predoi, G.; Barbuceanu, F.; Guegan, R.; Motelica-Heino, M.S.; Cimpeanu, C. Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite. Materials 2018, 11, 652. [Google Scholar] [CrossRef]
- Beg, S.; Raza, K.; Kumar, R.; Chadha, R.; Katare, O.P.; Singh, B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv. 2016, 6, 8173–8187. [Google Scholar] [CrossRef]
- El-Tokhy, F.S.; Abdel-Mottaleb, M.M.; El-Ghany, E.A.; Geneidi, A.S. Design of long acting invasomal nanovesicles for improved transdermal permeation and bioavailability of asenapine maleate for the chronic treatment of schizophrenia. Int. J. Pharm. 2021, 608, 121080. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, X.; Zhao, L.; Wang, Z.; Zhai, G. Lipid nanocapsules for transdermal delivery of ropivacaine: In vitro and in vivo evaluation. Int. J. Pharm. 2014, 471, 103–111. [Google Scholar] [CrossRef]
Formulation Code | Oil Type | Surfactant Type | Oil: Surfactant Ratio | Particle Size ± S.D (nm) | PDI ± S.D | Zeta Potential ± S.D (mV) |
---|---|---|---|---|---|---|
F1 | Labrafac™ PG | Kolliphor® S15 | 1:1 | 64.95 ± 0.19 | 0.233 ± 0.003 | −13.8 ± 0.6 |
F2 | Kolliphor® EL | 1:1 | 41.43 ± 0.23 | 0.077 ± 0.017 | −12.6 ± 1.27 | |
F3 | Tween 80 | 1:1 | 154.6 ± 1.75 | 0.278 ± 0.006 | −10.2 ± 0.551 | |
F4 | Labrafil® M1944CS | Kolliphor® HS15 | 1:1 | 32.26 ± 0.43 | 0.259 ± 0.005 | −13 ± 0.781 |
F5 | Kolliphor® EL | 1:1 | 32.02 ± 0.18 | 0.099 ± 0.012 | −9.53 ± 0.583 | |
F6 | Tween 80 | 1:1 | 62.52 ± 1.29 | 0.238 ± 0.01 | −13.8 ± 0.985 | |
F7 | Miglyol® 812 | Kolliphor® HS15 | 1:1 | 74.5 ± 0.77 | 0.211 ± 0.012 | −18 ± 1.02 |
F8 | Kolliphor® EL | 1:1 | 45 ± 0.08 | 0.174 ± 0.007 | −10.8 ± 0.361 | |
F9 | Tween 80 | 1:1 | 693.2 ± 14.19 * | 0.212 ± 0.019 | −33 ± 0.854 | |
F10 | Lavender oil | Kolliphor® HS15 | 1:1 | 37.24 ± 1.2 | 0.156 ± 0.034 | −9.8 ± 0.8 |
F11 | Kolliphor® EL | 1:1 | 31.49 ± 0.43 | 0.166 ± 0.023 | −19.4 ± 1.04 | |
F12 | Tween80 | 1:1 | 88.52 ± 3.23 | 0.317 ± 0.013 | −13 ± 0.4 | |
F13 | Labrafac™PG | Kolliphor® HS15 | 2:1 | 74.1 ± 1.021 | 0.168 ± 0.017 | −27.5 ± 2.65 |
F14 | Kolliphor® EL | 2:1 | 135.5 ± 2.93 | 0.209 ± 0.006 | −15.7 ± 0.954 | |
F15 | Tween 80 | 2:1 | 517.3 ± 2.93 * | 0.199 ± 0.006 | −23 ± 2.53 | |
F16 | Labrafil® M1944CS | Kolliphor® HS15 | 2:1 | 44.41 ± 1.103 | 0.24 ± 0.008 | −20.2 ± 1.08 |
F17 | Kolliphor® EL | 2:1 | 47.2 ± 0.85 | 0.228 ± 0.005 | −11.8 ± 0.289 | |
F18 | Tween 80 | 2:1 | 161.9 ± 3.9 | 0.319 ± 0.042 | −23.4 ± 0.416 | |
F19 | Miglyol® 812 | Kolliphor® HS15 | 2:1 | 87.4 ± 1.336 | 0.098 ± 0.014 | −27 ± 1.46 |
F20 | Kolliphor® EL | 2:1 | 137.1 ± 1.94 | 0.268 ± 0.002 | −18.5 ± 0.379 | |
F21 | Tween 80 | 2:1 | 322.6 ± 0.05 * | 0.447 ± 0.015 | −36.8 ± 1.97 | |
F22 | Lavender oil | Kolliphor® HS15 | 2:1 | 104.2 ± 0.05 | 0.584 ± 0.011 | −20.9 ± 0.458 |
F23 | Kolliphor® EL | 2:1 | 69.63 ± 0.5 | 0.157 ± 0.021 | −18.3 ± 1 | |
F24 | Tween 80 | 2:1 | 115.5 ± 2.34 | 0.181 ± 0.009 | −18.4 ± 0.404 | |
F25 | Labrafac™ PG | Kolliphor® HS15 | 5:1 | 265.5 ± 0.075 * | 0.225 ± 0.011 | −23.5 ± 2.14 |
F26 | Kolliphor® EL | 5:1 | 222 ± 2.6 * | 0.217 ± 0.016 | −21.6 ± 2.86 | |
F27 | Tween 80 | 5:1 | 3223 ± 552 * | 1.000 ± 0.000 | −30 ± 2.15 | |
F28 | Labrafil® M1944CS | Kolliphor® HS15 | 5:1 | 301.8 ± 5.6 * | 0.369 ± 0.011 | −31.4 ± 0.79 |
F29 | Kolliphor® EL | 5:1 | 124 ± 0.5 | 0.214 ± 0.003 | −34.1 ± 0.45 | |
F30 | Tween 80 | 5:1 | 1351 ± 491 * | 1.000 ± 0.000 | −23 ± 0.173 | |
F31 | Miglyol® 812 | Kolliphor® HS15 | 5:1 | 8671 ± 2293 * | 0.363 ± 0.331 | −39.6 ± 33.3 |
F32 | Kolliphor® EL | 5:1 | 669 ± 13 * | 0.293 ± 0.027 | −27.8 ± 1.63 | |
F33 | Tween 80 | 5:1 | 9201 ± 1345 | 0.437 ± 0.025 | −45.08 ± 0.713 | |
F34 | Lavender oil | Kolliphor® HS15 | 5:1 | 187.6 ± 8.1 | 0.259 ± 0.24 | −26.7 ± 0.55 |
F35 | Kolliphor® EL | 5:1 | 168.7 ± 14.6 | 0.377 ± 0.039 | −34 ± 1.63 | |
F36 | Tween 80 | 5:1 | 220.4 ± 12.08 * | 0.217 ± 0.009 | −26.9 ± 2.06 |
Particle Size (nm) | P.D.I | Zeta Potential (mV) | |
---|---|---|---|
Fresh | 66.1 ± 0.87 | 0.22 ± 0.005 | −5.16 ± 0.13 |
2 months | 68.94 *± 0.75 | 0.244 ± 0.07 | −4.61 ± 0.34 |
6 months | 71.4 * ± 0.23 | 0.257 ± 0.024 | −5.01 ± 0.34 |
Route of Administration | Intravenous | Oral | Transdermal | ||
---|---|---|---|---|---|
Parameter | Unit | ASP solution | ASP suspension | ASP-loaded LNCs F22-AS | ASP-loaded LNCs F22-AS |
Dose | mg/kg | 1 ± 0 | 15 ± 0 | 15 ± 0 | 15 ± 0 |
Tmax | h | 0 | 1.5 ± 0 | 1 ± 0 | 4 ± 0 |
Cmax | μg/mL | 18.89 ± 1.28 | 5.91 ± 0.481 | 11.33 ± 2.03 | 21.91 ± 1.61 * |
AUC 0–t last | μg × h/mL | 47.68 ± 2.76 | 25.59 ± 1.48 | 31.88 ± 1.95 | 372.10 ± 26.41 *,# |
AUC 0–∞ | μg × h/mL | 48.00 ± 2.78 | 29.35 ± 2.08 | 32.59 ± 4.03 | 525.77 ± 21.34 *,# |
MRT 0–∞ | h | 3.52 ± 0.25 | 11.95 ± 0.56 | 5.33 ± 0.32 | 58.73 ± 4.32 *,# |
Bioavailability | % | - | 3.57 ± 0.27 | 4.45 ± 0.96 | 52.02 ± 6.01 *,# |
Skin deposition | μg/cm2 | - | - | - | 1.165 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tokhy, F.S.; Abdel-Mottaleb, M.M.A.; Abdel Mageed, S.S.; Mahmoud, A.M.A.; El-Ghany, E.A.; Geneidi, A.S. Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia. Pharmaceutics 2023, 15, 490. https://doi.org/10.3390/pharmaceutics15020490
El-Tokhy FS, Abdel-Mottaleb MMA, Abdel Mageed SS, Mahmoud AMA, El-Ghany EA, Geneidi AS. Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia. Pharmaceutics. 2023; 15(2):490. https://doi.org/10.3390/pharmaceutics15020490
Chicago/Turabian StyleEl-Tokhy, Fatma Sa’eed, Mona M. A. Abdel-Mottaleb, Sherif S. Abdel Mageed, Abdulla M. A. Mahmoud, Elsayed A. El-Ghany, and Ahmed S. Geneidi. 2023. "Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia" Pharmaceutics 15, no. 2: 490. https://doi.org/10.3390/pharmaceutics15020490
APA StyleEl-Tokhy, F. S., Abdel-Mottaleb, M. M. A., Abdel Mageed, S. S., Mahmoud, A. M. A., El-Ghany, E. A., & Geneidi, A. S. (2023). Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia. Pharmaceutics, 15(2), 490. https://doi.org/10.3390/pharmaceutics15020490