Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes
Abstract
:1. Introduction
2. The Natural Vitreous
3. The Ideal Vitreous Substitute
4. Current Vitreous Substitutes
4.1. Gases
4.1.1. Air
4.1.2. Expansile Gases
4.2. Liquids
4.2.1. Balanced Salt Solutions (BSS)
4.2.2. Perfluorocarbon Liquids (PFCLs)
4.2.3. Semifluorinated Alkanes (SFAs)
4.2.4. Silicone Oil
4.2.5. Heavy Silicone Oil
5. Experimental Polymeric Vitreous Substitutes
5.1. Natural Polymers (Polysaccharides and Proteins)—Structural Vitreous Substitutes
5.1.1. Hyaluronic Acid
5.1.2. Collagen and Its Derivatives
5.1.3. Gellan Gum
5.1.4. Chitosan
5.2. Synthetic Polymers—Functional Vitreous Substitutes
5.2.1. Poly(1-Vinyl-2-Pyrrolidone)
5.2.2. Hydroxypropyl Methylcellulose and Methylcellulose
5.2.3. Adcon-L
5.2.4. Pluronic Polyol
5.2.5. Poly(N-Isopropylacrylamide)
5.2.6. Polyacrylamide
5.2.7. Methacrylamide
5.2.8. Poly(Glyceryl Methacrylate)
5.2.9. Poly(Methyl 2-Acrylamido-2-Methoxyacetate)
5.2.10. Polyvinyl Alcohol (PVA)
5.2.11. Polyethylene Glycol (PEG)
5.2.12. Other Synthetic Polymers
5.3. Composite Polymers
6. Foldable Capsular Vitreous Body
7. Future Perspectives on the Design of an Ideal Vitreous Substitute
7.1. Drug Delivery
7.2. Regenerative/Tissue Engineering
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Blindness and Vision Impairment. World Health Organisation. 2019. Available online: https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 12 February 2020).
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Giangiacomo, A.; Coleman, A.L. The Epidemiology of Glaucoma. In Glaucoma; Springer: Berlin/Heidelberg, Germany, 2009; pp. 13–21. [Google Scholar] [CrossRef]
- Kyari, F.; Abdull, M.M.; Bastawrous, A.; Gilbert, C.E.; Faal, H. Epidemiology of glaucoma in Sub-Saharan Africa: Prevalence, incidence and risk factors. Middle East Afr. J. Ophthalmol. 2013, 20, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Chappelow, A.V.; Kaiser, P.K. Neovascular age-related macular degeneration: Potential therapies. Drugs 2008, 68, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef]
- Vaziri, K.; Schwartz, S.G.; Kishor, K.S.; Flynn, H.W. Tamponade in the surgical management of retinal detachment. Clin. Ophthalmol. 2016, 10, 471–476. [Google Scholar] [CrossRef]
- Murtagh, P.J.; Stephenson, K.A.; Rhatigan, M.; McElnea, E.M.; Connell, P.P.; Keegan, D.J. Rhegmatogenous retinal detachments: Primary reattachment rates and visual outcomes over a 4-year period. Ir. J. Med. Sci. 2020, 189, 355–363. [Google Scholar] [CrossRef]
- Chan, C.K.; Lin, S.G.; Nuthi, A.S.D.; Salib, D.M. Pneumatic Retinopexy for the Repair of Retinal Detachments: A Comprehensive Review (1986–2007). Surv. Ophthalmol. 2008, 53, 443–478. [Google Scholar] [CrossRef]
- Gupta, R.; Deshpande, M.; Bharadwaj, A.; Baranwal, V. Pneumatic Retinopexy in Rhegmatogenous Retinal Detachment. Med. J. Armed. Forces India 1997, 53, 255–258. [Google Scholar] [CrossRef]
- Su, X.; Tan, M.J.; Li, Z.; Wong, M.; Rajamani, L.; Lingam, G.; Loh, X.J. Recent Progress in Using Biomaterials as Vitreous Substitutes. Biomacromolecules 2015, 16, 3093–3102. [Google Scholar] [CrossRef]
- Kleinberg, T.T.; Tzekov, R.T.; Stein, L.; Ravi, N.; Kaushal, S. Vitreous Substitutes: A Comprehensive Review. Surv. Ophthalmol. 2011, 56, 300–323. [Google Scholar] [CrossRef]
- Astbury, N.; Wood, M.; Gajiwala, U.; Patel, R.; Chen, Y.; Benjamin, L.; Abuh, S.O. Management of capsular rupture and vitreous loss in cataract surgery. Community Eye Health J. 2008, 21, 6–8. [Google Scholar]
- Snell, R.S.; Lemp, M.A. Clinical Anatomy of the Eye, 2nd ed.; Clinical Anatomy of the Eye; Blackwell Science Ltd.: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Chirila, T.V.; Harkin, D.G. Biomaterials and Regenerative Medicine in Ophthalmology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–483. [Google Scholar]
- Snell, R.S. Clinical Anatomy for Medical Students, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; 898p. [Google Scholar]
- Alovisi, C.; Panico, C.; de Sanctis, U.; Eandi, C.M. Vitreous Substitutes: Old and New Materials in Vitreoretinal Surgery. J. Ophthalmol. 2017, 2017, 3172138. [Google Scholar] [CrossRef]
- Donati, S.; Caprani, S.M.; Airaghi, G.; Vinciguerra, R.; Bartalena, L.; Testa, F.; Mariotti, C.; Porta, G.; Simonelli, F.; Azzolini, C. Vitreous substitutes: The present and the future. Biomed. Res. Int. 2014, 2014, 351804. [Google Scholar] [CrossRef]
- Tram, N.K.; Swindle-Reilly, K.E. Rheological properties and age-related changes of the human vitreous humor. Front. Bioeng. Biotechnol. 2018, 6, 199. [Google Scholar] [CrossRef]
- Swindle, K.E.; Hamilton, P.D.; Ravi, N. In Situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous. J. Biomed. Mater. Res. A 2008, 87, 656–665. [Google Scholar] [CrossRef]
- Davis, J.T.; Hamilton, P.D.; Ravi, N. Poly(acrylamide co-acrylic acid) for use as an in situ gelling vitreous substitute. J. Bioact. Compat. Polym. 2017, 32, 528–541. [Google Scholar] [CrossRef]
- Tram, N.K.; Jiang, P.; Torres-Flores, T.C.; Jacobs, K.M.; Chandler, H.L.; Swindle-Reilly, K.E. A Hydrogel Vitreous Substitute that Releases Antioxidant. Macromol. Biosci. 2020, 20, 1900305. [Google Scholar] [CrossRef]
- Swindle, K.E.; Ravi, N. Recent advances in polymeric vitreous substitutes. Expert Rev. Ophthalmol. 2007, 2, 255–265. [Google Scholar] [CrossRef]
- Marcus, D.M.; D’Amico, D.J.; Mukai, S. Pneumatic retinopexy versus scleral buckling for repair of primary rhegmatogenous retinal detachment. Int. Ophthalmol. Clin. 1994, 34, 97–108. [Google Scholar] [CrossRef]
- Gurunadh, V.S.; Banarji, A.; Patyal, S.; Upadhyay, A.K.; Ahluwalia, T.S.; Gupta, R.P.; Bhaduria, M. Evaluation of vitreous substitutes in managing complicated vitreo-retinal surgeries. Med. J. Armed Forces India 2010, 66, 125–128. [Google Scholar] [CrossRef]
- Pak, K.Y.; Lee, S.J.; Kwon, H.J.; Park, S.W.; Byon, I.S.; Lee, J.E. Exclusive Use of Air as Gas Tamponade in Rhegmatogenous Retinal Detachment. J. Ophthalmol. 2017, 2017, 1341948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, M.; Wei, Y.; Jiang, X.; Zhang, S. Pars plana vitrectomy with partial tamponade of filtered air in Rhegmatogenous retinal detachment caused by superior retinal breaks. BMC Ophthalmol. 2017, 17, 64. [Google Scholar] [CrossRef] [PubMed]
- Neffendorf, J.E.; Gupta, B.; Williamson, T.H. The role of intraocular gas tamponade in rhegmatogenous retinal detachment: A synthesis of the literature. Retina 2018, 38, S65–S72. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.T. The absorption of mixtures of air and perfluoropropane after pars plana vitrectomy. Arch. Ophthalmol. 1992, 110, 1594–1597. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.A.; Wilson, M.R.; Yoshizumi, M.O.; Hall, M. The Ocular Effects of Gases When Injected Into the Anterior Chamber of Rabbit Eyes. Arch. Ophthalmol. 1991, 109, 571–575. [Google Scholar] [CrossRef]
- Mateo-Montoya, A.; de Smet, M.D. Air as tamponade for retinal detachments. Eur. J. Ophthalmol. 2013, 24, 242–246. [Google Scholar] [CrossRef]
- Kanclerz, P.; Grzybowski, A. Complications Associated with the Use of Expandable Gases in Vitrectomy. J. Ophthalmol. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Scheerlinck, L.M.; Schellekens, P.A.; Liem, A.T.; Steijns, D.; van Leeuwen, R. Retinal sensitivity following intraocular silicone oil and gas tamponade for rhegmatogenous retinal detachment. Acta. Ophthalmol. 2018, 96, 641–647. [Google Scholar] [CrossRef]
- Hart, R.H.; Vote, B.J.; Borthwick, J.H.; McGeorge, A.J.; Worsley, D.R. Loss of vision caused by expansion of intraocular perfluoropropane (C3F8) gas during nitrous oxide anesthesia. Am. J. Ophthalmol. 2002, 134, 761–763. [Google Scholar] [CrossRef]
- Asaria, R.H.Y.; Kon, C.H.; Bunce, C.; Charteris, D.G.; Wong, D.; Khaw, P.T.; Aylward, G.W. Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy. Ophthalmology 2001, 108, 1179–1183. [Google Scholar] [CrossRef]
- de Bustros, S.; Glaser, B.M.; Johnson, M.A. Thrombin Infusion for the Control of Intraocular Bleeding during Vitreous Surgery. Arch. Ophthalmol. 1985, 103, 837–839. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, K.; Su, L.; Xia, X.; Xu, X. Perfluorocarbon liquid: Its application in vitreoretinal surgery and related ocular inflammation. Biomed. Res. Int. 2014, 2014, 250323. [Google Scholar] [CrossRef]
- Peyman, G.A.; Schulman, J.A.; Sullivan, B. Perfluorocarbon liquids in ophthalmology. Surv. Ophthalmol. 1995, 39, 375–395. [Google Scholar] [CrossRef]
- Eiger-Moscovich, M.; Gershoni, A.; Axer-Siegel, R.; Weinberger, D.; Ehrlich, R. Short-Term Vitreoretinal Tamponade with Heavy Liquid Following Surgery for Giant Retinal Tear. Curr. Eye Res. 2017, 42, 1074–1078. [Google Scholar] [CrossRef]
- Chang, S.; Reppucci, V.; Zimmerman, N.J.; Heinemann, M.H.; Coleman, D.J. Perfluorocarbon liquids in the management of traumatic retinal detachments. Ophthalmology 1989, 96, 785–791; discussion 791–792. [Google Scholar] [CrossRef]
- Malchiodi-Albedi, F.; Morgillo, A.; Formisano, G.; Paradisi, S.; Perilli, R.; Scalzo, G.C.; Scorcia, G.; Caiazza, S. Biocompatibility assessment of silicone oil and perfluorocarbon liquids used in retinal reattachment surgery in rat retinal cultures. J. Biomed. Mater. Res. 2002, 60, 548–555. [Google Scholar] [CrossRef]
- Mertens, S.; Bednarz, J.; Engelmann, K. Evidence of toxic side effects of perfluorohexyloctane after vitreoretinal surgery as well as in previously established in vitro models with ocular cell types. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 240, 989–995. [Google Scholar] [CrossRef]
- Wilson, C.A.; Berkowitz, B.A.; Srebro, R. Perfluorinated organic liquid as an intraocular oxygen reservoir for the ischemic retina. Invest. Ophthalmol. Vis. Sci. 1995, 36, 131–141. [Google Scholar]
- Matteucci, A.; Formisano, G.; Paradisi, S.; Carnovale-Scalzo, G.; Scorcia, G.; Caiazza, S.; Hoerauf, M.D.; Malchiodi-Albedi, M.D. Biocompatibility Assessment of Liquid Artificial Vitreous Replacements: Relevance of In Vitro Studies. Surv. Ophthalmol. 2007, 52, 289–299. [Google Scholar] [CrossRef]
- Kirchhof, B.; Wong, D.; Van Meurs, J.; Hilgers, R.D.; Macek, M.; Lois, N.; Schrage, N.F. Use of perfluorohexyloctane as a long-term internal tamponade agent in complicated retinal detachment surgery. Am. J. Ophthalmol. 2002, 133, 95–101. [Google Scholar] [CrossRef]
- Roider, J.; Hoerauf, H.; Kobuch, K.; Gabel, V.-P. Clinical findings on the use of long-term heavy tamponades (semifluorinated alkanes and their oligomers) in complicated retinal detachment surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 40, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Wetterqvist, C.; Wong, D.; Williams, R.; Stappler, T.; Herbert, E.; Freeburn, S. Tamponade efficiency of perfluorohexyloctane and silicone oil solutions in a model eye chamber. Br. J. Ophthalmol. 2004, 88, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Ozdek, S.; Yuksel, N.; Gurelik, G.; Hasanreisoglu, B. High-density silicone oil as an intraocular tamponade in complex retinal detachments. Can. J. Ophthalmol. 2011, 46, 51–55. [Google Scholar] [CrossRef]
- Barca, F.; Caporossi, T.; Rizzo, S. Silicone oil: Different physical proprieties and clinical applications. Biomed. Res. Int. 2014, 2014, 502143. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.W.; Baumal, C. Anterior segment complications related to vitreous substitutes. Ophthalmol. Clin. N. Am. 2004, 17, 569–576. [Google Scholar] [CrossRef]
- Azen, S.P.; Scott, I.U.; Flynn, H.W.; Lai, M.Y.; Topping, T.M.; Benati, L.; Trask, D.K.; Rogus, L.A. Silicone oil in the repair of complex retinal detachments. A prospective observational multicenter study. Ophthalmology 1998, 105, 1587–1597. [Google Scholar] [CrossRef]
- Eibenberger, K.; Sacu, S.; Rezar-Dreindl, S.; Schmidt-Erfurth, U.; Georgopoulos, M. Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: Functional and Morphological Results. Curr. Eye Res. 2020, 45, 38–45. [Google Scholar] [CrossRef]
- Kars, M.E.; Toklu, Y.; Arıkan Yorgun, M.; Neşelioğlu, S.; Eren, F. Electrolyte, Nitric Oxide and Oxidative Stress Levels of Aqueous Humor in Patients with Retinal Detachment and Silicone Oil Tamponade. Curr. Eye Res. 2020, 45, 1443–1450. [Google Scholar] [CrossRef]
- Xie, A.; Lei, J. Pars plana vitrectomy and silicone oil tamponade as a primary treatment for retinal detachment caused by macular holes in highly myopic eyes: A risk-factor analysis. Curr. Eye Res. 2013, 38, 108–113. [Google Scholar] [CrossRef]
- Joussen, A.M.; Rizzo, S.; Kirchhof, B.; Schrage, N.; Li, X.; Lente, C.; Hilgers, R.-D.; HSO-Study Group. Heavy silicone oil versus standard silicone oil in as vitreous tamponade in inferior PVR (HSO Study): Interim analysis. Acta. Ophthalmol. 2011, 89, 483–489. [Google Scholar] [CrossRef]
- Lim, B.L.; Vote, B. Densiron intraocular tamponade: A case series. Clin. Exp. Ophthalmol. 2008, 36, 261–264. [Google Scholar] [CrossRef]
- Li, W.; Zheng, J.; Zheng, Q.; Wu, R.; Wang, X.; Xu, M. Clinical complications of Densiron 68 intraocular tamponade for complicated retinal detachment. Eye (Lond) 2010, 24, 21–28. [Google Scholar] [CrossRef]
- Morescalchi, F.; Costagliola, C.; Duse, S.; Gambicorti, E.; Parolini, B.; Arcidiacono, B.; Romano, M.R.; Semeraro, F. Heavy Silicone Oil and Intraocular Inflammation. Biomed. Res. Int. 2014, 2014, 574825. [Google Scholar] [CrossRef]
- Berker, N.; Batman, C.; Ozdamar, Y.; Eranil, S.; Aslan, O.; Zilelioglu, O. Long-term outcomes of heavy silicone oil tamponade for complicated retinal detachment. Eur. J. Ophthalmol. 2007, 17, 797–803. [Google Scholar] [CrossRef]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef]
- Liu, Z.; Liow, S.; Lai, S.; Shaik, A.; Holder, G.; Parikh, B.; Krishnakumar, S.; Li, Z.; Tan, M.J.; Gunaratne, J.; et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nat. Biomed. Eng. 2019, 3, 598–610. [Google Scholar] [CrossRef]
- Chirila, T.V.; Hong, Y. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: A rheological study. Polym. Int. 1998, 46, 183–195. [Google Scholar] [CrossRef]
- de Jong, C.; Bali, E.; Libert, J.; Caspers-Velu, L. ADCON-L hydrogel as a vitreous substitute: Preliminary results. Bull. Soc. Belge Ophtalmol. 2000, 278, 71–75. [Google Scholar]
- Davidorf, F.H.; Chambers, R.B.; Kwon, O.W.; Doyle, W.; Gresak, P.; Frank, S.G. Ocular toxicity of vitreal pluronic polyol F-127. Retina 1990, 10, 297–300. [Google Scholar] [CrossRef]
- Hwang, Y.; Chiang, P.; Hong, W.; Chiao, C.; Chu, I.; Hsiue, G.-H.; Shen, C. Study In Vivo Intraocular Biocompatibility of In Situ Gelation Hydrogels: Poly(2-Ethyl Oxazoline)-Block-Poly(ε-Caprolactone)-Block-Poly(2-Ethyl Oxazoline) Copolymer, Matrigel and Pluronic F127. PLoS ONE 2013, 8, e67495. [Google Scholar] [CrossRef]
- Pruett, R.C.; Calabria, G.A.; Schepens, C.L. Collagen vitreous substitute. I. Experimental study. Arch. Ophthalmol. 1972, 88, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Pruett, R.C.; Schepens, C.L.; Freeman, H.M. Collagen vitreous substitute. II. Preliminary clinical trials. Arch. Ophthalmol. 1974, 91, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, Y.; Iwasaki, T.; Ishikawa, T.; Yamakawa, N.; Suzuki, H.; Usui, M. Application of thermo-setting gel as artificial vitreous. Jpn. J. Ophthalmol. 2005, 49, 491–496. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef]
- Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 2020, 148, 104501. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med. (Praha) 2008, 53, 397–411. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Yang, J.; Zhang, H.; Gan, L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int. J. Pharm. 2019, 565, 133–142. [Google Scholar] [CrossRef]
- Pruett, R.C.; Schepens, C.L.; Swann, D.A. Hyaluronic acid vitreous substitute. A six-year clinical evaluation. Arch. Ophthalmol. 1979, 97, 2325–2330. [Google Scholar] [CrossRef]
- Su, W.Y.; Chen, K.H.; Chen, Y.C.; Lee, Y.H.; Tseng, C.L.; Lin, F.H. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute. J. Biomater. Sci. Polym. Ed. 2011, 22, 1777–1797. [Google Scholar] [CrossRef]
- Schramm, C.; Spitzer, M.S.; Henke-Fahle, S.; Steinmetz, G.; Januschowski, K.; Heiduschka, P.; Geis-Gerstofer, J.; Biedermann, T.; Bartz-Schmidt, K.; Szurman, P. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest. Ophthalmol. Vis. Sci. 2012, 53, 613–621. [Google Scholar] [CrossRef]
- Roy, S.; Thi HDo Feusier, M.; Mermoud, A. Crosslinked sodium hyaluronate implant in deep sclerectomy for the surgical treatment of glaucoma. Eur. J. Ophthalmol. 2012, 22, 70–76. [Google Scholar] [CrossRef]
- Barth, H.; Crafoord, S.; Andréasson, S.; Ghosh, F. A cross-linked hyaluronic acid hydrogel (Healaflow®) as a novel vitreous substitute. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 697–703. [Google Scholar] [CrossRef]
- Raia, N.R.; Jia, D.; Ghezzi, C.E.; Muthukumar, M.; Kaplan, D.L. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 2020, 233, 119729. [Google Scholar] [CrossRef]
- Schnichels, S.; Schneider, N.; Hohenadl, C.; Hurst, J.; Schatz, A.; Januschowski, K.; Spitzer, M. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. PLoS ONE 2017, 12, e0172895. [Google Scholar] [CrossRef]
- Januschowski, K.; Schnichels, S.; Hurst, J.; Hohenadl, C.; Reither, C.; Rickmann, A.; Pohl, L.; Bartz-Schmidt, K.; Spitzer, M. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute. PLoS ONE 2019, 14, e0209217. [Google Scholar] [CrossRef]
- Nakagawa, M.; Tanaka, M.; Miyata, T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997, 29, 409–420. [Google Scholar] [CrossRef]
- Suri, S.; Banerjee, R. In vitro evaluation of in situ gels as short term vitreous substitutes. J. Biomed. Mater. Res. A 2006, 79, 650–664. [Google Scholar] [CrossRef]
- Oosterhuis, J.A.; van Haeringen, N.J.; Jeltes, I.G.; Glasius, E. Polygeline as a vitreous substitute. I. Observations in rabbits. Arch. Ophthalmol. 1966, 76, 258–265. [Google Scholar] [CrossRef]
- Liang, C.; Peyman, G.A.; Serracarbassa, P.; Calixto, N.; Chow, A.A.; Rao, P. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int. Ophthalmol. 1998, 22, 13–18. [Google Scholar] [CrossRef]
- Giavasis, I.; Harvey, L.M.; McNeil, B. Gellan Gum. Crit. Rev. Biotechnol. 2000, 20, 177–211. [Google Scholar] [CrossRef]
- Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014, 466, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Luo, C.; Lu, B.; Fu, Q.; Yin, H.; Qin, Z.; Lyu, D.; Zhang, L.; Fang, Z.; Zhu, Y. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta. Biomater. 2017, 61, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Y.; Chen, L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 2017, 24, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, R.; Gu, Q.; Zhang, X. Feasibility study of chitosan as intravitreous tamponade material. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Han, B.; Liu, W.; Xu, X. Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohydr. Res. 2005, 340, 1846–1851. [Google Scholar] [CrossRef]
- Jiang, X.; Peng, Y.; Yang, C.; Liu, W.; Han, B. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute. J. Biomed. Mater. Res. A 2018, 106, 1997–2006. [Google Scholar] [CrossRef]
- Nardo, T.; Carmagnola, I.; Ruini, F.; Caddeo, S.; Calzone, S.; Chiono, V.; Ciardelli, G. Synthetic Biomaterial for Regenerative Medicine Applications. In Kidney Transplantation, Bioengineering and Regeneration; Elsevier: Amsterdam, The Netherlands, 2017; pp. 901–921. [Google Scholar] [CrossRef]
- Hayashi, K.; Okamoto, F.; Hoshi, S.; Katashima, T.; Zujur, D.C.; Li, X.; Shibayama, M.; Gilbert, E.; Chung, U.; Ohba, S.; et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat. Biomed. Eng. 2017, 1, 44. [Google Scholar] [CrossRef]
- Scuderi, G. Experimental vitreous transplantation: Attempted partial replacement with homologous vitreous, heterologous liquor and polyvinylpyrrolidone solutions. Ann. Ottalmol. Clin. Ocul. 1954, 80, 213–220. [Google Scholar]
- Hong, Y.; Chirila, T.V.; Cuypers, M.J.H.; Constable, I.J. Polymers of 1-Vinyl-2-Pyrrolidinone as Potential Vitreous Substitutes: Physical Selection. J. Biomater. Appl. 1996, 11, 135–181. [Google Scholar] [CrossRef]
- Hong, Y.; Chirila, T.V.; Vijayasekaran, S.; Dalton, P.D.; Tahija, S.G.; Cuypers, M.J.H.; Constable, I.J. Crosslinked poly(1-vinyl-2-pyrrolidinone) as a vitreous substitute. J. Biomed. Mater. Res. 1996, 30, 441–448. [Google Scholar] [CrossRef]
- Vijayasekaran, S.; Chirila, T.V.; Hong, Y.; Tahija, S.G.; Dalton, P.D.; Constable, I.J.; McAllister, I. Poly(I-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: Histopathological evaluation in the animal eye. J. Biomater. Sci. Polym. Ed. 1996, 7, 685–696. [Google Scholar] [CrossRef]
- Hong, Y.; Chirila, T.V.; Vijayasekaran, S.; Shen, W.; Lou, X.; Dalton, P.D. Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J. Biomed. Mater. Res. 1998, 39, 650–659. [Google Scholar] [CrossRef]
- Tylkowski, B.; Wieszczycka, K.; Jastrzab, R. Polymer Engineering; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Fernandez-Vigo, J.; Refojo, M.F.; Verstraeten, T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina 1990, 10, 148–152. [Google Scholar] [CrossRef]
- Fernandez-Vigo, J.; Sabugal, J.F.; Rey, A.D.; Concheiro, A.; Martinez, R. Molecular Weight Dependence of the Pharmacokinetic of Hydroxypropyl Methylcellulose in the Vitreous. J. Ocul. Pharmacol. Ther. 1990, 6, 137–142. [Google Scholar] [CrossRef]
- Contessi, N.; Altomare, L.; Filipponi, A.; Farè, S. Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Mater. Lett. 2017, 207, 157–160. [Google Scholar] [CrossRef]
- Tribolet, N.; Porchet, F.; Lutz, T.; Gratzl, O.; Brotchi, J.; Alphen, H.; Acker, R.; Benini, A.; Strommer, K.; Bernays, R.; et al. Clinical assessment of a novel antiadhesion barrier gel: Prospective, randomized, multicenter, clinical trial of ADCON-L to inhibit postoperative peridural fibrosis and related symptoms after lumbar discectomy. Am. J. Orthop. (Belle Mead NJ) 1998, 27, 111–120. [Google Scholar]
- Strotmann, F.; Bezdushna, E.; Ritter, H.; Galla, H.J. In situ forming hydrogels: A thermo-responsive polyelectrolyte as promising liquid artificial vitreous body replacement. Adv. Eng. Mater. 2011, 13, 172–180. [Google Scholar] [CrossRef]
- Strotmann, F.; Wolf, I.; Galla, H.J. The biocompatibility of a polyelectrolyte vitreous body substitute on a high resistance in vitro model of the blood-retinal barrier. J. Biomater. Appl. 2013, 28, 334–342. [Google Scholar] [CrossRef]
- Aliyar, H.A.; Foster, W.J.; Hamilton, P.D.; Ravi, N. Towards the development of an artificial human vitreous. Polym. Prep. 2004, 45, 469–470. [Google Scholar]
- Foster, W.J.; Aliyar, H.A.; Hamilton, P.; Ravi, N. Internal osmotic pressure as a mechanism of retinal attachment in a vitreous substitute. J. Bioact. Compat. Polym. 2006, 21, 221–235. [Google Scholar] [CrossRef]
- Swindle-Reilly, K.E.; Shah, M.; Hamilton, P.D.; Eskin, T.A.; Kaushal, S.; Ravi, N. Rabbit study of an in situ forming hydrogel vitreous substitute. Invest. Ophthalmol. Vis. Sci. 2009, 50, 4840–4846. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Struckhoff, J.J.; Du, H.; Hamilton, P.D.; Ravi, N. Synthesis and characterization of in situ forming anionic hydrogel as vitreous substitutes. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Daniele, S.; Refojo, M.F.; Schepens, C.L.; Freeman, H.M. Glyceryl Methacrylate Hydrogel as a Vitreous Implant. Arch. Ophthalmol. 1968, 80, 120. [Google Scholar] [CrossRef] [PubMed]
- Hogen-Esch, T.E.; Shah, K.R.; Fitzgerald, C.R. Development of injectable poly(glyceryl methacrylate) hydrogels for vitreous prosthesis. J. Biomed. Mater. Res. 1976, 10, 975–976. [Google Scholar] [CrossRef] [PubMed]
- Chirila, T.V.; Tahija, S.; Hong, Y.; Vijayasekaran, S.; Constable, I.J. Synthetic Polymers as Materials for Artificial Vitreous Body: Review and Recent Advances. J. Biomater. Appl. 1994, 9, 121–137. [Google Scholar] [CrossRef]
- Yamauchi, A. Synthetic Vitreous Body of PVA Hydrogel. In Polymer Gels; Springer: Boston, MA, USA, 1991; pp. 127–134. [Google Scholar] [CrossRef]
- Maruoka, S.; Matsuura, T.; Kawasaki, K.; Okamoto, M.; Yoshiaki, H.; Kodama, M.; Sugiyama, M.; Annaka, M. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr. Eye Res. 2006, 31, 599–606. [Google Scholar] [CrossRef]
- Cavalieri, F.; Miano, F.; D’Antona, P.; Paradossi, G. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery. Biomacromolecules 2004, 5, 2439–2446. [Google Scholar] [CrossRef]
- Leone, G.; Consumi, M.; Aggravi, M.; Donati, A.; Lamponi, S.; Magnani, A. PVA/STMP based hydrogels as potential substitutes of human vitreous. J. Mater. Sci. Mater. Med. 2010, 21, 2491–2500. [Google Scholar] [CrossRef]
- Lamponi, S.; Leone, G.; Consumi, M.; Greco, G.; Magnani, A. In vitro biocompatibility of new PVA-based hydrogels as vitreous body substitutes. J. Biomater. Sci. Polym. Ed. 2012, 23, 555–575. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Saeb, M.R.; Jafari, S.H.; Mozafari, M. Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2020; pp. 511–537. [Google Scholar] [CrossRef]
- Mukherjee, P.; Rani, A.; Saravanan, P. Polymeric Materials for 3D Bioprinting. In 3D Printing Technology in Nanomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–81. [Google Scholar] [CrossRef]
- Pritchard, C.D.; Crafoord, S.; Andréasson, S.; Arnér, K.M.; O’Shea, T.M.; Langer, R.; Ghosh, F. Evaluation of viscoelastic poly(ethylene glycol) sols as vitreous substitutes in an experimental vitrectomy model in rabbits. Acta. Biomater. 2011, 7, 936–943. [Google Scholar] [CrossRef]
- Annaka, M.; Mortensen, K.; Vigild, M.E.; Matsuura, T.; Tsuji, S.; Ueda, T.; Tsujinaka, H. Design of an injectable in situ gelation biomaterials for vitreous substitute. Biomacromolecules 2011, 12, 4011–4021. [Google Scholar] [CrossRef]
- Tao, Y.; Tong, X.; Zhang, Y.; Lai, J.; Huang, Y.; Jiang, Y.R.; Guo, B. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta. Biomater. 2013, 9, 5022–5030. [Google Scholar] [CrossRef]
- Chang, J.; Tao, Y.; Wang, B.; Yang, X.; Xu, H.; Jiang, Y.R.; Guo, B.; Huang, Y. Evaluation of a redox-initiated in situ hydrogel as vitreous substitute. Polymer (Guildf) 2014, 55, 4627–4633. [Google Scholar] [CrossRef]
- Böhm, I.; Strotmann, F.; Koopmans, C.; Wolf, I.; Galla, H.J.; Ritter, H. Two-Component In situ Forming Supramolecular Hydrogels as Advanced Biomaterials in Vitreous Body Surgery. Macromol. Biosci. 2012, 12, 432–437. [Google Scholar] [CrossRef]
- Chang, J.; Tao, Y.; Wang, B.; Guo, B.H.; Xu, H.; Jiang, Y.R.; Huang, Y. An in situ-forming zwitterionic hydrogel as vitreous substitute. J. Mater. Chem. B 2015, 3, 1097–1105. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Cui, C.; Yang, J.; Liu, W. Antifouling Super Water Absorbent Supramolecular Polymer Hydrogel as an Artificial Vitreous Body. Adv. Sci. 2018, 5, 1800711. [Google Scholar] [CrossRef]
- Uesugi, K.; Sakaguchi, H.; Hayashida, Y.; Hayashi, R.; Baba, K.; Suganuma, Y.; Yokoi, H.; Tsujikawa, M.; Nishida, K. A self-assembling peptide gel as a vitreous substitute: A rabbit study. Invest. Ophthalmol. Vis. Sci. 2017, 58, 4068–4075. [Google Scholar] [CrossRef]
- Xue, K.; Liu, Z.; Jiang, L.; Kai, D.; Li, Z.; Su, X.; Loh, X. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater. Sci. 2020, 8, 926–936. [Google Scholar] [CrossRef]
- Lin, Y.K.; Chen, K.H.; Kuan, C.Y. The synthesis and characterization of a thermally responsive hyaluronic acid/Pluronic copolymer and an evaluation of its potential as an artificial vitreous substitute. J. Bioact. Compat. Polym. 2013, 28, 355–367. [Google Scholar] [CrossRef]
- Santhanam, S.; Liang, J.; Struckhoff, J.; Hamilton, P.D.; Ravi, N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta. Biomater. 2016, 43, 327–337. [Google Scholar] [CrossRef]
- Santhanam, S.; Shui, Y.B.; Struckhoff, J.; Karakocak, B.B.; Hamilton, P.D.; Harocopos, G.J.; Ravi, N. Bioinspired Fibrillary Hydrogel with Controlled Swelling Behavior: Applicability as an Artificial Vitreous. ACS Appl. Bio. Mater. 2019, 2, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Laradji, A.; Shui, Y.B.; Karakocak, B.B.; Evans, L.; Hamilton, P.; Ravi, N. Bioinspired thermosensitive hydrogel as a vitreous substitute: Synthesis, properties, and progress of animal studies. Materials 2020, 13, 1337. [Google Scholar] [CrossRef] [PubMed]
- Morozova, S.; Hamilton, P.; Ravi, N.; Muthukumar, M. Development of a vitreous substitute: Incorporating charges and fibrous structures in synthetic hydrogel materials. Macromolecules 2016, 49, 4619–4626. [Google Scholar] [CrossRef]
- Gao, Q.; Mou, S.; Ge, J.; To, C.; Hui, Y.; Liu, A.; Wang, Z.; Long, C.; Tan, J. A new strategy to replace the natural vitreous by a novel capsular artificial vitreous body with pressure-control valve. Eye 2008, 22, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Z.; Gao, Q.; Ge, J.; Chen, J.; Cao, X.; Shen, Q.; Ma, P. Technical standards of a foldable capsular vitreous body in terms of mechanical, optical, and biocompatible properties. Artif. Organs 2010, 34, 836–845. [Google Scholar] [CrossRef]
- Lin, X.; Ge, J.; Gao, Q.; Wang, Z.; Long, C.; He, L.; Liu, Y.; Jiang, Z. Evaluation of the flexibility, efficacy, and safety of a foldable capsular vitreous body in the treatment of severe retinal detachment. Invest. Ophthalmol. Vis. Sci. 2011, 52, 374–381. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Q.; Liu, Y.; Ge, J.; Cao, X.; Luo, Y.; Huang, D.; Zhou, G.; Lin, S.; Lin, J.; et al. Clinical device-related article evaluation of morphology and functions of a foldable capsular vitreous body in the rabbit eye. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97, 396–404. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Q.; Jiang, Z.; Lin, J.; Liu, Y.; Chen, J.; Zhou, L.; Li, H.; Yang, Q.; Wang, T. Biocompatibility and retinal support of a foldable capsular vitreous body injected with saline or silicone oil implanted in rabbit eyes. Clin. Exp. Ophthalmol. 2012, 40, e67–e75. [Google Scholar] [CrossRef]
- Feng, S.; Chen, H.; Liu, Y.; Huang, Z.; Sun, X.; Zhou, L.; Lu, X.; Gao, Q. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel. Sci. Rep. 2013, 3, srep01838. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Feng, S.; Liu, Y.; Huang, Z.; Sun, X.; Zhou, L.; Lu, X.; Gao, Q. Functional evaluation of a novel vitreous substitute using polyethylene glycol sols injected into a foldable capsular vitreous body. J. Biomed. Mater. Res. A 2013, 101, 2538–2547. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Z.; Jiang, Z.; Long, C.; Liu, Y.; Wang, P.; Jin, C.; Yi, C.; Gao, Q. Preliminary efficacy and safety of a silicone oil–filled foldable capsular vitreous body in the treatment of severe retinal detachment. Retina 2012, 32, 729–741. [Google Scholar] [CrossRef]
- Lin, X.; Sun, X.; Wang, Z.; Jiang, Z.; Liu, Y.; Wang, P.; Gao, Q. Three-year efficacy and safety of a silicone oil-filled foldable-capsular-vitreous-body in three cases of severe retinal detachment. Transl. Vis. Sci. Technol. 2016, 5, 2. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, Q.; Chen, J.; Wang, Z.; Xie, Z.; Jiang, Z.; Ge, J.; Gao, Q. Sustained Mechanical Release of Dexamethasone Sodium Phosphate from a Foldable Capsular Vitreous Body. Investig. Opthalmology Vis. Sci. 2010, 51, 1636. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, T.; Pan, B.; Xie, Z.; Wang, P.; Liu, Y.; Gao, Q. Evaluation of the levofloxacin release characters from a rabbit foldable capsular vitreous body. Int. J. Nanomed. 2011, 2012, 1–10. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, P.; Pan, B.; Xie, Z.; Li, D.; Wang, T.; Liu, Y.; Yuan, Z.; Gao, Q. Evaluation of Levofloxacin Release Characteristics from a Human Foldable Capsular Vitreous Body In Vitro. J. Ocul. Pharmacol. Ther. 2012, 28, 33–40. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Wang, P.; Liu, Y.; Jiang, Z.; Gao, Q. Evaluation of 5-fluorouracil released from a foldable capsular vitreous body in vitro and in vivo. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 751–759. [Google Scholar] [CrossRef]
- Cabrera, F.J.; Wang, D.C.; Reddy, K.; Acharya, G.; Shin, C.S. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov. Today 2019, 24, 1679–1684. [Google Scholar] [CrossRef]
- Huang, X.; Chau, Y. Intravitreal nanoparticles for retinal delivery. Drug Discov. Today 2019, 24, 1510–1523. [Google Scholar] [CrossRef]
- Imperiale, J.C.; Acosta, G.B.; Sosnik, A. Polymer-based carriers for ophthalmic drug delivery. J. Control. Release 2018, 285, 106–141. [Google Scholar] [CrossRef]
- Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol. Pharm. 2016, 13, 2923–2940. [Google Scholar] [CrossRef]
- Xue, K.; Zhao, X.; Zhang, Z.; Qiu, B.; Tan, Q.S.W.; Ong, K.H.; Liu, Z.; Parikh, B.; Barathi, V.; Yu, W.; et al. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater. Sci. 2019, 7, 4603–4614. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Falavarjani, K.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Polykandriotis, E.; Popescu, L.M.; Horch, R.E. Regenerative medicine: Then and now—An update of recent history into future possibilities. J. Cell. Mol. Med. 2010, 14, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, C. The history of tissue engineering. J. Cell. Mol. Med. 2006, 1, 569–576. [Google Scholar] [CrossRef]
- Doostmohammadi, M.; Forootanfar, H.; Ramakrishna, S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Mater. Sci. Eng. C 2020, 109, 110521. [Google Scholar] [CrossRef]
- Matthyssen, S.; van den Bogerd, B.; Dhubhghaill, S.N.; Koppen, C.; Zakaria, N. Corneal regeneration: A review of stromal replacements. Acta. Biomater. 2018, 69, 31–41. [Google Scholar] [CrossRef]
- Sommer, F.; Pollinger, K.; Brandl, F.; Weiser, B.; Teßmar, J.; Blunk, T.; Göpferich, A. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 1275–1284. [Google Scholar] [CrossRef]
- Nishitsuka, K.; Kashiwagi, Y.; Tojo, N.; Kanno, C.; Takahashi, Y.; Yamamoto, T.; Heldin, P.; Yamashit, H. Hyaluronan production regulation from porcine hyalocyte cell line by cytokines. Exp. Eye Res. 2007, 85, 539–545. [Google Scholar] [CrossRef]
Biochemical Group | Molecule |
---|---|
Proteins | Albumin |
Transferrin (iron-binding protein) | |
Collagen (type II, IV, V, VI, IX, XI) | |
Glycosaminoglycans | Hyaluronic acid |
Chondroitin sulfate | |
Metabolites | Ascorbic acid |
Glucose | |
Lactic acid | |
Amino acids | |
Unsaturated fatty acids | |
Prostaglandins | |
PGE2 | |
PGF2 alpha | |
Prostacyclin | |
Thromboxane | |
Cells | Hyalocytes |
Fibrocytes/fibroblasts | |
Macrophages |
Silicone Oil (SO) Tamponades | Chemical Composition | Viscosity (Centistoke) | Specific Gravity (g/cm3) | Interfacial Tension (mN/m) | Refractive Index | |
Conventional SO | ||||||
1000 cSt SO | 100% PDMS | 1000 | 0.97 | 35 | 1.4 | |
5000 cSt SO | 100% PDMS | 5000 | 0.97 | 35 | 1.4 | |
Heavy SO | ||||||
Oxane HD | 88.1% 5700 cSt | 3300 | 1.02 | 45 | 1.4 | |
Densiron 68 | Oxane/11.9% RMN-3 69.5% 5000 cSt PDMS/30.5% F6H8 | 1400 | 1.06 | 41 | 1.4 | |
Gas Tamponades | Chemical Formula and Molecular Weight (g/mol) | 100% Gas Expansivity | 100% Maximum gas Expansion | Tamponade Duration | Isoexpansile Concentration | Interfacial Tension (mN/m) |
Air | N/A 28.97 | N/A † | N/A † | 5–7 days | N/A † | 70 |
Sulfur hexafluoride | SF6 146.06 | 2× | 1–2 days | 2 weeks | 20% | 70 |
Perfluoro-ethane | C2F6 138.01 | 3× | 1–3 days | 4–5 weeks | 16% | 70 |
Perfluoro-propane | C3F8 188.02 | 4× | 3–4 days | 8 weeks | 14% | 70 |
Perfluorocarbon Liquids | Chemical Formula and Molecular Weight (g/mol) | Specific Gravity (g/cm3) | Viscosity (mPas) | Interfacial Tension (mN/m) | Refractive Index | |
Perfluoro-n-octane | C8F18 438.06 | 1.76 | 1.20 | 55.0 | 1.3 | |
Perfluorodecalin | C10F18 462.08 | 1.33 | 5.68 | 57.8 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, K.; Du Toit, L.C.; Ally, N.; Choonara, Y.E. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics 2023, 15, 566. https://doi.org/10.3390/pharmaceutics15020566
Naik K, Du Toit LC, Ally N, Choonara YE. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics. 2023; 15(2):566. https://doi.org/10.3390/pharmaceutics15020566
Chicago/Turabian StyleNaik, Kruti, Lisa C. Du Toit, Naseer Ally, and Yahya E. Choonara. 2023. "Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes" Pharmaceutics 15, no. 2: 566. https://doi.org/10.3390/pharmaceutics15020566
APA StyleNaik, K., Du Toit, L. C., Ally, N., & Choonara, Y. E. (2023). Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics, 15(2), 566. https://doi.org/10.3390/pharmaceutics15020566