Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment
Abstract
:1. Introduction
2. SLN Properties
3. SLNs Production Methods
3.1. Hot High-Pressure Homogenization
3.2. Cold High-Pressure Homogenization
3.3. Microemulsion
3.4. Double Microemulsion
3.5. High Shear Homogenization
3.6. Solvent Emulsification-Evaporation
3.7. Solvent Emulsification-Diffusion
3.8. Solvent Injection
3.9. Solvent Injection Lyophilization
3.10. Coacervation
3.11. Microwave-Assisted Microemulsion Technique
4. Solid Lipid Nanoparticles Administration Routes
4.1. Topical and Dermal Administration
4.2. Pulmonary Administration
4.3. Oral Administration
4.4. Ocular Administration
4.5. Intravenous Administration
4.6. Intranasal Administration
5. SLNs’ Advantages for Cancer Treatment
6. SLNs for Drug Delivery
Lipid | Method | Drug | Cancer | Phase | Ref |
---|---|---|---|---|---|
SA | Hot sonication | Wogonin | BC | In vitro | [78] |
SA | Emulsification-solidification | Curcumin | BC | In vitro | [79] |
SA & lecithin & TPGS | Emulsification-solidification | Resveratrol | BC | In vivo | [71] |
CP | SEE | Nutlin3 & SPIONS | GBM | In vitro (BBB model) | [74] |
Trilaurin | Microemulsion cold dilution | Curcumin | PC | In vivo | [81] |
Gliceryl tripalmitate | HSH | PTX | BC and LC | In vitro | [67] |
Resveratrol-stearated | Microemulsion | Omg-3 | CRC | In vitro | [82] |
SA | HSH | TMX | BC | In vitro | [72] |
Lauric acid & (linoleic acid/oleic acid) | Hot melt encapsulation | 5-FU | BC | In vitro | [76] |
Sodium behenate | Coacervation | TMZ | Melanoma | In vivo | [68] |
Behenic acid sodium salt | Coacervation | DOX | OC | In vitro | [73] |
SA | SEE | Curcumin | HL | In vivo | [80] |
Trilauriun & TPGS | Microemulsion | DOX and SPIONS | PTC (murine) | In vivo | [75] |
CP | HPH | Indirubin | GBM | In vitro | [83] |
CP | SEE | Topotecan hydrocloride | CC | In vitro | [84] |
GMS | HSH | Talazoparib (BMN673) | BC | In vitro | [85] |
Myristyl myristate | Hot sonication | Linalool | HC and LC | In vitro | [86] |
GMS | Hot sonication | PTX and ascorbyl palmitate | Melanoma (murine) | In vivo | [87] |
SA & lecithin | SIL | 5-FU | Melanoma | In vivo | [88] |
Compritol® | Microemulsion | AP9-cd (ligand) | Leukaemia | In vivo | [89] |
1-tetradecanol | HHPH and ultrasonication | Temoporfin | BC | In vivo | [90] |
GMS, AAD, and RGD | Emulsification-solidification | DOX | BC | In vivo | [77] |
SA | SED | PTA | OC | In vitro | [91] |
Precirol® ATO5 | Emulsification-solidification | PTX | BC | In vitro | [92] |
Imwitor® 308 and Dynasan® 114 | Ultrasonic melt-emulsification | Celecoxib | CRC | In vitro | [93] |
Lecithin & DSPE-PEG2000 | Film dispersion method | PTX, Curcumin | LC | In vivo | [94] |
GMS | modified emulsion/solvent evaporation method | Abiraterone Acetate | PC | Ex vivo/In vivo | [95] |
7. Targeted SLNs
Lipid | Method | Drug | Targeting | Cancer | Phase | Ref |
---|---|---|---|---|---|---|
Compritol® | HSH | N.A. | Antibody against HR2 | BC | In vitro | [96] |
Glyceryl stearate & Chol | Nanoprecipitation | PTX | Folic acid coated | LC | In vivo | [99] |
SA and lecithin | HHPH | Satureja khuzistanica Essential Oil & folate-bound chitosan | Folic acid | BC | In vitro | [102] |
Behenic acid | Coacervation | Methotrexate | Apoemimkin Chimera | GBM | In vivo | [110] |
GMS and SA | SEE | Docetaxel | Angiopep-2 | GBM | In vivo | [109] |
PA | SED | di-allyl-disulfide | RAGE antibody | BC | In vitro | [98] |
DSPE | SED | Oxaliplatin | Folic acid | CRC | In vitro | [101] |
GMS and TPGS | SEE | PTX and Curcumin | SA-folate | BC | In vitro | [100] |
GMS, SPC, and Oda | Film-ultrasonic method | Docetaxel | HA-Te | BC | In vivo | [97] |
Tristearin | SED | Irinotecan | Folic acid | CRC | In vivo | [111] |
GMS | SEE | PTX and TSC | TAT | CC | In vivo | [106] |
Trilaurin and TPGS | Microemulsion | DOX and SPIONs | Folic acid | CRC | In vivo | [105] |
Glyceryl palmitostearate | Emulsification-solidification | PTX | Anti CD44v6 antibody | BC | In vitro | [112] |
Stearyl amine | SEE | Gemcitabine | Mannose | LC | In vivo | [103] |
Gelucire® 50/13 | Microemulsion | Methotrexate | Fucose | BC | In vivo | [104] |
GMS | HHPH | PTX | Hyaluronic acid | CC & BC | In vivo | [113] |
SA | SI (modified) | Resveratrol and Ferulic acid | Folic acid | CRC | In vitro | [114] |
SA | Hot melted sonication | PTX | HP-β-CD | BC | In vivo | [115] |
GMS and Compritol® | Hot melt-emulsification | Dox and Curcumin | Folic acid | BC | In vivo | [116] |
Compritol®, tripalmitin, SA, and Chol | SEE | ETP | Melanotransferr-in antibody and Tamoxifen | GBM | In vitro | [108] |
GMS | SEE | PTX | Wheat germ agglutinin | LC | In vivo | [117] |
Compritol®, CL, and SA | Microemulsion | ETP | 83–14 MAb and AEGFR | GBM | In vitro | [107] |
Behenic acid, tripalmitin, and cacao butter | SEE | Carmustine | Tamoxifen and Lectoferrin | GBM | In vitro | [118] |
Tristearin & HSPC | SI | PTX | Lactoferrin | LC | In vitro | [39] |
PA and Dynasan® | N.A. | Saquinavir | 83–14 MAb | GBM | In vitro | [119] |
Compritol® 888 ATO and Precirol® ATO | Sonication of pre-emulsion | DTX | AS1411 anti-nucleolin aptamers | CRC | In vivo | [120] |
Cetyl palmitate | Hot ultrasonication method | Mitoxantrone | Folate receptor | BC | In vitro | [121] |
8. SLNs for Gene Delivery
Lipid | Method | Drug | Genetic Material | Cancer | Phase | Ref |
---|---|---|---|---|---|---|
Gelucire® 50/13 | SEE | PTX | Bcl-2 siRNA | CC | In vitro | [136] |
Precirol ATO5 and Compritol® | Microemulsion (modified) | N.A. | pDNA stat3 | LC | In vitro | [134] |
Steryalmide | Microemulsion | Sorafenib/ATRA | miR-542-3p | GC | In vivo | [138] |
DSPE, DOTAP, and αPC | SED | Irinotecan | miR200 | CRC | In vivo | [141] |
DOPE, Chol, and DC-Chol | SEE | N.A. | c-Met siRNA | GBM | In vivo | [132] |
DOPC | emulsification solidification methods | PTX | MCL-1 siRNA | BC | In vivo | [137] |
GMS | film-ultrasonic dispersion method | PTX | pDNA | BC | In vivo | [140] |
Precirol ATO5 | ethanolic precipitation technique & HPH | N.A. | shNUPR1 | HC | In vitro | [133] |
DOTAP and GMS | SED | N.A. | miR200 | BC | In vitro | [142] |
GMS, SPC, and Chol | film-ultrasonic method | N.A. | miR-34a | LC | In vivo | [143] |
GMS and SPC | SED | N.A. | AMO | LC | In vitro | [144] |
GMS and soya lecithin | solvent diffusion method | N.A. | STAT3 decoy oligodeoxynucleotides | OC | In vivo | [135] |
Cetyl palmitate and Cremephor RH 40, Peceol, and propylene glycol | melt-emulsification technique | N.A. | siRNA-EGFR siRNA-PD-L1 | GBM | In vivo | [145] |
9. Other Applications
9.1. Immunotherapy
9.2. Imaging
9.3. Theragnostic
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, G.; Wang, Y.; Yang, G.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021, 11, 6370–6392. [Google Scholar] [CrossRef] [PubMed]
- Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Musicanti, C.; Gasco, P. Solid Lipid Nanoparticles–SLN. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 2471–2487. [Google Scholar]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Esquivel, R.-A.; Navarro-Tovar, G.; Zárate-Hernández, E.; Aguirre-Bañuelos, P. Solid Lipid Nanoparticles (SLN). In Nanocomposite Materials for Biomedical and Energy Storage Applications; Sharma, A., Ed.; IntechOpen Limited: London, UK, 2022. [Google Scholar]
- Prabhakaran, E.; Hasan, A.; Karunanidhi, P. Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun. 2012, 2, 80–102. [Google Scholar]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021, 13, 1183. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Zieneldien, T.; Kim, J.; Cao, J.; Cao, C. COVID-19 Vaccines: Current Conditions and Future Prospects. Biology 2021, 10, 960. [Google Scholar] [CrossRef] [PubMed]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef] [PubMed]
- Sastri, K.T.; Radha, G.V.; Pidikiti, S.; Vajjhala, P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. JAPS 2020, 10, 126–141. [Google Scholar] [CrossRef]
- Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release 1994, 30, 83–96. [Google Scholar] [CrossRef]
- Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 2000, 199, 167–177. [Google Scholar] [CrossRef]
- Zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998, 45, 149–155. [Google Scholar] [CrossRef]
- Pooja, D.; Tunki, L.; Kulhari, H.; Reddy, B.B.; Sistla, R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief 2016, 6, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009, 71, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Sjöström, B.; Bergenståhl, B. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int. J. Pharm. 1992, 88, 53–62. [Google Scholar] [CrossRef]
- Hu, F.Q.; Yuan, H.; Zhang, H.H.; Fang, M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int. J. Pharm. 2002, 239, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.A.; Müller-Goymann, C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003, 55, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, N.; Zhang, Y.; Shen, W.; Gao, X.; Li, T. Solvent Injection-Lyophilization of Tert-Butyl alcohol/water Cosolvent Systems for the Preparation of Drug-Loaded Solid Lipid Nanoparticles. Colloids Surf. B Biointerfaces 2010, 79, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, L.; Gallarate, M.; Cavalli, R.; Trotta, M. Solid Lipid Nanoparticles Produced Through a Coacervation Method. J. Microencapsul. 2010, 27, 78–85. [Google Scholar] [CrossRef]
- Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Production Techniques. In Lipid Nanoparticles: Production, Characterization and Stability; Springer International Publishing: Cham, Switzerland, 2015; pp. 23–43. [Google Scholar]
- Liu, X.; Meng, H. Consideration for the scale-up manufacture of nanotherapeutics—A critical step for technology transfer. View 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Arduino, I.; Liu, Z.; Rahikkala, A.; Figueiredo, P.; Correia, A.; Cutrignelli, A.; Denora, N.; Santos, H.A. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater 2021, 121, 566–578. [Google Scholar] [CrossRef]
- Andrade, L.N.; Oliveira, D.M.L.; Chaud, M.V.; Alves, T.F.R.; Nery, M.; da Silva, C.F.; Gonsalves, J.K.C.; Nunes, R.S.; Corrêa, C.B.; Amaral, R.G.; et al. Praziquantel-Solid Lipid Nanoparticles Produced by Supercritical Carbon Dioxide Extraction: Physicochemical Characterization, Release Profile, and Cytotoxicity. Molecules 2019, 24, 3881. [Google Scholar] [CrossRef] [Green Version]
- Montoto, S.S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharmaceutical Dermal Products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Schäfer-Korting, M.; Mehnert, W.; Korting, H.C. Lipid Nanoparticles for Improved Topical Application of Drugs for Skin Diseases. Adv. Drug Deliv. Rev. 2007, 59, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Netto, G. Role of Solid Lipid Nanoparticles as Photoprotective Agents in Cosmetics. J. Cosmet. Dermatol. 2019, 18, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozeki, T.; Beppu, S.; Mizoe, T.; Takashima, Y.; Yuasa, H.; Okada, H. Preparation of Two-Drug Composite Microparticles to Improve the Dissolution of Insoluble Drug in Water for Use With a 4-fluid Nozzle Spray Drier. J. Control. Release Off. J. Control. Release Soc. 2005, 107, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomed. 2007, 2, 289–300. [Google Scholar]
- Jawahar, N.; Reddy, G. Nanoparticles: A novel pulmonary drug delivery system for tuberculosis. J. Pharm. Sci. Res. 2012, 4, 1901–1906. [Google Scholar]
- Pandey, V.; Gajbhiye, K.R.; Soni, V. Lactoferrin-appended Solid Lipid Nanoparticles of Paclitaxel for Effective Management of Bronchogenic Carcinoma. Drug Deliv. 2015, 22, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Pulmonary Application: A Review of the State of the Art. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2014, 86, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Videira, M.; Almeida, A.J.; Fabra, A. Preclinical Evaluation of a Pulmonary Delivered Paclitaxel-Loaded Lipid Nanocarrier Antitumor Effect. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Jia, Y.; WenDing. Preparation and Characterization of Solid Lipid Nanoparticles Loaded With Epirubicin for Pulmonary Delivery. Die Pharm. 2010, 65, 585–587. [Google Scholar] [CrossRef]
- Dharmala, K.; Yoo, J.W.; Lee, C.H. Development of chitosan-SLN Microparticles for Chemotherapy: In Vitro Approach Through Efflux-Transporter Modulation. J. Control. Release Off. J. Control. Release Soc. 2008, 131, 190–197. [Google Scholar] [CrossRef]
- Liu, J.; Gong, T.; Fu, H.; Wang, C.; Wang, X.; Chen, Q.; Zhang, Q.; He, Q.; Zhang, Z. Solid Lipid Nanoparticles for Pulmonary Delivery of Insulin. Int. J. Pharm. 2008, 356, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Makled, S.; Nafee, N.; Boraie, N. Nebulized Solid Lipid Nanoparticles for the Potential Treatment of Pulmonary Hypertension via Targeted Delivery of phosphodiesterase-5-inhibitor. Int. J. Pharm. 2017, 517, 312–321. [Google Scholar] [CrossRef]
- Negi, J.S.; Chattopadhyay, P.; Sharma, A.K.; Ram, V. Development of Solid Lipid Nanoparticles (SLNs) of Lopinavir Using Hot Self Nano-Emulsification (SNE) Technique. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2013, 48, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Kumar, A.; Wild, W.; Ferreira, D.; Santos, D.; Forbes, B. Long-term Stability, Biocompatibility and Oral Delivery Potential of Risperidone-Loaded Solid Lipid Nanoparticles. Int. J. Pharm. 2012, 436, 798–805. [Google Scholar] [CrossRef]
- Singh, H.; Bhandari, R.; Kaur, I.P. Encapsulation of Rifampicin in a Solid Lipid Nanoparticulate System to Limit Its Degradation and Interaction With Isoniazid at Acidic pH. Int. J. Pharm. 2013, 446, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Cirri, M.; Mennini, N.; Maestrelli, F.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Development and in Vivo Evaluation of an Innovative "Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles" Formulation With Sustained Release and Enhanced Oral Bioavailability for Potential Hypertension Treatment in Pediatrics. Int. J. Pharm. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Strettoi, E.; Gargini, C.; Novelli, E.; Sala, G.; Piano, I.; Gasco, P.; Ghidoni, R. Inhibition of Ceramide Biosynthesis Preserves Photoreceptor Structure and Function in a Mouse Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA 2010, 107, 18706–18711. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Han, X.; Liu, H.; Zhao, Y.; Li, H.; Rupenthal, I.; Lv, Z.; Chen, Y.; Yang, F.; Ping, Q.; et al. Incorporation of Ion Exchange Functionalized-Montmorillonite Into Solid Lipid Nanoparticles With Low Irritation Enhances Drug Bioavailability for Glaucoma Treatment. Drug Deliv. 2020, 27, 652–661. [Google Scholar] [CrossRef]
- Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid Lipid Nanoparticles as Promising Tool for Intraocular Tobramycin Delivery: Pharmacokinetic Studies on Rabbits. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2016, 109, 214–223. [Google Scholar] [CrossRef]
- Soni, S.; Ruhela, R.K.; Medhi, B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv. Pharm. Bull. 2016, 6, 319–335. [Google Scholar] [CrossRef]
- Gasco, M.R.; Priano, L.; Zara, G.P. Chapter 10—Solid Lipid Nanoparticles and Microemulsions for Drug Delivery The CNS. Prog. Brain Res. 2009, 180, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, S.; Jiang, S.; Bai, W.; Liu, F.; Yuan, H.; Ji, J.; Luo, J.; Han, G.; Chen, L.; et al. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography. J. Biomed. Nanotechnol. 2016, 12, 1709–1723. [Google Scholar] [CrossRef]
- Amiri, M.; Jafari, S.; Kurd, M.; Mohamadpour, H.; Khayati, M.; Ghobadinezhad, F.; Tavallaei, O.; Derakhshankhah, H.; Sadegh Malvajerd, S.; Izadi, Z. Engineered Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as New Generations of Blood-Brain Barrier Transmitters. ACS Chem. Neurosci. 2021, 12, 4475–4490. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.P.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of. Acta Pharm. Sin. B 2021, 11, 925–940. [Google Scholar] [CrossRef]
- Shah, R.M.; Rajasekaran, D.; Ludford-Menting, M.; Eldridge, D.S.; Palombo, E.A.; Harding, I.H. Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. Colloids Surf. B Biointerfaces 2016, 140, 204–212. [Google Scholar] [CrossRef]
- El-Housiny, S.; Shams Eldeen, M.A.; El-Attar, Y.A.; Salem, H.A.; Attia, D.; Bendas, E.R.; El-Nabarawi, M.A. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv. 2018, 25, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- University, M. Clinical Assessment of Oxiconazole Nitrate Solid Lipid Nanoparticles Loaded Gel. NCT03823040. Available online: https://www.clinicaltrials.gov/ (accessed on 20 February 2023).
- Mistraletti, G.; Paroni, R.; Umbrello, M.; Moro Salihovic, B.; Coppola, S.; Froio, S.; Finati, E.; Gasco, P.; Savoca, A.; Manca, D.; et al. Different routes and formulations of melatonin in critically ill patients. A pharmacokinetic randomized study. Clin. Endocrinol. (Oxf.) 2019, 91, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Insights, F.B. Lipid Nanoparticles Market Research Report. Available online: https://www.fortunebusinessinsights.com/segmentation/lipid-nanoparticles-market-106960 (accessed on 19 February 2023).
- Xie, B.; Wang, H.; Wang, H.; Liu, Y.; Yu, M. Sorafenib Solid Lipid Nanoparticles and Preparation Method Thereof. CN105326812A, 28 October 2015. Available online: https://patents.google.com/patent/CN105326812A/en (accessed on 19 February 2023).
- Yu, L.; Tian, L.; Zhao, Y.; Yang, C.; Su, J.; Sun, W.; Du, Y.; Zhou, T. Folic Acid Targeting Silymarin Solid Lipid Nanosphere Preparation Method. CN105708803A, 4 December 2014. Available online: https://patents.google.com/patent/CN105708803A/en (accessed on 19 February 2023).
- Kim, J.; Kim, H.; Cha, J.; Jeb, A.; Quresh, O.S. Solid Lipid Nanoparticles Composition Comprising Docetaxel for Oral Formulation. KR101799539B1, 7 February 2014. Available online: https://patents.google.com/patent/KR101799539B1/en (accessed on 19 February 2023).
- Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Pat. 2020, 30, 179–194. [Google Scholar] [CrossRef]
- Leiva, M.C.; Ortiz, R.; Contreras-Cáceres, R.; Perazzoli, G.; Mayevych, I.; López-Romero, J.M.; Sarabia, F.; Baeyens, J.M.; Melguizo, C.; Prados, J. Tripalmitin Nanoparticle Formulations Significantly Enhance Paclitaxel Antitumor Activity against Breast and Lung Cancer Cells in Vitro. Sci. Rep. 2017, 7, 13506. [Google Scholar] [CrossRef] [Green Version]
- Clemente, N.; Ferrara, B.; Gigliotti, C.L.; Boggio, E.; Capucchio, M.T.; Biasibetti, E.; Schiffer, D.; Mellai, M.; Annovazzi, L.; Cangemi, L.; et al. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 255. [Google Scholar] [CrossRef] [Green Version]
- Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol. 2014, 5, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartal-Yandim, M.; Adan-Gokbulut, A.; Baran, Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol. 2016, 36, 716–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Zhou, M.; Xu, Y.; Peng, W.; Zhang, S.; Li, R.; Zhang, H.; Cheng, S.; Wang, Y.; Wei, X.; et al. Resveratrol-Loaded TPGS-Resveratrol-Solid Lipid Nanoparticles for Multidrug-Resistant Therapy of Breast Cancer. Front. Bioeng. Biotechnol. 2021, 9, 762489. [Google Scholar] [CrossRef] [PubMed]
- Guney Eskiler, G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Solid Lipid Nanoparticles: Reversal of Tamoxifen Resistance in Breast Cancer. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2018, 120, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Stella, B.; Peira, E.; Dianzani, C.; Gallarate, M.; Battaglia, L.; Gigliotti, C.L.; Boggio, E.; Dianzani, U.; Dosio, F. Development and Characterization of Solid Lipid Nanoparticles Loaded With a Highly Active Doxorubicin Derivative. Nanomaterials 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Grillone, A.; Battaglini, M.; Moscato, S.; Mattii, L.; de Julián Fernández, C.; Scarpellini, A.; Giorgi, M.; Sinibaldi, E.; Ciofani, G. Nutlin-loaded Magnetic Solid Lipid Nanoparticles for Targeted Glioblastoma Treatment. Nanomedicine 2019, 14, 727–752. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.I.; Lu, T.Y.; Chang, S.H.; Shen, M.Y.; Chiu, H.C. Dual Stimuli-Guided Lipid-Based Delivery System of Cancer Combination Therapy. J. Control. Release Off. J. Control. Release Soc. 2020, 318, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Ihsan, A.; Madni, A.; Bajwa, S.Z.; Shi, D.; Webster, T.J.; Khan, W.S. Solid Lipid Nanoparticles for Thermoresponsive Targeting: Evidence From Spectrophotometry, Electrochemical, and Cytotoxicity Studies. Int. J. Nanomed. 2017, 12, 8325–8336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving Breast Cancer Therapy Using Doxorubicin Loaded Solid Lipid Nanoparticles: Synthesis of a Novel Arginine-Glycine-Aspartic Tripeptide Conjugated, pH Sensitive Lipid and Evaluation of the Nanomedicine in Vitro and in Vivo. Biomed. Biomed. Pharm. 2019, 116, 109006. [Google Scholar] [CrossRef]
- Baek, J.S.; Na, Y.G.; Cho, C.W. Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles. Nanomaterials 2018, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018, 23, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin Formulated in Solid Lipid Nanoparticles Has Enhanced Efficacy in Hodgkin’s Lymphoma in Mice. Arch. Biochem. Biophys. 2018, 648, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirio, D.; Peira, E.; Dianzani, C.; Muntoni, E.; Gigliotti, C.L.; Ferrara, B.; Sapino, S.; Chindamo, G.; Gallarate, M. Development of Solid Lipid Nanoparticles by Cold Dilution of Microemulsions: Curcumin Loading, Preliminary In Vitro Studies, and Biodistribution. Nanomaterials 2019, 9, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serini, S.; Cassano, R.; Corsetto, P.A.; Rizzo, A.M.; Calviello, G.; Trombino, S. Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. Int. J. Mol. Sci. 2018, 19, 586. [Google Scholar] [CrossRef] [Green Version]
- Rahiminejad, A.; Dinarvand, R.; Johari, B.; Nodooshan, S.J.; Rashti, A.; Rismani, E.; Mahdaviani, P.; Saltanatpour, Z.; Rahiminejad, S.; Raigani, M.; et al. Preparation and Investigation of Indirubin-Loaded SLN Nanoparticles and Their Anti-Cancer Effects on Human Glioblastoma U87MG Cells. Cell Biol. Int. 2019, 43, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.J.; Zhang, Z.; Xie, B.B.; Zhang, H.Y. Development and Evaluation of Topotecan Loaded Solid Lipid Nanoparticles: A Study in Cervical Cancer Cell Lines. J. Photochem. Photobiol. B Biol. 2016, 165, 182–188. [Google Scholar] [CrossRef]
- Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Synthetically Lethal BMN 673 (Talazoparib) Loaded Solid Lipid Nanoparticles for BRCA1 Mutant Triple Negative Breast Cancer. Pharm. Res. 2018, 35, 218. [Google Scholar] [CrossRef]
- Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Durán, N.; Castro, G.R. Design, Characterization and in Vitro Evaluation of Linalool-Loaded Solid Lipid Nanoparticles as Potent Tool in Cancer Therapy. Colloids Surf. B Biointerfaces 2017, 154, 123–132. [Google Scholar] [CrossRef]
- Zhou, M.; Li, X.; Li, Y.; Yao, Q.; Ming, Y.; Li, Z.; Lu, L.; Shi, S. Ascorbyl Palmitate-Incorporated Paclitaxel-Loaded Composite Nanoparticles for Synergistic Anti-Tumoral Therapy. Drug Deliv. 2017, 24, 1230–1242. [Google Scholar] [CrossRef] [Green Version]
- Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil Shell-Enriched Solid Lipid Nanoparticles (SLN) for Effective Skin Carcinoma Treatment. Drug Deliv. 2016, 23, 3452–3460. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, S.; Kakkar, V.; Pal, H.C.; Mondhe, D.M.; Kaur, I.P. The Augmented Anticancer Potential of AP9-cd Loaded Solid Lipid Nanoparticles in Human Leukemia Molt-4 Cells and Experimental Tumor. Chem.-Biol. Interact. 2016, 244, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Brezaniova, I.; Hruby, M.; Kralova, J.; Kral, V.; Cernochova, Z.; Cernoch, P.; Slouf, M.; Kredatusova, J.; Stepanek, P. Temoporfin-loaded 1-tetradecanol-based Thermoresponsive Solid Lipid Nanoparticles for Photodynamic Therapy. J. Control. Release Off. J. Control. Release Soc. 2016, 241, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Sguizzato, M.; Cortesi, R.; Gallerani, E.; Drechsler, M.; Marvelli, L.; Mariani, P.; Carducci, F.; Gavioli, R.; Esposito, E.; Bergamini, P. Solid Lipid Nanoparticles for the Delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) Platinum (II) Carboxylates. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Arranja, A.; Gouveia, L.F.; Gener, P.; Rafael, D.F.; Pereira, C.; Schwartz, S.; Videira, M.A. Self-assembly PEGylation Assists SLN-paclitaxel Delivery Inducing Cancer Cell Apoptosis Upon Internalization. Int. J. Pharm. 2016, 501, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Alajami, H.N.; Fouad, E.A.; Ashour, A.E.; Kumar, A.; Yassin, A.E.B. Celecoxib-Loaded Solid Lipid Nanoparticles for Colon Delivery: Formulation Optimization and In Vitro Assessment of Anti-Cancer Activity. Pharmaceutics 2022, 14, 131. [Google Scholar] [CrossRef]
- Pi, C.; Zhao, W.; Zeng, M.; Yuan, J.; Shen, H.; Li, K.; Su, Z.; Liu, Z.; Wen, J.; Song, X.; et al. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv. 2022, 29, 1878–1891. [Google Scholar] [CrossRef]
- Beg, S.; Malik, A.K.; Ansari, M.J.; Malik, A.A.; Ali, A.M.A.; Theyab, A.; Algahtani, M.; Almalki, W.H.; Alharbi, K.S.; Alenezi, S.K.; et al. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega 2022, 7, 16968–16979. [Google Scholar] [CrossRef]
- Souto, E.B.; Doktorovova, S.; Campos, J.R.; Martins-Lopes, P.; Silva, A.M. Surface-tailored anti-HER2/neu-solid Lipid Nanoparticles for Site-Specific Targeting MCF-7 and BT-474 Breast Cancer Cells. Eur. J. Pharm. Sci. 2019, 128, 27–35. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, M.; Li, X.; Hu, M.; Li, C.; Li, M.; Sheng, F.; Li, Z.; Wu, G.; Luo, M.; et al. Synergistic Active Targeting of Dually Integrin αvβ3/CD44-targeted Nanoparticles to B16F10 Tumors Located at Different Sites of Mouse Bodies. J. Control. Release Off. J. Control. Release Soc. 2016, 235, 1–13. [Google Scholar] [CrossRef]
- Siddhartha, V.T.; Pindiprolu, S.K.S.S.; Chintamaneni, P.K.; Tummala, S.; Nandha Kumar, S. RAGE Receptor Targeted Bioconjuguate Lipid Nanoparticles of Diallyl Disulfide for Improved Apoptotic Activity in Triple Negative Breast Cancer: In Vitro Studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid Nanoparticles for Lung Tumor Therapy by Inhalation. Mol. Pharm. 2018, 15, 899–910. [Google Scholar] [CrossRef]
- Baek, J.S.; Cho, C.W. A Multifunctional Lipid Nanoparticle for Co-Delivery of Paclitaxel and Curcumin for Targeted Delivery and Enhanced Cytotoxicity in Multidrug Resistant Breast Cancer Cells. Oncotarget 2017, 8, 30369–30382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpoot, K.; Jain, S.K. Colorectal Cancer-Targeted Delivery of Oxaliplatin via Folic Acid-Grafted Solid Lipid Nanoparticles: Preparation, Optimization, and in Vitro Evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1236–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaeain, S.F.; Karimi, E.; Hashemi, M. Satureja khuzistanica Essential Oil-Loaded Solid Lipid Nanoparticles Modified With Chitosan-Folate: Evaluation of Encapsulation Efficiency, Cytotoxic and Pro-apoptotic Properties. Front. Chem. 2022, 10, 904973. [Google Scholar] [CrossRef]
- Soni, N.; Soni, N.; Pandey, H.; Maheshwari, R.; Kesharwani, P.; Tekade, R.K. Augmented Delivery of Gemcitabine in Lung Cancer Cells Exploring Mannose Anchored Solid Lipid Nanoparticles. J. Colloid Interface Sci. 2016, 481, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.K.; Singh, B.; Jain, A.; Nirbhavane, P.; Sharma, R.; Tyagi, R.K.; Kushwah, V.; Jain, S.; Katare, O.P. Fucose Decorated Solid-Lipid Nanocarriers Mediate Efficient Delivery of Methotrexate in Breast Cancer Therapeutics. Colloids Surf. B Biointerfaces 2016, 146, 114–126. [Google Scholar] [CrossRef]
- Shen, M.Y.; Liu, T.I.; Yu, T.W.; Kv, R.; Chiang, W.H.; Tsai, Y.C.; Chen, H.H.; Lin, S.C.; Chiu, H.C. Hierarchically Targetable Polysaccharide-Coated Solid Lipid Nanoparticles as an Oral Chemo/Thermotherapy Delivery System for Local Treatment of Colon Cancer. Biomaterials 2019, 197, 86–100. [Google Scholar] [CrossRef]
- Liu, B.; Han, L.; Liu, J.; Han, S.; Chen, Z.; Jiang, L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int. J. Nanomed. 2017, 12, 955–968. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.C.; Lee, C.H. Dual Targeting of Solid Lipid Nanoparticles Grafted With 83-14 MAb and anti-EGF Receptor for Malignant Brain Tumor Therapy. Life Sci. 2016, 146, 222–231. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Wang, I.H. Enhanced Delivery of Etoposide Across the Blood-Brain Barrier to Restrain Brain Tumor Growth Using Melanotransferrin Antibody—And Tamoxifen-Conjugated Solid Lipid Nanoparticles. J. Drug Target. 2016, 24, 645–654. [Google Scholar] [CrossRef]
- Kadari, A.; Pooja, D.; Gora, R.H.; Gudem, S.; Kolapalli, V.R.M.; Kulhari, H.; Sistla, R. Design of Multifunctional Peptide Collaborated and Docetaxel Loaded Lipid Nanoparticles for Antiglioma Therapy. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2018, 132, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, L.; Muntoni, E.; Chirio, D.; Peira, E.; Annovazzi, L.; Schiffer, D.; Mellai, M.; Riganti, C.; Salaroglio, I.C.; Lanotte, M.; et al. Solid Lipid Nanoparticles by Coacervation Loaded With a Methotrexate Prodrug: Preliminary Study for Glioma Treatment. Nanomedicine 2017, 12, 639–656. [Google Scholar] [CrossRef] [PubMed]
- Rajpoot, K.; Jain, S.K. Oral Delivery of pH-responsive Alginate Microbeads Incorporating Folic Acid-Grafted Solid Lipid Nanoparticles Exhibits Enhanced Targeting Effect Against Colorectal Cancer: A Dual-Targeted Approach. Int. J. Biol. Macromol. 2020, 151, 830–844. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, M.C.; Pereira, C.; Kreutzer, B.; Gouveia, L.F.; Silva-Lima, B.; Brito, A.M.; Videira, M. Evading P-glycoprotein Mediated-Efflux Chemoresistance Using Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2017, 110, 76–84. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Liu, B.; Chen, Z.; Li, C. Hyaluronic Acid Decorated Pluronic P85 Solid Lipid Nanoparticles as a Potential Carrier to Overcome Multidrug Resistance in Cervical and Breast Cancer. Biomed. Pharm. 2017, 86, 595–604. [Google Scholar] [CrossRef]
- Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted Delivery and Apoptosis Induction of Trans-Resveratrol-Ferulic Acid Loaded Chitosan Coated Folic Acid Conjugate Solid Lipid Nanoparticles in Colon Cancer Cells. Carbohydr. Polym. 2020, 231, 115682. [Google Scholar] [CrossRef]
- Baek, J.S.; Kim, J.H.; Park, J.S.; Cho, C.W. Modification of Paclitaxel-Loaded Solid Lipid Nanoparticles With 2-hydroxypropyl-β-cyclodextrin Enhances Absorption and Reduces Nephrotoxicity Associated With Intravenous Injection. Int. J. Nanomed. 2015, 10, 5397–5405. [Google Scholar] [CrossRef] [Green Version]
- Pawar, H.; Surapaneni, S.K.; Tikoo, K.; Singh, C.; Burman, R.; Gill, M.S.; Suresh, S. Folic Acid Functionalized Long-Circulating Co-Encapsulated Docetaxel and Curcumin Solid Lipid Nanoparticles: In Vitro Evaluation, Pharmacokinetic and Biodistribution in Rats. Drug Deliv. 2016, 23, 1453–1468. [Google Scholar] [CrossRef] [Green Version]
- Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving Efficacy, Oral Bioavailability, and Delivery of Paclitaxel Using Protein-Grafted Solid Lipid Nanoparticles. Mol. Pharm. 2016, 13, 3903–3912. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Cheng, S.J. Brain Targeted Delivery of Carmustine Using Solid Lipid Nanoparticles Modified With Tamoxifen and Lactoferrin for Antitumor Proliferation. Int. J. Pharm. 2016, 499, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.C.; Ko, H.F. Targeting Delivery of Saquinavir to the Brain Using 83-14 Monoclonal Antibody-Grafted Solid Lipid Nanoparticles. Biomaterials 2013, 34, 4818–4830. [Google Scholar] [CrossRef] [PubMed]
- Shakib, Z.; Mahmoudi, A.; Moosavian, S.A.; Malaekeh-Nikouei, B. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor. Drug Dev. Ind. Pharm. 2022, 48, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Granja, A.; Nunes, C.; Sousa, C.T.; Reis, S. Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Biomed. Pharm. 2022, 154, 113525. [Google Scholar] [CrossRef]
- Kanasty, R.; Dorkin, J.R.; Vegas, A.; Anderson, D. Delivery Materials for siRNA Therapeutics. Nat. Mater. 2013, 12, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.E.; Smith, J.A.; Shamu, C.E.; Neumüller, R.A.; Perrimon, N. RNAi Screening Comes of Age: Improved Techniques and Complementary Approaches. Nat. Rev. Mol. Cell Biol. 2014, 15, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Bathula, S.R.; Huang, L. Gene Therapy with Plasmid DNA. Burg. Med. Chem. Drug Discov. 2010, 457–499. [Google Scholar] [CrossRef]
- Moore, C.B.; Guthrie, E.H.; Huang, M.T.H.; Taxman, D.J. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown. Methods Mol. Biol. 2010, 629, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, M.; Burgess, D.J.; Patil, S.D. Physicochemical Characterization Techniques for Lipid Based Delivery Systems for siRNA. Int. J. Pharm. 2012, 427, 35–57. [Google Scholar] [CrossRef]
- Pillai, R.S.; Bhattacharyya, S.N.; Filipowicz, W. Repression of Protein Synthesis by miRNAs: How Many Mechanisms? Trends Cell Biol. 2007, 17, 118–126. [Google Scholar] [CrossRef]
- Alvarez, J.P.; Pekker, I.; Goldshmidt, A.; Blum, E.; Amsellem, Z.; Eshed, Y. Endogenous and Synthetic microRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species. Plant Cell 2006, 18, 1134–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.L.; Linsley, P.S. Recognizing and Avoiding siRNA Off-Target Effects for Target Identification and Therapeutic Application. Nat. Rev. Drug Discov. 2010, 9, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking Down Barriers: Advances in siRNA Delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138. [Google Scholar] [CrossRef]
- Jin, J.; Bae, K.H.; Yang, H.; Lee, S.J.; Kim, H.; Kim, Y.; Joo, K.M.; Seo, S.W.; Park, T.G.; Nam, D.H. In Vivo Specific Delivery of c-Met siRNA to Glioblastoma Using Cationic Solid Lipid Nanoparticles. Bioconjugate Chem. 2011, 22, 2568–2572. [Google Scholar] [CrossRef] [PubMed]
- Botto, C.; Augello, G.; Amore, E.; Emma, M.R.; Azzolina, A.; Cavallaro, G.; Cervello, M.; Bondì, M.L. Cationic Solid Lipid Nanoparticles as Non Viral Vectors for the Inhibition of Hepatocellular Carcinoma Growth by RNA Interference. J. Biomed. Nanotechnol. 2018, 14, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Kotmakçı, M.; Çetintaş, V.B.; Kantarcı, A.G. Preparation and Characterization of Lipid nanoparticle/pDNA Complexes for STAT3 Downregulation and Overcoming Chemotherapy Resistance in Lung Cancer Cells. Int. J. Pharm. 2017, 525, 101–111. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, T.; Ma, Y.; Li, R.; Pang, Y.; Mao, H.; Liu, P. Novel Nanocomplexes Targeting STAT3 Demonstrate Promising Anti-Ovarian Cancer Effects in vivo. Onco Targets 2020, 13, 5069–5082. [Google Scholar] [CrossRef]
- Büyükköroğlu, G.; Şenel, B.; Başaran, E.; Yenilmez, E.; Yazan, Y. Preparation and in Vitro Evaluation of Vaginal Formulations Including siRNA and Paclitaxel-Loaded SLNs for Cervical Cancer. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2016, 109, 174–183. [Google Scholar] [CrossRef]
- Yu, Y.H.; Kim, E.; Park, D.E.; Shim, G.; Lee, S.; Kim, Y.B.; Kim, C.W.; Oh, Y.K. Cationic Solid Lipid Nanoparticles for Co-Delivery of Paclitaxel and siRNA. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2012, 80, 268–273. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Meng, Y.P.; Bo, L.S.; Ke, W.B. miR-542-3p Appended Sorafenib/All-trans Retinoic Acid (ATRA)-Loaded Lipid Nanoparticles to Enhance the Anticancer Efficacy in Gastric Cancers. Pharm. Res. 2017, 34, 2710–2719. [Google Scholar] [CrossRef]
- Büyükköroğlu, G.; Şenel, B.; Yenilmez, E. Vaginal Suppositories with siRNA and Paclitaxel-Incorporated Solid Lipid Nanoparticles for Cervical Cancer: Preparation and In Vitro Evaluation. Methods Mol. Biol. 2019, 1974, 303–328. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, W.; Zhang, Y.; Zhang, B. Anti-tumor Efficiency of Paclitaxel and DNA When Co-Delivered by pH Responsive Ligand Modified Nanocarriers for Breast Cancer Treatment. Biomed. Pharm. 2016, 83, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Juang, V.; Chang, C.H.; Wang, C.S.; Wang, H.E.; Lo, Y.L. pH-Responsive PEG-Shedding and Targeting Peptide-Modified Nanoparticles for Dual-Delivery of Irinotecan and microRNA to Enhance Tumor-Specific Therapy. Small 2019, 15, e1903296. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meng, T.; Yuan, M.; Wen, L.; Cheng, B.; Liu, N.; Huang, X.; Hong, Y.; Yuan, H.; Hu, F. MicroRNA-200c Delivered by Solid Lipid Nanoparticles Enhances the Effect of Paclitaxel on Breast Cancer Stem Cell. Int. J. Nanomed. 2016, 11, 6713–6725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Han, L.; Deng, L.; Zhang, Y.; Shen, H.; Gong, T.; Zhang, Z.; Sun, X. Dual Drugs (microRNA-34a and Paclitaxel)-Loaded Functional Solid Lipid Nanoparticles for Synergistic Cancer Cell Suppression. J. Control. Release Off. J. Control. Release Soc. 2014, 194, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.J.; Zhong, Z.R.; Liu, J.; Zhang, Z.R.; Sun, X.; Gong, T. Solid Lipid Nanoparticles Loaded With anti-microRNA Oligonucleotides (AMOs) for Suppression of microRNA-21 Functions in Human Lung Cancer Cells. Pharm. Res. 2012, 29, 97–109. [Google Scholar] [CrossRef]
- Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano 2019, 13, 4028–4040. [Google Scholar] [CrossRef]
- Qiu, H.; Min, Y.; Rodgers, Z.; Zhang, L.; Wang, A.Z. Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, 10. [Google Scholar] [CrossRef]
- Fass, L. Imaging and cancer: A review. Mol. Oncol. 2008, 2, 115–152. [Google Scholar] [CrossRef]
- Chen, X.; Wong, S. (Eds.) Cancer Theranostics: An introduction. In Cancer Theranostics; Academic Press, Elsevier: Amesterdam, The Netherlands, 2014; pp. 3–8. [Google Scholar]
- Sudhakar, C.K.; Upadhyay, N.; Verma, A.; Jain, A.; Narayana Charyulu, R.; Jain, S. Nanomedicine and Tissue Engineering. In Nanotechnology Applications for Tissue Engineering; Thomas, S., Grohens, Y., Ninan, N., Eds.; Elsevier: Amesterdam, The Netherlands, 2015; pp. 1–19. [Google Scholar]
- Kulbacka, J.; Pucek, A.; Kotulska, M.; Dubińska-Magiera, M.; Rossowska, J.; Rols, M.P.; Wilk, K.A. Electroporation and Lipid Nanoparticles With Cyanine IR-780 and Flavonoids as Efficient Vectors to Enhanced Drug Delivery in Colon Cancer. Bioelectrochemistry 2016, 110, 19–31. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, K.; Cao, Y.; Chen, X.; Wang, K.; Liu, M.; Pei, R. Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 12217–12226. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.H.; Lee, J.Y.; Lee, S.H.; Park, T.G.; Nam, Y.S. Optically Traceable Solid Lipid Nanoparticles Loaded With siRNA and Paclitaxel for Synergistic Chemotherapy With in Situ Imaging. Adv. Healthc. Mater. 2013, 2, 576–584. [Google Scholar] [CrossRef] [PubMed]
Lipids | |
---|---|
Triglycerides | Tripalmitin (Dynasan® 116), tristearin (Dynasan® 118), tricaprylate, trimyristin (Dynasan® 114), triolein, trilaurin |
Glycerides | Glyceril stearate (Precirol® ATO 5), glyceryl palmitostearate, glyceryl dibehenate (Compritol® 888 ATO), behenoyl polyoxyl-8 glycerides (Compritol® HD5 ATO) |
Fatty acids | Steric acid, palmitic acid, behenic acid, lauric acid, linoleic acid, oleic acid, |
Waxes | Cetyl palmitate, carnauba wax, beeswax, shellac wax, otoba wax, propolis wax |
Others | Cholesterol, cocoa butter, hard fat (Gelucire® 43/01, Suppocire® bases, Witepsol® bases), mixture of triceteareth-4 phosphate and ethylene glycol palmitostearate and diethylene glycol palmitostearate (Sedefos® 75), mixture of lauroyl polyoxyl-32 glycerides and PEG 6000 (Gelucire® 59/14), mono and diglycerides and polyoxyl stearate (Gelot® 64) |
Surfactants and Co-surfactants | |
Phospholipids | Soy lecithin, egg lectin, phosphatidylcholine |
Polysorbates | Tween® and Span® derivatives |
Polymers | Poloxamines, poloxamers, tyloxapol, polyvinyl alcohol (PVA), vitamin E-TPGS, polyoxyethylene-20-cetyl ether, polyoxyethylene glyceryl monostearate, diethylene glycol monoethyl ether, propylene glycol, sodium lauryl sulfate |
Others | Taurocholic acid sodium salt, taurodeoxycholic acid sodium salt, sodium dodecyl sulfate, cholesteryl oleate, ethanol, butyric acid, polyglyceryl-6 distearate |
Technique | Advantages | Disadvantages |
---|---|---|
HHPH | Effective dispersion of particles, reproducible, simple to scale up. | Extremely high energy inputs, high polydispersity |
CHPH | Suitable for thermo-sensitive drugs | |
Microemulsion | Low energy inputs, flexibility of interphase, simple to scale-up | Low lipid content, exposure to high temperatures |
Double microemulsion | Higher particle size compared to microemulsion | |
HSH | No use of organic solvents, no use of high amounts of surfactants, low production cost | High polydispersity, poor encapsulation efficiency |
SEE | Suitable for thermo-sensitive drugs, small particle diameter, simple to scale-up | Toxicity due to organic solvents, low lipid content, possible aggregation |
SED | Pharmaceutically accepted organic solvent, low polydispersity, small particle diameter, simple to scale up | Low lipid solvent, possible organic solvent toxicity |
SI | Pharmaceutically accepted organic solvent, simple to scale up, highly efficient, and versatile | Difficult to remove solvent, low lipid content |
Coacervation | Suitable for lipophilic drugs, no organic solvent, monodispersity, simple to scale-up | Not suitable for pH-sensitive drugs |
MAMT | Controlled microwave heating, low energy inputs | Problems to scale-up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
German-Cortés, J.; Vilar-Hernández, M.; Rafael, D.; Abasolo, I.; Andrade, F. Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics 2023, 15, 831. https://doi.org/10.3390/pharmaceutics15030831
German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics. 2023; 15(3):831. https://doi.org/10.3390/pharmaceutics15030831
Chicago/Turabian StyleGerman-Cortés, Júlia, Mireia Vilar-Hernández, Diana Rafael, Ibane Abasolo, and Fernanda Andrade. 2023. "Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment" Pharmaceutics 15, no. 3: 831. https://doi.org/10.3390/pharmaceutics15030831
APA StyleGerman-Cortés, J., Vilar-Hernández, M., Rafael, D., Abasolo, I., & Andrade, F. (2023). Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics, 15(3), 831. https://doi.org/10.3390/pharmaceutics15030831