Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thymus vulgaris Oil Embedding in b-CD Procedure
2.2. FT-IR Analyses
2.3. Thermo-Gravimetrical Analyses (TGA)
2.4. Gas Chromatography-Mass Spectroscopy (GC-MS)
- -
- A Gas Chromatograph Finnigan Trace GC-Ultra;
- -
- A mass spectrometer Trace DSQ;
- -
- A capillary column Phenomenex ZB-WAX (30 m length, 0.25 mm I.D., 0.25 μm film thickness);
- -
- Inlet temperature of 250 °C;
- -
- Splitless mode;
- -
- He as the carrier gas (1.0 mL/min);
- -
- Initial oven temperature of 45 °C and the in ramps reported in Table 1;
- -
- Mass spectrometer transfer line temperature of 290 °C;
- -
- MS signal acquired in El+ mode;
- -
- Ionization energy 70.0 eV −;
- -
- Source temperature of 290 °C;
- -
- Solvent delay 6.50 min;
- -
- Mass spectrometric detection 35–500 m/z (full-scan).
Rate (°C/min) | Temperature (°C) | Hold Time (min) | |
---|---|---|---|
INITIAL | 45.0 | 2.0 | |
RAMP 1 | 3.0 | 100.0 | 0.1 |
RAMP 2 | 5.0 | 135.0 | 0.1 |
RAMP 3 | 8.0 | 250.0 | 12.0 |
2.5. Calibration Procedure
2.6. Antifungal and Antibacterial Activity Assays
2.6.1. Antifungal Assay
2.6.2. Antibacterial Assay
2.6.3. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil and Complex Characterisation
3.2. Evaluation of the Inclusion
3.3. Antifungal and Antibacterial Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabbir, M.A.B.; Shabbir, M.Z.; Wu, Q.; Mahmood, S.; Sajid, A.; Maan, M.K.; Ahmed, S.; Naveed, U.; Hao, H.; Yuan, Z. CRISPR-Cas System: Biological Function in Microbes and Its Use to Treat Antimicrobial Resistant Pathogens. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (Ed.) Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Alekshun, M.N.; Levy, S.B. Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell 2007, 128, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic Burden of Antibiotic Resistance in ESKAPE Organisms: A Systematic Review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Fasciana, T.; Cortegiani, A.; Ippolito, M.; Giarratano, A.; Di Quattro, O.; Lipari, D.; Graceffa, D.; Giammanco, A. Candida Auris: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen. Antibiotics 2020, 9, 778. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Amp Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bona, E.; Massa, N.; Novello, G.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E. Essential Oil Antibacterial Activity against Methicillin-Resistant and -Susceptible Staphylococcus Aureus Strains. Microbiol. Res. 2019, 10, 8331. [Google Scholar] [CrossRef] [Green Version]
- Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida Albicans to Essential Oils: Are They an Alternative to Antifungal Agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef] [PubMed]
- Elisa, B.; Aldo, A.; Ludovica, G.; Viviana, P.; Debora, B.; Nadia, M.; Giorgia, N.; Elisa, G. Chemical Composition and Antimycotic Activity of Six Essential Oils (Cumin, Fennel, Manuka, Sweet Orange, Cedar and Juniper) against Different Candida Spp. Nat. Prod. Res. 2019, 35, 4600–4605. [Google Scholar] [CrossRef]
- Massa, N.; Cantamessa, S.; Novello, G.; Ranzato, E.; Martinotti, S.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E.; Bona, E. Antifungal Activity of Essential Oils against Azole-Resistant and Azole-Susceptible Vaginal Candida Glabrata Strains. Can. J. Microbiol. 2018, 64, 647–663. [Google Scholar] [CrossRef]
- Pinto, L.; Bonifacio, M.A.; De Giglio, E.; Cometa, S.; Logrieco, A.F.; Baruzzi, F. Unravelling the Antifungal Effect of Red Thyme Oil (Thymus vulgaris L.) Compounds in Vapor Phase. Molecules 2020, 25, 4761. [Google Scholar] [CrossRef]
- Ghabraie, M.; Vu, K.D.; Tata, L.; Salmieri, S.; Lacroix, M. Antimicrobial Effect of Essential Oils in Combinations against Five Bacteria and Their Effect on Sensorial Quality of Ground Meat. LWT Food Sci. Technol. 2016, 66, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, A.; Ferreira, S.; Duarte, A.P. Biological Properties of Thymus Zygis Essential Oil with Emphasis on Antimicrobial Activity and Food Application. Food Chem. 2022, 393, 133370. [Google Scholar] [CrossRef]
- Arrais, A.; Manzoni, M.; Cattaneo, A.; Gianotti, V.; Massa, N.; Novello, G.; Caramaschi, A.; Gamalero, E.; Bona, E. Host–Guest Inclusion Complexes of Essential Oils with Strong Antibacterial and Antifungal Features in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Appl. Sci. 2021, 11, 6597. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Ferreira, L.; Peixoto, D.; Silva, F.; Soares, M.J.; Zeinali, M.; Zafar, H.; Mascarenhas-Melo, F.; Raza, F.; Mazzola, P.G.; et al. Cyclodextrins as an Encapsulation Molecular Strategy for Volatile Organic Compounds— Pharmaceutical Applications. Colloids Surf. B Biointerfaces 2022, 218, 112758. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.; Rodríguez, F.J.; Bruna, J.E.; Abarca, R.L.; Galotto, M.J.; Guarda, A.; Mascayano, C.; Sandoval-Yáñez, C.; Padula, M.; Felipe, F.R.S. Antifungal and Physicochemical Properties of Inclusion Complexes Based on β-Cyclodextrin and Essential Oil Derivatives. Food Res. Int. 2019, 121, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Wan, W.; Zhu, S.; Liu, Q. Preparation of Crystalline Nanocellulose/Hydroxypropyl β Cyclodextrin/Carboxymethyl Cellulose Polyelectrolyte Complexes and Their Controlled Release of Neohesperidin-Copper (II) in Vitro. Int. J. Biol. Macromol. 2020, 163, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Choi, Y.J.; Woo, M.R.; Cheon, S.; Ji, S.H.; Im, D.; ud Din, F.; Kim, J.O.; Youn, Y.S.; Oh, K.T.; et al. New Potential Application of Hydroxypropyl-β-Cyclodextrin in Solid Self-Nanoemulsifying Drug Delivery System and Solid Dispersion. Carbohydr. Polym. 2021, 271, 118433. [Google Scholar] [CrossRef]
- Parlati, S.; Gobetto, R.; Barolo, C.; Arrais, A.; Buscaino, R.; Medana, C.; Savarino, P. Preparation and Application of a β-Cyclodextrin-Disperse/Reactive Dye Complex. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 463–470. [Google Scholar] [CrossRef]
- Arrais, A.; Savarino, P. Raman Spectroscopy Is a Convenient Technique for the Efficient Evaluation of Cyclodextrin Inclusion Molecular Complexes of Azo-Dye Colorants and Largely Polarisable Guest Molecules. J. Incl. Phenom. Macrocycl. Chem. 2009, 64, 73–81. [Google Scholar] [CrossRef]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing an Essential Oil Component. Food Chem. 2016, 196, 968–975. [Google Scholar] [CrossRef]
- de Santana, N.A.; da Silva, R.C.S.; Fourmentin, S.; dos Anjos, K.F.L.; Ootan, M.A.; da Silva, A.G.; Araújo, B.G.P.; dos Santos Correia, M.T.; da Silva, M.V.; Machado, G. Synthesis, Characterization and Cytotoxicity of the Eugenia Brejoensis Essential Oil Inclusion Complex with β-Cyclodextrin. J. Drug Deliv. Sci. Technol. 2020, 60, 101876. [Google Scholar] [CrossRef]
- Chubukov, V.; Mingardon, F.; Schackwitz, W.; Baidoo, E.E.K.; Alonso-Gutierrez, J.; Hu, Q.; Lee, T.S.; Keasling, J.D.; Mukhopadhyay, A. Acute Limonene Toxicity in Escherichia Coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC. Appl. Environ. Microbiol. 2015, 81, 4690–4696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davicino, R.; Micucci, P.; Turner, S.; Ferraro, G.; Anesini, C. Antioxidant Activity of Limonene on Normal Murine Lymphocytes: Relation to H2O2 Modulation and Cell Proliferation. Basic Clin. Pharmacol. Toxicol. 2009, 106, 38–44. [Google Scholar] [CrossRef]
- de Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective Effect of Limonene in Rats: Influence on Oxidative Stress, Inflammation and Gene Expression. Phytomedicine 2019, 53, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Seol, G.; Kim, K.Y. Eucalyptol and Its Role in Chronic Diseases. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2016; Volume 929, pp. 389–398. [Google Scholar]
- Marchese, A.; Arciola, C.; Barbieri, R.; Silva, A.; Nabavi, S.; Sokeng, A.T.; Izadi, M.; Jafari, N.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.B.; Serafini, M.R.; Araújo, A.A.S.; Antoniolli, Â.R.; Cavalcanti, S.C.H.; Santos, M.R.V.; et al. Evaluation of the Anti-Inflammatory and Antinociceptive Properties of p-Cymene in Mice. Z. Naturforsch. 2012, 67, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ito, M. The Sedative Effect of Inhaled Terpinolene in Mice and Its Structure–Activity Relationships. J. Nat. Med. 2013, 67, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Oner, Z.; Altınoz, E.; Elbe, H.; Ekinci, N. The Protective and Therapeutic Effects of Linalool against Doxorubicin-Induced Cardiotoxicity in Wistar Albino Rats. Hum. Exp. Toxicol. 2019, 38, 803–813. [Google Scholar] [CrossRef]
- Sales, A.; de Oliveira Felipe, L.; Bicas, J.L. Production, Properties, and Applications of α-Terpineol. Food Bioprocess Technol. 2020, 13, 1261–1279. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Z.; Liu, S. β-Caryophyllene Ameliorates the Alzheimer-like Phenotype in APP/PS1 Mice through CB2 Receptor Activation and the PPARγ Pathway. Pharmacology 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- PubChem. Compound Summary for CID 8748, Beta-Terpineol; National Center for Biotechnology Information: Bethesda, MD, USA, 2022. [Google Scholar]
- Tian, L.-L.; Zhou, Z.; Zhang, Q.; Sun, Y.-N.; Li, C.-R.; Cheng, C.-H.; Zhong, Z.-Y.; Wang, S.-Q. Protective Effect of (±) Isoborneol Against 6-OHDA-Induced Apoptosis in SH-SY5Y Cells. Cell. Physiol. Biochem. 2007, 20, 1019–1032. [Google Scholar] [CrossRef]
- Armaka, M.; Papanikolaou, E.; Sivropoulou, A.; Arsenakis, M. Antiviral Properties of Isoborneol, a Potent Inhibitor of Herpes Simplex Virus Type 1. Antivir. Res. 1999, 43, 79–92. [Google Scholar] [CrossRef]
- Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Volatile C6-Aldehydes and Allo-Ocimene Activate Defense Genes and Induce Resistance against Botrytis Cinerea in Arabidopsis Thaliana. Plant Cell Physiol. 2005, 46, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Kumar, S. Alpha-Terpinyl Acetate: A Natural Monoterpenoid from Elettaria Cardamomum as Multi-Target Directed Ligand in Alzheimer’s Disease. J. Funct. Foods 2020, 68, 103892. [Google Scholar] [CrossRef]
- Song, M.; Xia, Y.; Tomasino, E. Investigation of a Quantitative Method for the Analysis of Chiral Monoterpenes in White Wine by HS-SPME-MDGC-MS of Different Wine Matrices. Molecules 2015, 20, 7359–7378. [Google Scholar] [CrossRef] [Green Version]
- Rosado-Lausell, S.L.; Wang, H.; Gutiérrez, L.; Romero-Maraccini, O.C.; Niu, X.-Z.; Gin, K.Y.H.; Croué, J.-P.; Nguyen, T.H. Roles of Singlet Oxygen and Triplet Excited State of Dissolved Organic Matter Formed by Different Organic Matters in Bacteriophage MS2 Inactivation. Water Res. 2013, 47, 4869–4879. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Hoigne, J. Photo-Oxidation of 2,4,6-Trimethylphenol in Aqueous Laboratory Solutions and Natural Waters: Kinetics of Reaction with Singlet Oxygen. J. Photochem. Photobiol. Chem. 1994, 84, 153–160. [Google Scholar] [CrossRef]
- Yu, W.-N.; Lai, Y.-J.; Ma, J.-W.; Ho, C.-T.; Hung, S.-W.; Chen, Y.-H.; Chen, C.-T.; Kao, J.-Y.; Way, T.-D. Citronellol Induces Necroptosis of Human Lung Cancer Cells via TNF-α Pathway and Reactive Oxygen Species Accumulation. In Vivo 2019, 33, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Gan, Y.; Pan, C.; Zhang, M.; Wang, X.; Tang, X.; Peng, X. Nerol-Induced Apoptosis Associated with the Generation of ROS and Ca2+ Overload in Saprotrophic Fungus Aspergillus Flavus. Appl. Microbiol. Biotechnol. 2018, 102, 6659–6672. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Z.; Wang, Y.; Zhang, M.; Wang, X.; Tang, X.; Peng, X.; Zeng, H. Nerol Triggers Mitochondrial Dysfunction and Disruption via Elevation of Ca2+ and ROS in Candida Albicans. Int. J. Biochem. Cell Biol. 2017, 85, 114–122. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological Properties of Geraniol—A Review. Planta Med. 2019, 85, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and Anti-Inflammatory Activity of Caryophyllene Oxide from Annona squamosa L. Bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef]
- Morshedi, D.; Aliakbari, F.; Tayaranian-Marvian, A.; Fassihi, A.; Pan-Montojo, F.; Pérez-Sánchez, H. Cuminaldehyde as the Major Component of Cuminum Cyminum, a Natural Aldehyde with Inhibitory Effect on Alpha-Synuclein Fibrillation and Cytotoxicity: Cuminaldehyde Inhibits α-SN Fibrillatio. J. Food Sci. 2015, 80, H2336–H2345. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Khan, F.; Singh, V.K.; Saeed, M.; Kausar, M.A.; Ansari, I.A. Carvacrol Induced Program Cell Death and Cell Cycle Arrest in Androgen-Independent Human Prostate Cancer Cells via Inhibition of Notch Signaling. Anticancer Agents Med. Chem. 2019, 19, 1588–1608. [Google Scholar] [CrossRef]
- Fries, E.; Püttmann, W. Analysis of the Antioxidant Butylated Hydroxytoluene (BHT) in Water by Means of Solid Phase Extraction Combined with GC/MS. Water Res. 2002, 36, 2319–2327. [Google Scholar] [CrossRef]
- Mishra, S.; Verma, S.S.; Rai, V.; Awasthee, N.; Arya, J.S.; Maiti, K.K.; Gupta, S.C. Curcuma Raktakanda Induces Apoptosis and Suppresses Migration in Cancer Cells: Role of Reactive Oxygen Species. Biomolecules 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, M.J.; Mohammed, G.J.; Hameed, I.H. In Vitro Antibacterial, Antifungal and Phytochemical Analysis of Methanolic Extract of Fruit Cassia Fistula. Orient. J. Chem. 2016, 32, 1329–1346. [Google Scholar] [CrossRef] [Green Version]
- Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor Activity of Palmitic Acid Found as a Selective Cytotoxic Substance in a Marine Red Alga. Anticancer Res. 2002, 22, 2587–2590. [Google Scholar]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Shen, M.-C.; Zhao, X.; Siegal, G.P.; Desmond, R.; Hardy, R.W. Dietary Stearic Acid Leads to a Reduction of Visceral Adipose Tissue in Athymic Nude Mice. PLoS ONE 2014, 9, e104083. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Chaudhary, S.C.; Atigadda, V.R.; Belyaeva, O.V.; Harville, S.R.; Elmets, C.A.; Muccio, D.D.; Athar, M.; Kedishvili, N.Y. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS ONE 2016, 11, e0153556. [Google Scholar] [CrossRef] [Green Version]
- Shaw, N.; Elholm, M.; Noy, N. Retinoic Acid Is a High Affinity Selective Ligand for the Peroxisome Proliferator-Activated Receptor β/δ. J. Biol. Chem. 2003, 278, 41589–41592. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Levi, L.; Siegel, R.; Noy, N. Retinoic Acid Induces Neurogenesis by Activating Both Retinoic Acid Receptors (RARs) and Peroxisome Proliferator-Activated Receptor β/δ (PPARβ/δ). J. Biol. Chem. 2012, 287, 42195–42205. [Google Scholar] [CrossRef] [Green Version]
- Kam, R.K.T.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic Acid Synthesis and Functions in Early Embryonic Development. Cell Biosci. 2012, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Kang, J.; Liu, L. Thymol as a Critical Component of Thymus vulgaris L. Essential Oil Combats Pseudomonas Aeruginosa by Intercalating DNA and Inactivating Biofilm. LWT 2021, 136, 110354. [Google Scholar] [CrossRef]
- Myszka, K.; Schmidt, M.T.; Majcher, M.; Juzwa, W.; Olkowicz, M.; Czaczyk, K. Inhibition of Quorum Sensing-Related Biofilm of Pseudomonas Fluorescens KM121 by Thymus Vulgare Essential Oil and Its Major Bioactive Compounds. Int. Biodeterior. Biodegrad. 2016, 114, 252–259. [Google Scholar] [CrossRef]
- Abed Soumya, E.; koraichi Saad, I.; Hassan, L.; Ghizlane, Z.; Hind, M.; Adnane, R. Carvacrol and Thymol Components Inhibiting Pseudomonas Aeruginosa Adherence and Biofilm Formation. Afr. J. Microbiol. Res. 2011, 5, 3229–3232. [Google Scholar] [CrossRef] [Green Version]
- Walczak, M.; Michalska-Sionkowska, M.; Olkiewicz, D.; Tarnawska, P.; Warżyńska, O. Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules 2021, 26, 2723. [Google Scholar] [CrossRef]
- de Castro, R.D.; de Souza, T.M.P.A.; Bezerra, L.M.D.; Ferreira, G.L.S.; de Brito Costa, E.M.M.; Cavalcanti, A.L. Antifungal Activity and Mode of Action of Thymol and Its Synergism with Nystatin against Candida Species Involved with Infections in the Oral Cavity: An in Vitro Study. BMC Complement. Altern. Med. 2015, 15, 417. [Google Scholar] [CrossRef] [Green Version]
CAS n° | RT [a] | Compound | Chemical Class | EO | EO + bCD | Info |
---|---|---|---|---|---|---|
17699-16-0 | 7.29 | (E)-Sabinene hydrate | Monoterpene | X | - | - |
138-86-3 | 7.85 | Limonene | Monoterpene | X | - | Antimicrobial activities [30]. Anti-proliferative activities [31]. Antioxidant and anti-inflammatory effects [32]. |
470-82-6 | 8.07 | Eucalyptol | Monoterpenoid | X | X | Anti-inflammatory, antioxidant activities [33]. |
99-87-6 | 10.13 | p-Cymene | Monoterpene | X | X | Antimicrobial, anticancer, antioxidant, anti-inflammatory, antinociceptive, and anxiolytic properties [34,35]. |
586-62-9 | 10.54 | Terpinolene | Monoterpene | X | X | Sedative activity [36]. |
na | 17.10 | Epoxyterpinolene | Monoterpene | X | - | |
78-70-6 | 20.63 | Linalool | Monoterpenoid alcohol | X | X | Anti-tumor, anti-cardiotoxicity activity [37]. |
586-82-3 | 21.40 | α-Terpineol | Monoterpenoid alcohol | X | - | Antioxidant, antiinflammatory, anticonvulsant, antimicrobial, anticarcinogenic properties [38]. |
87-44-5 | 21.81 | Caryophyllene | Bicyclic sesquiterpene | X | X | CB2 receptor agonist [39] and shows anti-cancer, antioxidant, and antimicrobial properties [40]. |
10198-23-9 | 21.96 | β-Terpinyl acetate | Monoterpenoid | X | ||
138-87-4 | 23.23 | β-Terpineol | Monoterpenoid alcohol | X | X | Plant metabolite, volatile oil component, and fragrance [41]. |
124-76-5 | 24.22 | Isoborneol | Bicyclic monoterpenoid alcohol | X | X | Antioxidant and antiviral properties [42,43]. |
673-84-7 | 24.62 | Allo-Ocimene | Monoterpene | X | X | Activate defense genes and induceresistance against Botrytis cinerea in Arabidopsis thaliana [44]. |
4584-65-0 | 24.70 | 5-Methyltropolone | Cyclic ketone | X | X | |
80-26-2 | 25.03 | α-Terpinyl acetate | Monoterpenoid ester | X | X | Potential antioxidant and anti-amyloidogenic activities [45]. |
10482-56-1 | 25.15 | (−)-α-Terpineol | Monoterpenoid alcohol | X | X | Aroma compound [46]. |
586-81-2 | 25.26 | γ-Terpineol | Monoterpenoid alcohol | X | X | |
527-60-6 | 25.81 | Mesitol | Aromatic alcohol | X | - | Probe compound shown to react mainly with organic matter (3DOM) [47,48]. |
3304-28-7 | 26.05 | 5-Methyl-2-(1-methylethylidene)-4-hexenal | Aldehyde | X | - | |
523-47-7 | 26.64 | β-Cadinene | Cyclotherpene | X | - | |
106-22-9 | 27.10 | (R)-(+)-Citronellol | Monoterpene | X | X | Anti-cancer activity [49]. |
106-25-2 | 27.88 | Nerol | Terpene alcohol | X | X | Triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity [50,51]. |
55282-11-6 | 28.59 | 11-(1-Ethylpropyl)heneicosane | Alkane | 0 | X | |
106-24-1 | 28.95 | cis-Geraniol | Monoterpenoid alcohol | X | X | Anti-tumor, anti-inflammatory, antioxidative, and antimicrobial activities, and hepatoprotective, cardioprotective, and neuroprotective effects [52]. |
6994-90-7 | 29.90 | (R-1,T-4)-4,8-Epoxy-p-menthan-1-ol | Alcohol | X | X | |
na | 30.46 | 9-Oxabicyclo[3.3.1]non-6-en-3-ylmethanol | Alcohol | X | - | |
1139-30-6 | 30.96 | Caryophyllene oxide | Bicyclic sesquiterpene | X | X | Analgesic and anti-inflammatory activity [53]. |
55090-55-6 | 31.31 | Camphene hydrate-9-D | Bicyclic monoterpene | X | - | |
na | 31.48 | Diepicedrene-1-oxide | Epoxide | X | - | |
122-03-2 | 31.59 | Cuminaldehyde | Aromatic aldehyde | X | - | A natural aldehyde with inhibitory effects on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anti-cancer activity [54]. |
135760-25-7 | 31.72 | Ascaridole epoxide | Epoxide | X | - | |
19888-34-7 | 32.08 | Humulene epoxide ii | Sesquiterpene epoxide | X | - | |
87096-70-6 | 32.17 | 5-(1-Hydroxy-1-methylethyl)-2-methyl-2-cyclohexene-1,4-diol | Diol | X | - | |
23665-67-0 | 32.30 | (2Z)-6,6-Dimethoxy-3-methyl-2-hexenyl acetate | Alkene | X | X | |
544-76-3 | 33.32 | Hexadecane | Alkane | X | X | |
1940-19-8 | 32.93 | 1-Vinylcyclohexanol | Tertiary allylic alcohol | X | - | |
na | 34.06 | 3-Methyl-6-hydroxybenzo[C]-dihydrofuran | Isocoumarans | X | - | |
89-83-8 | 34.28 | Thymol | Monoterpene | X | X | Antioxidant, anti-inflammatory, antibacterial, and antifungal effects [55]. |
768-91-2 | 34.48 | 1-Methyladamantane | Polycyclic alkane | X | - | |
499-75-2 | 34.62 | Carvacrol | Monoterpenoid | X | X | Antioxidant, anti-inflammatory, and anti-cancer properties [56]. |
5875-45-6 | 35.80 | 2,5-di-tert-butyl-phenol | Phenol | X | X | Antioxidant [57]. |
55044-09-2 | 36.07 | 1-Ethyl-3-(2-[2-(3-ethylphenyl)ethoxy]ethyl)benzene | Substituted benzene | X | - | |
646-31-1 | 36.92 | Tetracosane | Straight-chain alkane | - | X | |
629-99-2 | 37.98 | Pentacosane | Straight-chain alkane | - | X | Anti-cancer activities [58]. |
na | 38.04 | 2,5-Dimethylbicyclo[3.3.0]oct-6-en-8-one | Ketone | X | - | |
1928-30-9 | 38.52 | 2-Methyltricosane | Straight-chain alkane | - | X | |
na | 38.68 | 6-Ethyl-5-hydroxy-2,3,7-trimethoxynaphthoquinone | Naphthoquinone | - | X | |
630-01-3 | 38.99 | Hexacosane | Straight-chain alkane | - | X | |
59906-94-4 | 39.09 | 1-Methoxy-2-mesitylacenapthylene | Polycyclic aromatic ether | X | X | |
71697-85-3 | 39.17 | 5-(1-Bromo-1-methylethyl)-2-methyl-2-cyclohexen-1-one | Ketone | X | X | |
105314-84-9 | 39.26 | 3,9-Dimethoxy-11A-methylpterocarpan | Isoflavonoids derivative | X | - | |
na | 39.40 | 1,4-Di(tert-butylethynyl)benzene | Substituted benzene | X | - | |
54725-16-5 | 39.56 | 7a-Methyl-1,4,5,6,7,7a-hexahydro-2H-inden-2-one | Ketone | X | - | |
82849-65-8 | 39.62 | 5,6-C(13)(2)-1,5,9-Decatriyne | Decatriyne | - | X | |
544-63-8 | 39.83 | Myristic acid | Saturated long-chain fatty acid | - | X | |
630-04-6 | 39.96 | Hentriacontane | Long chain alkane | - | X | |
93796-74-8 | 40.20 | Ascomatic acid | Dibenzofuran | X | - | |
1166-72-9 | 40.62 | 9-Thiocyanato-androst-4-en-11-ol-3,17-dione | Ketone | X | - | |
na | 40.80 | 2-Hydroperoxy-2-(2-oxiranyl)-adamantane | Hydroperoxide | X | - | |
630-06-8 | 40.90 | Hexatriacontane | Long chain alkane | - | X | |
na | 40.93 | 1-Oxa-2-oxo-3,8-dihydroxy-6-methyl-acenaphthylo[4,5-B](1-oxa-4,45-trimethyl-cyclopentane) | Naphthofuran | X | - | |
na | 41.20 | 2-(3-Acetoxy-4,4,14-trimethylandrost-8-en-17-yl)-propanoic acid | Steroid hormone derivative | - | X | Phytochemical compound [59]. |
502-52-3 | 41.26 | 1,3-Dipalmitoyl glycerol | Glycerol | - | X | |
74199-04-5 | 41.53 | 4,5,6-Trimethoxy-3′,4′-methylenedioxybiphenyl-2-carbaldehyde | Carbaldehyde | X | - | |
57-10-3 | 41.79 | Hexadecanoic acid | Long-chain saturated fatty acid | - | X | Anti-cancer activity [60]. |
66205-02-5 | 42.70 | 1-n-Hexyl-7-n-butyl-1,2,3,4-tetrahydronaphthalene | Naphthalene derivative | X | - | |
124821-10-9 | 42.75 | (+−)-cis-3,4,6,9-Tetrahydro-7,10-dimethoxy-1,3,8-trimethyl-1H-naphtho [2,3-C]pyran-6,9-dione[(+−)-ventilagone-7,10-dimethyl ether] | Isochromanequinone | X | - | |
80893-74-9 | 42.88 | 2-Methoxy-6-(3′,5′-dimethoxyphenyl)methylbenzoic acid | Aromatic compound | X | - | |
7683-64-9 | 43.35 | Squalene | Triterpene | - | X | Antioxidant, potential anti-cancer activities [61]. |
57-11-4 | 43.99 | Stearic acid | Long-chain fatty acid | - | X | Reduction of visceral adipose tissue in athymic nude mice [62]. |
107971-21-1 | 44.96 | 11-Methylbenzo[3,4]phenanthro[1,2-B]thiophene | Thiophene derivative | X | - | |
71013-35-9 | 45.64 | 1,8-Dimethoxy-3-methyl-anthraquinone | Anthraquinone | X | X | |
33585-88-5 | 46.96 | 5,19-Cyclo-5β-androst-6-ene-3,17-dione | Steroid hormone derivative | X | - | |
1166-72-9 | 47.10 | 9-Thiocyanato-androst-4-en-11-ol-3,17-dione | Steroid hormone derivative | X | - | |
na | 47.29 | 6,7-Dimethoxy-4H-cyclopenta[DEF]chrysene | Polycyclic aromatic hydrocarbon derivative | X | X | |
302-79-4 | 47.82 | Retinoic acid | Retinoid | X | X | Metabolite of vitamin A. Plays important roles in cell growth, differentiation, and organogenesis. Natural agonist of RAR nuclear receptors [63,64,65,66]. |
105314-88-3 | 48.51 | 2,9-Dimethoxy-4B,9B-dihydro-4B,9B-dimethylbenzofuro[3.2-B]benzofuran | Aromatic heterocycle | X | - |
Compound | RT [a] (min) | Calibration Curve | R2 Value | EO (mg/g) | EO-bCD (mg/g) | Incorporation (%) | Active Molecules in Tablet (mg/Tablet) |
---|---|---|---|---|---|---|---|
Eucalyptol | 8.06 | y = 66.402x − 38.233 | 0.9999 | 57.1 | 0.022 | 1.7 | 0.44 |
Linalool | 20.62 | y = 72.665x − 47.210 | 0.9996 | 71.4 | 0.018 | 3.9 | 0.36 |
trans-Caryophyllene | 21.80 | y = 96.497x − 64.083 | 0.9994 | 60.0 | 0.011 | 7.0 | 0.22 |
Thymol | 34.26 | y = 96.760x − 60.319 | 0.9995 | 60.0 | 0.161 | 6.4 | 3.22 |
Carvacrol | 34.62 | y = 115.694x − 74.025 | 0.9994 | 80.0 | 0.042 | 6.6 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrais, A.; Bona, E.; Todeschini, V.; Caramaschi, A.; Massa, N.; Roncoli, M.; Minervi, A.; Perin, E.; Gianotti, V. Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics 2023, 15, 914. https://doi.org/10.3390/pharmaceutics15030914
Arrais A, Bona E, Todeschini V, Caramaschi A, Massa N, Roncoli M, Minervi A, Perin E, Gianotti V. Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics. 2023; 15(3):914. https://doi.org/10.3390/pharmaceutics15030914
Chicago/Turabian StyleArrais, Aldo, Elisa Bona, Valeria Todeschini, Alice Caramaschi, Nadia Massa, Maddalena Roncoli, Alessia Minervi, Elena Perin, and Valentina Gianotti. 2023. "Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications" Pharmaceutics 15, no. 3: 914. https://doi.org/10.3390/pharmaceutics15030914
APA StyleArrais, A., Bona, E., Todeschini, V., Caramaschi, A., Massa, N., Roncoli, M., Minervi, A., Perin, E., & Gianotti, V. (2023). Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics, 15(3), 914. https://doi.org/10.3390/pharmaceutics15030914