Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Extrusion of AffinisolTM and PVA Blended Filaments through HME
2.3. Design & Prototyping of 3D-Printed Sorbents Using FFF
2.4. Differential Scanning Calorimetry (DSC)
2.5. Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.6. Brunner-Emmett Teller Analyser (BET)
2.7. LC-MS/MS Analysis
2.8. Extraction Procedure
2.9. In Vivo Assessment of 3D Sorbents
2.9.1. Standard Solutions and Plasma Samples for Extraction
2.9.2. Calibration and Quality Control (Q.C.) Samples
2.9.3. LC-MS/MS Method Validation
3. Results and Discussion
3.1. Extrusion of AffinisolTM and PVA Blended Filaments through HME
3.2. Design & Prototyping of 3D-Printed Sorbents Using FFF
3.3. Characterizations of Sorbent and Selection of Extraction Method
3.4. Extraction Conditions
3.4.1. Adsorption and Desorption Time, Rpm, and Temperature
3.4.2. Desorption Solvents
3.5. LC-MS/MS Method Validation and Its Application to Pharmacokinetic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawaal, H.; Thompson, J.E. Additive Manufacturing (3D Printing) for Analytical Chemistry. Talanta Open 2021, 3, 100036. [Google Scholar] [CrossRef]
- Adye, D.R.; Ponneganti, S.; Malakar, T.K.; Radhakrishnanand, P.; Murty, U.S.; Banerjee, S.; Borkar, R.M. Extraction of Small Molecule from Human Plasma by Prototyping 3D Printed Sorbent through Extruded Filament for LC-MS/MS Analysis. Anal. Chim. Acta 2021, 1187, 339142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, X.; Patil, H.; Tiwari, R.V.; Repka, M.A. Coupling 3D Printing with Hot-Melt Extrusion to Produce Controlled-Release Tablets. Int. J. Pharm. 2017, 519, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, L.; Belka, M.; Okońska, M.; Pyszka, M.; Bączek, T. New 3D-Printed Sorbent for Extraction of Steroids from Human Plasma Preceding LC–MS Analysis. J. Chromatogr. A 2018, 1545, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.C.; Gupta, V.; Haddad, P.R.; Paull, B. 3D Printed Liquid Cooling Interface for a Deep-UV-LED-Based Flow-Through Absorbance Detector. Anal. Chem. 2019, 91, 8795–8800. [Google Scholar] [CrossRef]
- Rusling, J.F. Developing Microfluidic Sensing Devices Using 3D Printing. ACS Sens. 2018, 3, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D Printed Microfluidic Devices: Enablers and Barriers. Lab. Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [Green Version]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Gupta, A.; Bah, M. NSAIDs in the Treatment of Postoperative Pain. Curr. Pain. Headache Rep. 2016, 20, 62. [Google Scholar] [CrossRef]
- Budoff, P.W. Use of Mefenamic Acid in the Treatment of Primary Dysmenorrhea. JAMA 1979, 241, 2713–2716. [Google Scholar] [CrossRef]
- Kushner, P.; McCarberg, B.H.; Grange, L.; Kolosov, A.; Haveric, A.L.; Zucal, V.; Petruschke, R.; Bissonnette, S. The Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in COVID-19. NPJ Prim. Care Respir. Med. 2022, 32, 35. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.Y.S.; MacKenna, B.; Morton, C.E.; Schultze, A.; Walker, A.J.; Bhaskaran, K.; Brown, J.P.; Rentsch, C.T.; Williamson, E.; Drysdale, H.; et al. Use of Non-Steroidal Anti-Inflammatory Drugs and Risk of Death from COVID-19: An OpenSAFELY Cohort Analysis Based on Two Cohorts. Ann. Rheum. Dis. 2021, 80, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Abu Esba, L.C.; Alqahtani, R.A.; Thomas, A.; Shamas, N.; Alswaidan, L.; Mardawi, G. Ibuprofen and NSAID Use in COVID-19 Infected Patients Is Not Associated with Worse Outcomes: A Prospective Cohort Study. Infect. Dis. Ther. 2021, 10, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Kragholm, K.; Gerds, T.A.; Fosbøl, E.; Andersen, M.P.; Phelps, M.; Butt, J.H.; Østergaard, L.; Bang, C.N.; Pallisgaard, J.; Gislason, G.; et al. Association Between Prescribed Ibuprofen and Severe COVID-19 Infection: A Nationwide Register-Based Cohort Study. Clin. Transl. Sci. 2020, 13, 1103–1107. [Google Scholar] [CrossRef]
- Möller, B.; Pruijm, M.; Adler, S.; Scherer, A.; Villiger, P.M.; Finckh, A. Chronic NSAID Use and Long-Term Decline of Renal Function in a Prospective Rheumatoid Arthritis Cohort Study. Ann. Rheum. Dis. 2015, 74, 718–723. [Google Scholar] [CrossRef]
- La Corte, R.; Caselli, M.; Castellino, G.; Bajocchi, G.; Trotta, F. Prophylaxis and Treatment of NSAID-Induced Gastroduodenal Disorders. Drug Saf. 1999, 20, 527–543. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Zarogiannis, S.G.; Gourgoulianis, K.I. Prehospital NSAIDs Use Prolong Hospitalization in Patients with Pleuro-Pulmonary Infection. Respir. Med. 2017, 123, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.C.; Reilev, M.; Hallas, J.; Kristensen, K.B.; Thomsen, R.W.; Christiansen, C.F.; Sørensen, H.T.; Johansen, N.B.; Brun, N.C.; Voldstedlund, M.; et al. Association of Nonsteroidal Anti-Inflammatory Drug Use and Adverse Outcomes among Patients Hospitalized with Influenza. JAMA Netw. Open 2020, 3, e2013880. [Google Scholar] [CrossRef]
- Ji, Y.; Du, Z.; Zhang, H.; Zhang, Y. Rapid Analysis of Non-Steroidal Anti-Inflammatory Drugs in Tap Water and Drinks by Ionic Liquid Dispersive Liquid-Liquid Microextraction Coupled to Ultra-High Performance Supercritical Fluid Chromatography. Anal. Methods 2014, 6, 7294–7304. [Google Scholar] [CrossRef]
- Buchberger, W. Current Approaches to Trace Analysis of Pharmaceuticals and Personal Care Products in the Environment. J. Chromatogr. A 2011, 1218, 603–618. [Google Scholar] [CrossRef]
- Kosjek, T.; Heath, E.; Krbavčič, A. Determination of Non-Steroidal Anti-Inflammatory Drug (NSAIDs) Residues in Water Samples. Environ. Int. 2005, 31, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Iuliani, P.; Carlucci, G.; Marrone, A. Investigation of the HPLC Response of NSAIDs by Fractional Experimental Design and Multivariate Regression Analysis. Response Optimization and New Retention Parameters. J. Pharm. Biomed. Anal. 2010, 51, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Magiera, S.; Gülmez, Ş.; Michalik, A.; Baranowska, I. Application of Statistical Experimental Design to the Optimisation of Microextraction by Packed Sorbent for the Analysis of Non-steroidal Anti-Inflammatory Drugs in Human Urine by Ultra-High Pressure Liquid Chromatography. J. Chromatogr. A 2013, 1304, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.; Kumar, R.S.; Shankar, M.B.; Danabal, P. Development and Validation of a Sensitive and High-Throughput LC-MS/MS Method for the Simultaneous Determination of Esomeprazole and Naproxen in Human Plasma. Biomed. Chromatogr. 2013, 27, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Siqueira Sandrin, V.S.; Oliveira, G.M.; Weckwerth, G.M.; Polanco, N.L.D.H.; Faria, F.A.C.; Santos, C.F.; Calvo, A.M. Analysis of Different Methods of Extracting NSAIDs in Biological Fluid Samples for LC-MS/MS Assays: Scoping Review. Metabolites 2022, 12, 751. [Google Scholar] [CrossRef]
- de Oliveira, A.R.M.; de Santana, F.J.M.; Bonato, P.S. Stereoselective Determination of the Major Ibuprofen Metabolites in Human Urine by Off-Line Coupling Solid-Phase Microextraction and High-Performance Liquid Chromatography. Anal. Chim. Acta 2005, 538, 25–34. [Google Scholar] [CrossRef]
- Shafiei-Navid, S.; Hosseinzadeh, R.; Ghani, M. Solid-Phase Extraction of Nonsteroidal Anti-Inflammatory Drugs in Urine and Water Samples Using Acidic Calix[4]Arene Intercalated in LDH Followed by Quantification via HPLC-UV. Microchem. J. 2022, 183, 107985. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, Z.; Hu, W.; Chen, Z. Electrochemically Deposition of Metal-Organic Framework onto Carbon Fibers for Online in-Tube Solid-Phase Microextraction of Non-Steroidal Anti-Inflammatory Drugs. J. Chromatogr. A 2022, 1673, 463129. [Google Scholar] [CrossRef]
- Xu, X.; Feng, X.; Liu, Z.; Xue, S.; Zhang, L. 3D Flower-Liked Fe3O4/C for Highly Sensitive Magnetic Dispersive Solid-Phase Extraction of Four Trace Non-Steroidal Anti-Inflammatory Drugs. Mikrochim Acta. 2021, 188, 52. [Google Scholar] [CrossRef]
- Ferrone, V.; Bruni, P.; Canale, V.; Sbrascini, L.; Nobili, F.; Carlucci, G.; Ferrari, S. Simple Synthesis of Fe3O4@-Activated Carbon from Wastepaper for Dispersive Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs and Their UHPLC–PDA Determination in Human Plasma. Fibers 2022, 10, 58. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Blanco, G.; García-Fernández, A.J. Validation of Multi-Residue Method for Quantification of Antibiotics and Nsaids in Avian Scavengers by Using Small Amounts of Plasma in HPLC-MS-TOF. Int. J. Environ. Res. Public. Health 2020, 17, 4058. [Google Scholar] [CrossRef] [PubMed]
- HHS. Guidance for Industry Bioanalytical Method Validation; U.S. Department of Health and Human Services: Washington, DC, USA, 2001; p. 20857. [Google Scholar]
- Su, C.K.; Peng, P.J.; Sun, Y.C. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater. Anal. Chem. 2015, 87, 6945–6950. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.A.V.; Santos-Neto, Á.J.; Cerdà, V.; Maya, F. Automated Dispersive Liquid-Liquid Microextraction Based on the Solidification of the Organic Phase. Talanta 2018, 189, 241–248. [Google Scholar] [CrossRef]
- Belka, M.; Ulenberg, S.; Baczek, T. Fused Deposition Modeling Enables the Low-Cost Fabrication of Porous, Customized-Shape Sorbents for Small-Molecule Extraction. Anal. Chem. 2017, 89, 4373–4376. [Google Scholar] [CrossRef] [PubMed]
- Nutrition and Bioscience DuPont Affinisol TM Hpmc Hme. Available online: https://www.pharma.dupont.com/content/dam/dupont/amer/us/en/nutrition-health/general/pharmaceuticals/documents/Download_Affinisol%20HPMC%20HME%20Brochure.pdf (accessed on 15 March 2023).
- Kiil, S.; Dam-Johansen, K. Controlled Drug Delivery from Swellable Hydroxypropylmethylcellulose Matrices: Model-Based Analysis of Observed Radial Front Movements. J. Control. Release 2003, 90, 1–21. [Google Scholar] [CrossRef] [PubMed]
Intra-Day Precision and Accuracy | Inter-Day Precision and Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|
QC Sample | LLOQ | LQC | MQC | HQC | LLOQ | LQC | MQC | HQC | |
Theoretical Concentration (ng/mL) | 1 | 3 | 300 | 600 | 1 | 3 | 300 | 600 | |
Acetaminophen | Mean estimated concentration (ng/mL) ± SD | 1.04 ± 0.06 | 2.55 ± 0.37 | 293.55 ± 7.87 | 586.02 ± 12.75 | 0.98 ± 0.05 | 18.23 ± 0.82 | 741.46 ± 59.43 | 1260.97 ± 57.12 |
Precision (CV, %) | 5.93 | 14.48 | 2.68 | 2.18 | 5.04 | 10.26 | 2.95 | 1.67 | |
Accuracy (%) ± SD | 104 ± 6.16 | 85 ± 12.30 | 97.85 ± 2.62 | 97.67 ± 2.13 | 97.67 ± 4.92 | 94.33 ± 9.68 | 89.40 ± 2.64 | 98.57 ± 1.65 | |
Indomethacin | QC Sample | LLOQ | LQC | MQC | HQC | LLOQ | LQC | MQC | HQC |
Theoretical concentration (ng/mL) | 1 | 3 | 250 | 400 | 1 | 3 | 250 | 400 | |
Mean estimated concentration (ng/mL) ± SD | 0.98 ± 0.04 | 2.95 ± 0.09 | 242.92 ± 4.38 | 384.94 ± 11.34 | 0.93 ± 0.06 | 2.79 ± 0.11 | 247.37 ± 4.62 | 377.05 ± 5.85 | |
Precision (CV, %) | 6.33 | 3.08 | 1.80 | 2.34 | 6.33 | 3.86 | 1.87 | 1.23 | |
Accuracy (%) ± SD | 93 ± 5.89 | 98.33 ± 3.03 | 97.17 ± 1.75 | 96.99 ± 2.27 | 93 ± 5.89 | 93.11 ± 3.59 | 98.95 ± 1.85 | 95.41 ± 1.17 |
Acetaminophen | Recovery | |||
QC Sample | LQC | MQC | HQC | |
Theoretical concentration (ng/mL) | 3 | 300 | 600 | |
Mean % recovery ± SD | 84.81 ± 1.83 | 82.8 ± 3.6 | 83.12 ± 3.8 | |
% CV | 2.16 | 4.34 | 4.67 | |
Indomethacin | QC Sample | LQC | MQC | HQC |
Theoretical concentration (ng/mL) | 3 | 250 | 400 | |
Mean % recovery ± SD | 85.37 ± 2.4 | 81.35 ± 1.05 | 80.93 ± 3.2 | |
% CV | 2.9 | 1.3 | 4.05 |
Indomethacin | Acetaminophen | ||||||
---|---|---|---|---|---|---|---|
QC Sample | Theoretical Concentration (ng/mL) | Mean Estimated Concentration (ng/mL)± SD | Precision (CV, %) | Theoretical Concentration (ng/mL) | Mean Estimated Concentration (ng/mL)± SD | Precision (CV,%) | |
Bench-top stability | LQC | 3 | 2.98 ± 0.11 | 3.64 | 3 | 2.91 ± 0.16 | 5.35 |
HQC | 400 | 401.61 ± 7.80 | 1.94 | 600 | 592.92 ± 10.80 | 3.60 | |
Autosampler stability | LQC | 3 | 2.99 ± 0.04 | 1.44 | 3 | 2.92 ± 0.15 | 5.20 |
HQC | 400 | 391.82 ± 6.72 | 1.72 | 600 | 596.26 ± 8.41 | 1.41 | |
Three freeze-thaw cycles (each at −20 °C) | LQC | 3 | 2.96 ± 0.12 | 4.01 | 3 | 3.01 ± 0.09 | 3.02 |
HQC | 400 | 395.72 ± 13.06 | 3.30 | 600 | 591.92 ± 6.66 | 1.13 |
PK Parameters | Acetaminophen | Indomethacin |
---|---|---|
Mean± SD | Mean± SD | |
Cmax (µg/mL) | 27.27± 9.9 | 0.33 ± 0.04 |
tmax (h) | 0.5–1 | 0.5–1 |
t1/2 (h) | 0.81 ± 0.1 | 1.79 ± 0.44 |
AUC0–t (min µg/mL) | 32.33 ± 10.8 | 0.93 ± 0.17 |
AUC0–ꝏ (min µg/mL) | 32.38 ± 10.8 | 0.97 ± 0.2 |
Kel (h−1) | 0.85 ± 1.12 | 0.41 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adye, D.R.; Jorvekar, S.B.; Murty, U.S.; Banerjee, S.; Borkar, R.M. Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies. Pharmaceutics 2023, 15, 978. https://doi.org/10.3390/pharmaceutics15030978
Adye DR, Jorvekar SB, Murty US, Banerjee S, Borkar RM. Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies. Pharmaceutics. 2023; 15(3):978. https://doi.org/10.3390/pharmaceutics15030978
Chicago/Turabian StyleAdye, Daya Raju, Sachin B. Jorvekar, Upadhyayula Suryanarayana Murty, Subham Banerjee, and Roshan M. Borkar. 2023. "Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies" Pharmaceutics 15, no. 3: 978. https://doi.org/10.3390/pharmaceutics15030978
APA StyleAdye, D. R., Jorvekar, S. B., Murty, U. S., Banerjee, S., & Borkar, R. M. (2023). Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies. Pharmaceutics, 15(3), 978. https://doi.org/10.3390/pharmaceutics15030978