Use of Microfluidics to Prepare Lipid-Based Nanocarriers
Abstract
:1. Introduction
1.1. Types of LBNPs and Their Main Components
1.2. Traditional LBNP Production Approaches
2. Production of LBNPs Using Microfluidics
3. LBNP Drug Delivery Platforms Using Microfluidics
3.1. Gene Delivery
3.1.1. siRNA LNPs
Composition | TFR (mL/min) | FRR (aq/org) | Mixer | Cargo | EE (%) | Particle Size (nm) | PDI | Zeta Potential (mV) | Administration Route | Reference |
---|---|---|---|---|---|---|---|---|---|---|
DODAP/Chol/HSPC/PEG-DSPE (50/10/39/1 mol%) | 3 | 3 | SHM | - | 90 | ~25 | ~0.15 | - | - | [38] |
DLin-MC3-DMA/Chol/DSPC/DMG-mPEG2000 (50/37.5/10/2.5 mol%) | - | 3 | - | siVEGFa | 87.6 ± 4.5 | 71.04 ± 6.18 | - | 26.34 ± 4.11 mV | SQ | [43] |
Proprietary ionizable amino lipid/DSPC/Chol/DMG-mPEG2000 (50/10/38.5/1.5 mol%) | 12 | 3 | NanoAssemblr™ | siBCR-ABL | >90 | 55 | - | - | IP | [44] |
D-Lin-MC3-DMA/DSPC/Chol/DMG-mPEG2000 (50/10/38.5/1.5 mol%) | 12 | 3 | NanoAssemblr™ SPARK | siLINC01257 | >85 | 65 | 0.22 | - | - | [34] |
DODAP/DSPC/Chol/DSPE-PEG/DiO (50/10/37.5/1.5/1 mol%) | 12 | 3 | NanoAssemblr™ SPARK | siSAT1 | 100 | 82 | 0.16 | 0.18 ± 0.42 | - | [45] |
CL15H6/ESM/PEG-DMG (39/58/3 mol%) | 1.5 | 3 | SHM | siGL4 | >90 | ~22 | - | - | - | [39] |
YSK05/DOPE/Chol/PEG-SP94/PEG (44/18/26.5/9/2.5 mol%) | 0.5 | 2-4 | iLiNP | siMK | >90 | 60.47 ± 6.9 | 0.101 ± 0.011 | −17.4 ± 5 | IV | [46] |
DLin-MC3-DMA/DSPC/Chol/DMG-mPEG2000 (50/10/38.5/1.5 mol%) | 3 | >10 | T-junction | siAR-V7/taxane prodrugs | >90 | ~50 | <0.1 | ~−2 | IV | [35] |
3.1.2. mRNA LNPs
Composition | TFR (mL/min) | FRR (aq/org) | Mixer | Cargo | EE (%) | Particle Size (nm) | PDI | Zeta Potential (mV) | Administration Route | Reference |
---|---|---|---|---|---|---|---|---|---|---|
DSPC/DOTAP (15/85 mol%) | 2 | 12 | NanoAssemblr™ Benchtop | eGFP | - | 175 | <0.15 | - | - | [48] |
C12-200/DOPE/Chol/C14-PEG2000 (35/16/46.5/2.5 mol%) | 3 | - | SHM | b-mRNA | 87.4 | 83.36 | <0.15 | −3.77 | IV | [49] |
CL4H6/DOPE/Chol/DMG-mPEG200 (50/10/40/1 mol%) | 0.5 | 3 | iLiNP | mOVA | 76.0 ± 5.9 | 195 | <0.15 | 0.7 ± 0.4 | IV | [11] |
CL4H6/DOPE/PEG-DSG (60/10/1.5 mol%) | 0.5 | 3 | iLiNP | mNluc | 89.2 | 547 | <0.15 | −1.4 | IV | [35] |
CL4H6/ESM/Chol/DMG-mPEG200 (59/5/34.5/1.5 mol%) | 0.5 | 3 | iLiNP | mNluc | 95.5 | 63.9 | <0.15 | 8.36 | IV | [50] |
C14-4/DOPE/Chol/C14-PEG (35/16/46.5/2.5 mol%) | - | 3 | SHM | mNluc | 86.3 | 65.19 ± 0.83 | <0.15 | - | - | [51] |
Ionizable lipid/DOPE/Chol/C14-PEG2000 (35/16/46.5/2.5 mol%) | - | 3 | SHM | mNluc | 81.3 | 116 | <0.15 | - | IUT | [52] |
DPL14/DSPC/Chol/pSar23 (40/45/10/5 mol%) | 12 | 3 | Precision Nanosystems | mNluc | - | 85 | <0.15 | - | IV | [53] |
ZA3-Ep10/Chol/PEG-lipid (56/43/1 mol%) | 12 | 3 | Precision Nanosystems | Cas9 mRNA/sgLoxP | - | - | <0.15 | - | IV | [47] |
246C10/DOPE/Chol/PEG-lipid (26.5:20:52:1.5 mol%) | 12 | - | NanoAssemblr™ Benchtop | Cas9 mRNA/sgAT | 92.2 | 75.3 | 0.082 | - | IV | [55] |
3.1.3. pDNA LBNPs
3.2. Small-Molecule LBNPs
Composition | TFR (mL/min) | FRR (aq/org) | Mixer | Cargo | EE (%) | Particle Size (nm) | PDI | Zeta Potential (mV) | Administration Route | Reference |
---|---|---|---|---|---|---|---|---|---|---|
DSPC/DMPC/Chol/DSPE-PEG2000 (16/49/32/3 mol%) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 84 | 143 | 0.22 | −0.3 | - | [69] |
DSPC/DMPC/Chol/DSPE-PEG2000 (5/58/34/3) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 88 | 82 | 0.13 | −2.1 | - | [69] |
DSPC/DMPC/Chol/DSPE-PEG2000 (11/52/34/3 mol%) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 59 | 104 | 0.14 | −2 | - | [69] |
DSPC/DMPC/Chol/DSPE-PEG2000 (16/49/3/32 mol%) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 58 | 84 | 0.14 | −2.6 | - | [69] |
DSPC/DMPC/Chol/DSPE-PEG2000 (57/11/29/3 mol%) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 70 | 110 | 0.16 | −1.6 | - | [69] |
DSPC/Chol/DSPE—PEG2000 (64/33/3) | 0.5 | 0.1 | Dolomite 5-input chip | Dox-HCl | 89.4 | 266 | 0.22 | −2 | - | [69] |
DSPC/Chol/DSPE-PEG2000-PE (65/31/4 mol%) | 0.5 | 0.1 | Dolomite 5-input chip | Dox/Unbelliprenin | 74.0 ± 5.8/ 47.0 ± 1.2 | 227 ± 1 | 0.20 ± 0.01 | −2.5 ± 0.3 | - | [62] |
DOPA/EPG/DOPE/HSPC:Chol/DSPE-PEG2000 (37.44/9.36/0.47/8.93/1.9 mol%) | 12 | 0.2 | NanoAssemblr™ Benchtop | Dox-HCl | 62.7 | 97.5 | 0.134 | - | IV | [17] |
DPPC/Chol (67/33 mol%) | 20 | 0.3 | Swirl | Doxorubicin | 79.7 ± 4 | <200 | <0.2 | >−10 | - | [65] |
DMPC/Chol (67/33 mol%) | 1 | 0.25 | FLUIGENT MFCS™-EZ | Paclitaxel | 88 | >147 | >0.124 | −10 | - | [63] |
DPPC/Chol (67/33 mol%) | 1 | 0.25 | FLUIGENT MFCS™-EZ | Paclitaxel | 91 | <168 | 0.183 | −11 | - | [63] |
Cetyl palmitate/DSPE-PEG2000 (95/5 mol%) | 10 | 0.25 | Co-flow | Paclitaxel | 31.7 | 137.3 | 0.279 | −11.2 | - | [67] |
Cetyl palmitate/DSPE-PEG2000 (99/1 mol%) | 10 | 0.25 | - | Paclitaxel | 54 | 121 | 0.11 | −23 | - | [73] |
3.3. Protein and Peptide LBNPs
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
DC | dendritic cells |
DDS | drug delivery system |
DiO | lipophilic carbocyanine fluorophore |
DLS | dynamic light scattering |
DOE | design of experiments |
EE | encapsulation efficiency |
FDA | Food and Drug Administration |
FRR | flow rate ratio |
GMP | good manufacturing practices |
iLiNP | invasive lipid nanoparticle production device |
LBNP | lipid-based nanoparticle |
LN | lymph node |
LNP | lipid nanoparticle |
LP | lipoparticle |
HFF | hydrodynamic flow focusing |
mRNA | messenger RNA |
NLC | nanostructured lipid carriers |
PDI | polydispersity index |
pDNA | plasmid DNA |
PK/PD | pharmacokinetics/pharmacodynamics |
PTX | Paclitaxel |
SHM | staggered herringbone mixer |
siRNA | small interfering RNA |
SLN | solid lipid nanoparticle |
SOR | sorafenib |
TEM | transmission electron microscopy |
TFR | total flow rate |
References
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238-IN27. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Hu, C.-M.J.; Fang, R.H.; Zhang, L. Liposome-like Nanostructures for Drug Delivery. J. Mater. Chem. B 2013, 1, 6569. [Google Scholar] [CrossRef] [PubMed]
- Hald Albertsen, C.; Kulkarni, J.A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J.B. The Role of Lipid Components in Lipid Nanoparticles for Vaccines and Gene Therapy. Adv. Drug Deliv. Rev. 2022, 188, 114416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, S.; Hu, Y.; Zhao, X.; Lee, R.J. Application of Lipid-Based Nanoparticles in Cancer Immunotherapy. Front. Immunol. 2022, 13, 967505. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.L.; Cullis, P.R. Modulation of Membrane Fusion by Asymmetric Transbilayer Distributions of Amino Lipids. Biochemistry 1994, 33, 12573–12580. [Google Scholar] [CrossRef]
- Dabkowska, A.P.; Barlow, D.J.; Hughes, A.V.; Campbell, R.A.; Quinn, P.J.; Lawrence, M.J. The Effect of Neutral Helper Lipids on the Structure of Cationic Lipid Monolayers. J. R. Soc. Interface 2012, 9, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Semple, S.C.; Chonn, A.; Cullis, P.R. Influence of Cholesterol on the Association of Plasma Proteins with Liposomes. Biochemistry 1996, 35, 2521–2525. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Witzigmann, D.; Leung, J.; Tam, Y.Y.C.; Cullis, P.R. On the Role of Helper Lipids in Lipid Nanoparticle Formulations of SiRNA. Nanoscale 2019, 11, 21733–21739. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for MRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef]
- Okuda, K.; Sato, Y.; Iwakawa, K.; Sasaki, K.; Okabe, N.; Maeki, M.; Tokeshi, M.; Harashima, H. On the Size-Regulation of RNA-Loaded Lipid Nanoparticles Synthesized by Microfluidic Device. J. Control Release 2022, 348, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.W.; Hui, C.; Cullis, P.R.; Madden, T.D. Poly(Ethylene Glycol)−Lipid Conjugates Regulate the Calcium-Induced Fusion of Liposomes Composed of Phosphatidylethanolamine and Phosphatidylserine. Biochemistry 1996, 35, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Suzuki, Y.; Hihara, T.; Kubara, K.; Kondo, K.; Hyodo, K.; Yamazaki, K.; Ishida, T.; Ishihara, H. PEG Shedding-Rate-Dependent Blood Clearance of PEGylated Lipid Nanoparticles in Mice: Faster PEG Shedding Attenuates Anti-PEG IgM Production. Int. J. Pharm. 2020, 588, 119792. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, J.A.; Myhre, J.L.; Chen, S.; Tam, Y.Y.C.; Danescu, A.; Richman, J.M.; Cullis, P.R. Design of Lipid Nanoparticles for in Vitro and in Vivo Delivery of Plasmid DNA. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.-A.; Nguyen, T.-T.-L.; Maeng, H.-J. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020, 25, 4781. [Google Scholar] [CrossRef]
- Ali, M.S.; Hooshmand, N.; El-Sayed, M.; Labouta, H.I. Microfluidics for Development of Lipid Nanoparticles: Paving the Way for Nucleic Acids to the Clinic. ACS Appl. Bio. Mater. 2021. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Tsai, T.; Peng, P.-C.; Chen, C.-T. Fabrication of Doxorubicin-Loaded Lipid-Based Nanocarriers by Microfluidic Rapid Mixing. Biomedicines 2022, 10, 1259. [Google Scholar] [CrossRef]
- Roces, C.B.; Port, E.C.; Daskalakis, N.N.; Watts, J.A.; Aylott, J.W.; Halbert, G.W.; Perrie, Y. Rapid Scale-up and Production of Active-Loaded PEGylated Liposomes. Int. J. Pharm. 2020, 586, 119566. [Google Scholar] [CrossRef]
- Liu, C.; Feng, Q.; Sun, J. Lipid Nanovesicles by Microfluidics: Manipulation, Synthesis, and Drug Delivery. Adv. Mater. 2019, 31, 1804788. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Warzecha, C.C.; Yadavali, S.; El-Mayta, R.; Alameh, M.-G.; Wang, L.; Weissman, D.; Wilson, J.M.; Issadore, D.; Mitchell, M.J. Scalable MRNA and SiRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device. Nano Lett. 2021, 21, 5671–5680. [Google Scholar] [CrossRef]
- NxGen—A Disruptive Technology Enabling Transformative Medicine. Available online: https://www.precisionnanosystems.com/platform-technologies/nxgen (accessed on 5 December 2022).
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. The Dawn of MRNA Vaccines: The COVID-19 Case. J. Control Release 2021, 333, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 MRNA Vaccine Development. Signal Transduct. Target. Ther. 2022, 7, 94. [Google Scholar] [CrossRef]
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of MRNA Vaccines. Mol. Ther.-Nucleic Acids 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudsiova, L.; Lansley, A.; Scutt, G.; Allen, M.; Bowler, L.; Williams, S.; Lippett, S.; Stafford, S.; Tarzi, M.; Cross, M.; et al. Stability Testing of the Pfizer-BioNTech BNT162b2 COVID-19 Vaccine: A Translational Study in UK Vaccination Centres. BMJ Open Sci. 2021, 5, e100203. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, F.; Wisse, E.; De Geest, B. The Role of Liver Sinusoidal Cells in Hepatocyte-Directed Gene Transfer. Am. J. Pathol. 2010, 176, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Tam, Y.Y.C.; Lin, P.J.C.; Sung, M.M.H.; Tam, Y.K.; Cullis, P.R. Influence of Particle Size on the in Vivo Potency of Lipid Nanoparticle Formulations of SiRNA. J. Control Release 2016, 235, 236–244. [Google Scholar] [CrossRef]
- Nakamura, T.; Kawai, M.; Sato, Y.; Maeki, M.; Tokeshi, M.; Harashima, H. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Mol. Pharm. 2020, 17, 944–953. [Google Scholar] [CrossRef]
- Kimura, N.; Maeki, M.; Sato, Y.; Note, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Development of the ILiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 Nm for Drug Delivery. ACS Omega 2018, 3, 5044–5051. [Google Scholar] [CrossRef]
- Kimura, N.; Maeki, M.; Sasaki, K.; Sato, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Three-Dimensional, Symmetrically Assembled Microfluidic Device for Lipid Nanoparticle Production. RSC Adv. 2021, 11, 1430–1439. [Google Scholar] [CrossRef]
- Pan, M.; Ni, J.; He, H.; Gao, S.; Duan, X. New Paradigms on SiRNA Local Application. BMB Rep. 2015, 48, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Coban, O.; Snead, N.M.; Trebley, J.; Hoeprich, S.; Guo, S.; Shu, Y. Engineering RNA for Targeted SiRNA Delivery and Medical Application. Adv. Drug Deliv. Rev. 2010, 62, 650–666. [Google Scholar] [CrossRef] [PubMed]
- Wood, H. FDA Approves Patisiran to Treat Hereditary Transthyretin Amyloidosis. Nat. Rev. Neurol. 2018, 14, 570. [Google Scholar] [CrossRef]
- Connerty, P.; Moles, E.; de Bock, C.E.; Jayatilleke, N.; Smith, J.L.; Meshinchi, S.; Mayoh, C.; Kavallaris, M.; Lock, R.B. Development of SiRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics 2021, 13, 1681. [Google Scholar] [CrossRef]
- van der Meel, R.; Chen, S.; Zaifman, J.; Kulkarni, J.A.; Zhang, X.R.S.; Tam, Y.K.; Bally, M.B.; Schiffelers, R.M.; Ciufolini, M.A.; Cullis, P.R.; et al. Modular Lipid Nanoparticle Platform Technology for SiRNA and Lipophilic Prodrug Delivery. Small 2021, 17, 2103025. [Google Scholar] [CrossRef]
- Sasaki, K.; Sato, Y.; Okuda, K.; Iwakawa, K.; Harashima, H. MRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy. Pharmaceutics 2022, 14, 1572. [Google Scholar] [CrossRef]
- Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mehmandoost, N.; Moazzen, F.; Mazraeh, A.; Marmari, V.; et al. Molecular Mechanisms and Biological Functions of SiRNA. Int. J. Biomed. Sci. 2017, 13, 48–57. [Google Scholar] [PubMed]
- Terada, T.; Kulkarni, J.A.; Huynh, A.; Chen, S.; van der Meel, R.; Tam, Y.Y.C.; Cullis, P.R. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Langmuir 2021, 37, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Okabe, N.; Note, Y.; Hashiba, K.; Maeki, M.; Tokeshi, M.; Harashima, H. Hydrophobic Scaffolds of PH-Sensitive Cationic Lipids Contribute to Miscibility with Phospholipids and Improve the Efficiency of Delivering Short Interfering RNA by Small-Sized Lipid Nanoparticles. Acta Biomater. 2020, 102, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; O’Neil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting Lymphatic Transport and Complement Activation in Nanoparticle Vaccines. Nat. Biotechnol. 2007, 25, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.T.; Rehor, A.; Schmoekel, H.G.; Hubbell, J.A.; Swartz, M.A. In Vivo Targeting of Dendritic Cells in Lymph Nodes with Poly(Propylene Sulfide) Nanoparticles. J. Control Release 2006, 112, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Oussoren, C.; Zuidema, J.; Crommelin, D.J.A.; Storm, G. Lymphatic Uptake and Biodistribution of Liposomes after Subcutaneous Injection.: II. Influence of Liposomal Size, Lipid Composition and Lipid Dose. Biochim. Biophys. Acta (BBA)-Biomembr. 1997, 1328, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, W.; Ren, Y.; Li, S.; Liu, M.; Xing, J.; Han, Y.; Chen, Y.; Tao, R.; Guo, L.; et al. Lipid Nanoparticle-Encapsulated VEGFa SiRNA Facilitates Cartilage Formation by Suppressing Angiogenesis. Int. J. Biol. Macromol. 2022, 221, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Jyotsana, N.; Sharma, A.; Chaturvedi, A.; Budida, R.; Scherr, M.; Kuchenbauer, F.; Lindner, R.; Noyan, F.; Sühs, K.-W.; Stangel, M.; et al. Lipid Nanoparticle Mediated SiRNA Delivery for Safe Targeting of Human CML in Vivo. Ann. Hematol. 2019, 98, 1905–1918. [Google Scholar] [CrossRef] [PubMed]
- Yathindranath, V.; Safa, N.; Sajesh, B.V.; Schwinghamer, K.; Vanan, M.I.; Bux, R.; Sitar, D.S.; Pitz, M.; Siahaan, T.J.; Miller, D.W. Spermidine/Spermine N1-Acetyltransferase 1 (SAT1)—A Potential Gene Target for Selective Sensitization of Glioblastoma Cells Using an Ionizable Lipid Nanoparticle to Deliver SiRNA. Cancers 2022, 14, 5179. [Google Scholar] [CrossRef]
- Younis, M.A.; Khalil, I.A.; Elewa, Y.H.A.; Kon, Y.; Harashima, H. Ultra-Small Lipid Nanoparticles Encapsulating Sorafenib and Midkine-SiRNA Selectively-Eradicate Sorafenib-Resistant Hepatocellular Carcinoma In Vivo. J. Control Release 2021, 331, 335–349. [Google Scholar] [CrossRef]
- Miller, J.B.; Zhang, S.; Kos, P.; Xiong, H.; Zhou, K.; Perelman, S.S.; Zhu, H.; Siegwart, D.J. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 MRNA and SgRNA. Angew. Chem. 2017, 129, 1079–1083. [Google Scholar] [CrossRef] [Green Version]
- Ayad, C.; Libeau, P.; Lacroix-Gimon, C.; Ladavière, C.; Verrier, B. LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro MRNA Transfection Compared to Liposomes. Pharmaceutics 2021, 13, 377. [Google Scholar] [CrossRef]
- Guimaraes, P.P.G.; Zhang, R.; Spektor, R.; Tan, M.; Chung, A.; Billingsley, M.M.; El-Mayta, R.; Riley, R.S.; Wang, L.; Wilson, J.M.; et al. Ionizable Lipid Nanoparticles Encapsulating Barcoded MRNA for Accelerated in Vivo Delivery Screening. J. Control Release 2019, 316, 404–417. [Google Scholar] [CrossRef]
- Hashiba, A.; Toyooka, M.; Sato, Y.; Maeki, M.; Tokeshi, M.; Harashima, H. The Use of Design of Experiments with Multiple Responses to Determine Optimal Formulations for In Vivo Hepatic MRNA Delivery. J. Control Release 2020, 327, 467–476. [Google Scholar] [CrossRef]
- Billingsley, M.M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C.H.; Mitchell, M.J. Ionizable Lipid Nanoparticle-Mediated MRNA Delivery for Human CAR T Cell Engineering. Nano Lett. 2020, 20, 1578–1589. [Google Scholar] [CrossRef]
- Riley, R.S.; Kashyap, M.V.; Billingsley, M.M.; White, B.; Alameh, M.-G.; Bose, S.K.; Zoltick, P.W.; Li, H.; Zhang, R.; Cheng, A.Y.; et al. Ionizable Lipid Nanoparticles for in Utero MRNA Delivery. Sci. Adv. 2021, 7, eaba1028. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.S.; Schlegel, A.; Maxeiner, K.; Weber, B.; Barz, M.; Schroer, M.A.; Blanchet, C.E.; Svergun, D.I.; Ramishetti, S.; Peer, D.; et al. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic MRNA Delivery. ACS Appl. Nano Mater. 2020, 3, 10634–10645. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific MRNA Delivery and CRISPR-Cas Gene Editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Han, J.P.; Kim, M.; Choi, B.S.; Lee, J.H.; Lee, G.S.; Jeong, M.; Lee, Y.; Kim, E.-A.; Oh, H.-K.; Go, N.; et al. In Vivo Delivery of CRISPR-Cas9 Using Lipid Nanoparticles Enables Antithrombin Gene Editing for Sustainable Hemophilia A and B Therapy. Sci. Adv. 2022, 8, eabj6901. [Google Scholar] [CrossRef] [PubMed]
- Mali, S. Delivery Systems for Gene Therapy. Indian J. Hum. Genet. 2013, 19, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Renzi, S.; Quagliarini, E.; Digiacomo, L.; Amenitsch, H.; Masuelli, L.; Bei, R.; Ferri, G.; Cardarelli, F.; Wang, J.; et al. Efficient Delivery of DNA Using Lipid Nanoparticles. Pharmaceutics 2022, 14, 1698. [Google Scholar] [CrossRef]
- Zukancic, D.; Suys, E.J.A.; Pilkington, E.H.; Algarni, A.; Al-Wassiti, H.; Truong, N.P. The Importance of Poly(Ethylene Glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020, 12, 1068. [Google Scholar] [CrossRef]
- Quagliarini, E.; Renzi, S.; Digiacomo, L.; Giulimondi, F.; Sartori, B.; Amenitsch, H.; Tassinari, V.; Masuelli, L.; Bei, R.; Cui, L.; et al. Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery. Pharmaceutics 2021, 13, 1292. [Google Scholar] [CrossRef]
- Santhanes, D.; Wilkins, A.; Zhang, H.; John Aitken, R.; Liang, M. Microfluidic Formulation of Lipid/Polymer Hybrid Nanoparticles for Plasmid DNA (PDNA) Delivery. Int. J. Pharm. 2022, 627, 122223. [Google Scholar] [CrossRef]
- Ripoll, M.; Martin, E.; Enot, M.; Robbe, O.; Rapisarda, C.; Nicolai, M.-C.; Deliot, A.; Tabeling, P.; Authelin, J.-R.; Nakach, M.; et al. Optimal Self-Assembly of Lipid Nanoparticles (LNP) in a Ring Micromixer. Sci. Rep. 2022, 12, 9483. [Google Scholar] [CrossRef]
- Gkionis, L.; Campbell, R.A.; Aojula, H.; Harris, L.K.; Tirella, A. Manufacturing Drug Co-Loaded Liposomal Formulations Targeting Breast Cancer: Influence of Preparative Method on Liposomes Characteristics and in Vitro Toxicity. Int. J. Pharm. 2020, 590, 119926. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, E.; Weaver, E.; Meziane, A.; Lamprou, D.A. Microfluidic Paclitaxel-Loaded Lipid Nanoparticle Formulations for Chemotherapy. Int. J. Pharm. 2022, 628, 122320. [Google Scholar] [CrossRef] [PubMed]
- García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomeh, M.A.; Mansor, M.H.; Hadianamrei, R.; Sun, W.; Zhao, X. Optimization of Large-Scale Manufacturing of Biopolymeric and Lipid Nanoparticles Using Microfluidic Swirl Mixers. Int. J. Pharm. 2022, 620, 121762. [Google Scholar] [CrossRef]
- Bai, X.; Smith, Z.L.; Wang, Y.; Butterworth, S.; Tirella, A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines 2022, 13, 1623. [Google Scholar] [CrossRef]
- Roces, C.B.; Lou, G.; Jain, N.; Abraham, S.; Thomas, A.; Halbert, G.W.; Perrie, Y. Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics. Pharmaceutics 2020, 12, 1095. [Google Scholar] [CrossRef]
- Arduino, I.; Liu, Z.; Iacobazzi, R.M.; Lopedota, A.A.; Lopalco, A.; Cutrignelli, A.; Laquintana, V.; Porcelli, L.; Azzariti, A.; Franco, M.; et al. Microfluidic Preparation and in Vitro Evaluation of IRGD-Functionalized Solid Lipid Nanoparticles for Targeted Delivery of Paclitaxel to Tumor Cells. Int. J. Pharm. 2021, 610, 121246. [Google Scholar] [CrossRef]
- Bao, Y.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Preparation of Size-Tunable Sub-200 Nm PLGA-Based Nanoparticles with a Wide Size Range Using a Microfluidic Platform. PLoS ONE 2022, 17, e0271050. [Google Scholar] [CrossRef]
- Gkionis, L.; Aojula, H.; Harris, L.K.; Tirella, A. Microfluidic-Assisted Fabrication of Phosphatidylcholine-Based Liposomes for Controlled Drug Delivery of Chemotherapeutics. Int. J. Pharm. 2021, 604, 120711. [Google Scholar] [CrossRef]
- Bahari, L.A.S.; Hamishehkar, H. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review. Adv. Pharm. Bull. 2016, 6, 143–151. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating Metastatic Cancer with Nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Arduino, I.; Liu, Z.; Rahikkala, A.; Figueiredo, P.; Correia, A.; Cutrignelli, A.; Denora, N.; Santos, H.A. Preparation of Cetyl Palmitate-Based PEGylated Solid Lipid Nanoparticles by Microfluidic Technique. Acta Biomater. 2021, 121, 566–578. [Google Scholar] [CrossRef]
- Hassett, K.J.; Higgins, J.; Woods, A.; Levy, B.; Xia, Y.; Hsiao, C.J.; Acosta, E.; Almarsson, Ö.; Moore, M.J.; Brito, L.A. Impact of Lipid Nanoparticle Size on MRNA Vaccine Immunogenicity. J. Control Release 2021, 335, 237–246. [Google Scholar] [CrossRef]
- Leung, M.H.M.; Shen, A.Q. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells. Langmuir 2018, 34, 3961–3970. [Google Scholar] [CrossRef]
- Chiesa, E.; Greco, A.; Dorati, R.; Conti, B.; Bruni, G.; Lamprou, D.; Genta, I. Microfluidic-Assisted Synthesis of Multifunctional Iodinated Contrast Agent Polymeric Nanoplatforms. Int. J. Pharm. 2021, 599, 120447. [Google Scholar] [CrossRef]
- Morikawa, Y.; Tagami, T.; Hoshikawa, A.; Ozeki, T. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Biol. Pharm. Bull. 2018, 41, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Whittaker, A.K.; Jiang, X.; Tang, R.; Li, X.; Xu, W.; Fu, C.; Smith, M.T.; Han, F.Y. Use of Microfluidics to Fabricate Bioerodable Lipid Hybrid Nanoparticles Containing Hydromorphone or Ketamine for the Relief of Intractable Pain. Pharm. Res. 2020, 37, 211. [Google Scholar] [CrossRef]
- Lee, C.Y.; Su, C.-T.; Tsai, T.; Hsieh, C.-M.; Hung, K.-Y.; Huang, J.-W.; Chen, C.-T. Formulation Development of Doxycycline-Loaded Lipid Nanocarriers Using Microfluidics by QbD Approach. J. Pharm. Sci. 2023, 112, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Tomanek, R.J.; Lotun, K.; Clark, E.B.; Suvarna, P.R.; Hu, N. VEGF and BFGF Stimulate Myocardial Vascularization in Embryonic Chick. Am. J. Physiol. 1998, 274, H1620–H1626. [Google Scholar] [CrossRef]
- Omidi, M.; Hashemi, M.; Tayebi, L. Microfluidic Synthesis of PLGA/Carbon Quantum Dot Microspheres for Vascular Endothelial Growth Factor Delivery. RSC Adv. 2019, 9, 33246–33256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Saux, S.; Aubert-Pouëssel, A.; Mohamed, K.E.; Martineau, P.; Guglielmi, L.; Devoisselle, J.-M.; Legrand, P.; Chopineau, J.; Morille, M. Interest of Extracellular Vesicles in Regards to Lipid Nanoparticle Based Systems for Intracellular Protein Delivery. Adv. Drug Deliv. Rev. 2021, 176, 113837. [Google Scholar] [CrossRef] [PubMed]
- Han, F.Y.; Whittaker, A.; Howdle, S.M.; Naylor, A.; Shabir-Ahmed, A.; Smith, M.T. Sustained-Release Hydromorphone Microparticles Produced by Supercritical Fluid Polymer Encapsulation. J. Pharm. Sci. 2019, 108, 811–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein Based Nanostructures for Drug Delivery. J. Pharm. 2018, 2018, e9285854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavington, S.; Watts, A. Lipid Nanoparticle Technologies for the Study of G Protein-Coupled Receptors in Lipid Environments. Biophys. Rev. 2020, 12, 1287–1302. [Google Scholar] [CrossRef]
- Fix, J.A. Oral Controlled Release Technology for Peptides: Status and Future Prospects. Pharm. Res. 1996, 13, 1760–1764. [Google Scholar] [CrossRef]
- Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Charmet, J.; Arosio, P.; Knowles, T.P.J. Microfluidics for Protein Biophysics. J. Mol. Biol. 2018, 430, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Arter, W.E.; Levin, A.; Krainer, G.; Knowles, T.P.J. Microfluidic Approaches for the Analysis of Protein–Protein Interactions in Solution. Biophys. Rev. 2020, 12, 575–585. [Google Scholar] [CrossRef]
- Webb, C.; Forbes, N.; Roces, C.B.; Anderluzzi, G.; Lou, G.; Abraham, S.; Ingalls, L.; Marshall, K.; Leaver, T.J.; Watts, J.A.; et al. Using Microfluidics for Scalable Manufacturing of Nanomedicines from Bench to GMP: A Case Study Using Protein-Loaded Liposomes. Int. J. Pharm. 2020, 582, 119266. [Google Scholar] [CrossRef]
- Yobas, L.; Martens, S.; Ong, W.-L.; Ranganathan, N. High-Performance Flow-Focusing Geometry for Spontaneous Generation of Monodispersed Droplets. Lab. Chip. 2006, 6, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Deng, S.; You, Y.; Chan, H.F. The Role of Microfluidics in Protein Formulations with Pre-Programmed Functional Characteristics. BTT 2018, 12, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Arnon, Z.A.; Gilead, S.; Gazit, E. Microfluidics for Real-Time Direct Monitoring of Self- and Co-Assembly Biomolecular Processes. Nanotechnology 2019, 30, 102001. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.H.; Tay, J.J.J. Advancement of Peptide Nanobiotechnology via Emerging Microfluidic Technology. Micromachines 2019, 10, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, N.; Hussain, M.T.; Briuglia, M.L.; Edwards, D.P.; Ter Horst, J.H.; Szita, N.; Perrie, Y. Rapid and Scale-Independent Microfluidic Manufacture of Liposomes Entrapping Protein Incorporating in-Line Purification and at-Line Size Monitoring. Int. J. Pharm. 2019, 556, 68–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, E.; O’Connor, E.; Cole, D.K.; Hooker, A.; Uddin, S.; Lamprou, D.A. Microfluidic-Mediated Self-Assembly of Phospholipids for the Delivery of Biologic Molecules. Int. J. Pharm. 2022, 611, 121347. [Google Scholar] [CrossRef] [PubMed]
- Song, K.C.; Lee, H.S.; Choung, I.Y.; Cho, K.I.; Ahn, Y.; Choi, E.J. The Effect of Type of Organic Phase Solvents on the Particle Size of Poly(d,l-Lactide-Co-Glycolide) Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 162–167. [Google Scholar] [CrossRef]
- Colletier, J.-P.; Chaize, B.; Winterhalter, M.; Fournier, D. Protein Encapsulation in Liposomes: Efficiency Depends on Interactions between Protein and Phospholipid Bilayer. BMC Biotechnol. 2002, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Ramjee, M.K.; Patel, S. Continuous-Flow Injection Microfluidic Thrombin Assays: The Effect of Binding Kinetics on Observed Enzyme Inhibition. Anal. Biochem. 2017, 528, 38–46. [Google Scholar] [CrossRef]
Abbreviation | Definition |
---|---|
Cationic Lipids | |
C12-200 | 1,1′-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethyl)azanediyl)bis(dodecan-2-ol) (pKa 7) |
CL | Cationic Lipid |
DOTAP | 1,2-dioleoyl-3-trimethylammonium-propane (pKa 7.8) |
Ionizable Cationic Lipids | |
CL4 lipids | Ionizable cationic lipids, pKa ~6.3 |
CL7 lipids | Ionizable cationic lipids, pKa ~5.9 |
CL15 lipids | Ionizable cationic lipids, pKa ~7.3 |
DLin-MC3-DMA | Dilinoleylmethyl-4-dimethylaminobutyrate (pKa 6.4) |
DODAP | 1,2-dioleoyl-3-dimethylammonium-propane (pKa < 7) |
YSK05 | 1-methyl-4,4-bis(((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)piperidine (pKa 6.5) |
Anionic Lipids | |
DOPA | 1,2-dioleoyl-sn-glycero-3-phosphate |
EPG | Egg phosphatidylglycerol |
Neutral Lipids | |
DMPC | Dimyristoylphosphatidylcholine |
DOPC | 1,2-dioleoyl-sn-glycero-3-phosphocholine |
DOPE | 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine |
DPPC | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine |
DSPC | 1,2-Distearoyl-sn-glycero-3-phosphocholine |
HSPC | Hydrogenated soybean phoshatidylcholine |
PC | Phosphatidylcholine |
Stabilizing Agents and Lipids | |
Chol | Cholesterol |
DMG-mPEG 2000 | 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 |
DSPE-PEG 2000 Amine | 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] |
ESM | Egg sphingomyelin |
PEG | Polyethylene glycol |
Composition | TFR (mL/min) | FRR (aq/org) | Mixer | Cargo | EE (%) | Particle Size (nm) | PDI | Zeta Potential (mV) | Administration Route | Reference |
---|---|---|---|---|---|---|---|---|---|---|
DOTAP/Dc-Chol/DOPE/DOPC (25/25/25/25 mol%) | 2 | 3 | NanoAssemblr Benchtop | pVAX-hECTM | >60 | 120 | 0.12 | - | - | [57] |
DLin-MC3-DMA/DSPC/Chol/Tween20 (52/8/37/3 mol%) | 8 | - | SHM | pNL1.1CMV | ~50 | ~160 | <0.2 | ~−10.7 | IM | [58] |
DLin-MC3/DOPC/Chol/PEG-lipid (50/10/38.5/1.5 mol%) | 4 | 3 | NanoAssemblr Benchtop | gWiz-GFP plasmid | ~80 | ~100 | 0.07 | −13 | - | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogelaar, A.; Marcotte, S.; Cheng, J.; Oluoch, B.; Zaro, J. Use of Microfluidics to Prepare Lipid-Based Nanocarriers. Pharmaceutics 2023, 15, 1053. https://doi.org/10.3390/pharmaceutics15041053
Vogelaar A, Marcotte S, Cheng J, Oluoch B, Zaro J. Use of Microfluidics to Prepare Lipid-Based Nanocarriers. Pharmaceutics. 2023; 15(4):1053. https://doi.org/10.3390/pharmaceutics15041053
Chicago/Turabian StyleVogelaar, Alicia, Samantha Marcotte, Jiaqi Cheng, Benazir Oluoch, and Jennica Zaro. 2023. "Use of Microfluidics to Prepare Lipid-Based Nanocarriers" Pharmaceutics 15, no. 4: 1053. https://doi.org/10.3390/pharmaceutics15041053
APA StyleVogelaar, A., Marcotte, S., Cheng, J., Oluoch, B., & Zaro, J. (2023). Use of Microfluidics to Prepare Lipid-Based Nanocarriers. Pharmaceutics, 15(4), 1053. https://doi.org/10.3390/pharmaceutics15041053