Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications
Abstract
:1. Introduction
2. Skin Anatomy and Drug Penetration Pathways/Routes
2.1. Anatomy and Functions of the Skin
2.2. Pathways for Skin Penetration
2.2.1. The Shunt Route
2.2.2. Intracellular Route
2.2.3. Intercellular Route
3. Lipid Nanosystems Utilized in Skin Delivery
3.1. Classification of Lipid Nanosystems
3.1.1. Particulate Carrier Systems
Nanoemulsions
Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
Lipid Nanocapsules (LNCs)
3.1.2. Vesicular Carrier Systems
Conventional Liposomes
Ultradeformable Vesicles and Advanced Liposomal Systems
Three Dimensionally Organised Lipid Systems
3.2. Factors Affecting Skin Penetration of Nanoparticles
3.2.1. Size
3.2.2. Shape
3.2.3. Surface Chemistry
Surface Charge
Hydrophilicity and Hydrophobicity
3.2.4. Material Attributes
Oil
Solid Lipid
Non-Ionic Surfactant
Phospholipids
4. Methods for Assessing the Transdermal Flux of Nanoparticles
4.1. In Vitro Methods
4.1.1. Diffusion Cells
4.1.2. Franz Diffusion Cell
4.1.3. Side-By-Side Diffusion Cell
4.1.4. Jacketed Franz Diffusion Cell
4.2. In Vivo Methods
4.3. Ex Vivo Methods
4.3.1. Tape Stripping Method
4.3.2. Confocal Raman Spectroscopy
4.3.3. Confocal Laser Scanning Microscopy
4.3.4. Fluorescence Lifetime Imaging Microscopy (FLIM)
5. Application of Lipid Nanosystems for Skin Delivery Clinical Application of Lipid Nanosystems for Skin Delivery
5.1. Topical Drug Delivery
5.1.1. Infectious Diseases
5.1.2. Inflammatory Diseases
5.1.3. Anti-Aging and Cosmetics
5.2. Transdermal Delivery
5.2.1. Transdermal Delivery of Small Molecules
5.2.2. Transdermal Delivery of Peptides and Proteins
5.2.3. Transcutaneous Immunisation
5.3. Gene Delivery
6. Regulatory Aspects
7. Future Prospects
7.1. Stimuli Responsive Nanocomposite Gels
7.2. Ionic Liquids
7.3. Deep Eutectic Solvents
7.4. Nanofiber Technology
7.5. Microneedle Technology
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sainaga Jyothi, V.G.S.; Ghouse, S.M.; Khatri, D.K.; Nanduri, S.; Singh, S.B.; Madan, J. Lipid Nanoparticles in Topical Dermal Drug Delivery: Does Chemistry of Lipid Persuade Skin Penetration? J. Drug Deliv. Sci. Technol. 2022, 69, 103176. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, S.K.; Ahn, S.K. An Update of the Defensive Barrier Function of Skin. Yonsei Med. J. 2006, 47, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and Opportunities in Dermal/Transdermal Delivery. Ther. Deliv. 2010, 1, 109. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.D.; Gutierrez, M.; Flynn, G.L.; Cleary, G.W. Controlled Transdermal Delivery of Fentanyl: Characterizations of Pressure-Sensitive Adhesives for Matrix Patch Design. J. Pharm. Sci. 1996, 85, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Patel, N.; Madan, P.; Lin, S. Quality by Design Approach for Formulation, Evaluation and Statistical Optimization of Diclofenac-Loaded Ethosomes via Transdermal Route. Pharm. Dev. Technol. 2015, 20, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current Status and Future Potential of Transdermal Drug Delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. [Google Scholar] [CrossRef]
- Thomas, B.J.; Finnin, B.C. The Transdermal Revolution. Drug Discov. Today 2004, 9, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, V.; Yadav, P. Transdermal Drug Delivery System: An Overview. Asian J. Pharm. 2012, 6, 161–170. [Google Scholar] [CrossRef]
- Global Cosmetic Skin Care Industry. Available online: https://www.globenewswire.com/news-release/2020/09/25/2099275/0/en/Global-Cosmetic-Skin-Care-Industry-2020-to-2027-Market-Trajectory-Analytics.html (accessed on 24 May 2022).
- Patel, N.; Jain, S.; Lin, S. Transdermal Iontophoretic Delivery of Tacrine Hydrochloride: Correlation between in Vitro Permeation and in Vivo Performance in Rats. Int. J. Pharm. 2016, 513, 393–403. [Google Scholar] [CrossRef]
- Pyatski, Y.; Zhang, Q.; Mendelsohn, R.; Flach, C.R. Effects of Permeation Enhancers on Flufenamic Acid Delivery in Ex Vivo Human Skin by Confocal Raman Microscopy. Int. J. Pharm. 2016, 505, 319–328. [Google Scholar] [CrossRef]
- Kim, Y.C.; Lee, S.H.; Choi, W.H.; Choi, H.J.; Goo, T.W.; Lee, J.H.; Quan, F.S. Microneedle Delivery of Trivalent Influenza Vaccine to the Skin Induces Long-Term Cross-Protection. J. Drug Target. 2016, 24, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Jain, S.; Madan, P.; Lin, S. Application of Design of Experiments for Formulation Development and Mechanistic Evaluation of Iontophoretic Tacrine Hydrochloride Delivery. Drug Dev. Ind. Pharm. 2016, 42, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Jain, S.; Madan, P.; Lin, S. Influence of Electronic and Formulation Variables on Transdermal Iontophoresis of Tacrine Hydrochloride. Pharm. Dev. Technol. 2015, 20, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhai, G. Advances in Lipid-Based Colloid Systems as Drug Carrier for Topic Delivery. J. Control. Release 2014, 193, 90–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric Nanoparticles-Based Topical Delivery Systems for the Treatment of Dermatological Diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on Metal Nanoparticles as Nanocarriers: Current Challenges and Perspectives in Drug Delivery Systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef] [PubMed]
- Pireddu, R.; Caddeo, C.; Valenti, D.; Marongiu, F.; Scano, A.; Ennas, G.; Lai, F.; Fadda, A.M.; Sinico, C. Diclofenac Acid Nanocrystals as an Effective Strategy to Reduce in Vivo Skin Inflammation by Improving Dermal Drug Bioavailability. Colloids Surf. B Biointerfaces 2016, 143, 64–70. [Google Scholar] [CrossRef]
- Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-Based Nanosponges as Drug Carriers. Beilstein J. Org. Chem. 2012, 8, 2091–2099. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharmaceutical Dermal Products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Irby, D.; Du, C.; Li, F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017, 14, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-Based Nanoparticles for Drug Delivery Systems. In Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 47–76. ISBN 9780128140321. [Google Scholar]
- Manjunath, K.; Ready, J.S.; Venkateswarlu, V. Solid Lipid Nanoparticles as Drug Delivery Systems. Methods Find. Exp. Clin. Pharm. 2005, 27, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Maibach, H.I. Effects of Skin Occlusion on Percutaneous Absorption: An Overview. Skin Pharmacol Appl Skin Physiol 2001, 14, 1–10. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. Cosmetic Applications for Solid Lipid Nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 2002, 54, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and Biomedical Applications of Lipid-Based Nanocarriers. Pharm. Pat. Anal. 2014, 3, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Dehdashtian, A.; Stringer, T.P.; Warren, A.J.; Mu, E.W.; Amirlak, B.; Shahabi, L. Anatomy and Physiology of the Skin. In Melanoma: A Modern Multidisciplinary Approach; Springer: Cham, Switzerland, 2018; pp. 15–26. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Hargest, R. Surgical Anatomy of the Skin. Surgery 2022, 40, 1–7. [Google Scholar] [CrossRef]
- Weston, W.L.; Lane, A.T.; Morelli, J.G. Structure and Function of the Skin. In Color Textbook of Pediatric Dermatology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–9. [Google Scholar] [CrossRef]
- Honari, G.; Maibach, H. Skin Structure and Function. In Applied Dermatotoxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Sullivan, J.V.; Myers, S. Skin Structure and Function, Wound Healing and Scarring. In Plastic Surgery—Principles and Practice; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Kabashima, K.; Honda, T.; Ginhoux, F.; Egawa, G. The Immunological Anatomy of the Skin. Nat. Rev. Immunol. 2018, 19, 19–30. [Google Scholar] [CrossRef]
- Kishibe, M. Physiological and Pathological Roles of Kallikrein-Related Peptidases in the Epidermis. J. Dermatol. Sci. 2019, 95, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Calcutt, J.J.; Roberts, M.S.; Anissimov, Y.G. Modeling Drug Transport within the Viable Skin—A Review. Expert Opin. Drug Metab. Toxicol. 2020, 17, 105–119. [Google Scholar] [CrossRef]
- Monteiro-Riviere, N.A. Comparative Anatomy, Physiology, and Biochemistry of Mammalian Skin. Dermal. Ocul. Toxicol. 2020, 3–71. [Google Scholar] [CrossRef]
- Arda, O.; Göksügür, N.; Tüzün, Y. Basic Histological Structure and Functions of Facial Skin. Clin. Dermatol. 2014, 32, 3–13. [Google Scholar] [CrossRef]
- Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, Skin (Integument); StatPearls: Tampa, FL, USA, 2021. [Google Scholar]
- Panteli´c, I.P.; Bolzinger, M.A.; Rahma, A.; Lane, M.E. Skin Barrier Function in Infants: Update and Outlook. Pharmaceutics 2022, 14, 433. [Google Scholar] [CrossRef]
- Patzelt, A.; Lademann, J. Drug Delivery to Hair Follicles. Expert Opin. Drug Deliv. 2013, 10, 787–797. [Google Scholar] [CrossRef]
- Knorr, F.; Lademann, J.; Patzelt, A.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Follicular Transport Route—Research Progress and Future Perspectives. Eur. J. Pharm. Biopharm. 2009, 71, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Sahle, F.F.; Giulbudagian, M.; Bergueiro, J.; Lademann, J.; Calderón, M. Dendritic Polyglycerol and N-Isopropylacrylamide Based Thermoresponsive Nanogels as Smart Carriers for Controlled Delivery of Drugs through the Hair Follicle. Nanoscale 2017, 9, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Yazdani-Arazi, S.N.; Ghanbarzadeh, S.; Adibkia, K.; Kouhsoltani, M.; Hamishehkar, H. Histological Evaluation of Follicular Delivery of Arginine via Nanostructured Lipid Carriers: A Novel Potential Approach for the Treatment of Alopecia. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1379–1387. [Google Scholar] [CrossRef]
- Lademann, J.; Richter, H.; Schaefer, U.F.; Blume-Peytavi, U.; Teichmann, A.; Otberg, N.; Sterry, W. Hair Follicles—A Long-Term Reservoir for Drug Delivery. Ski. Pharmacol. Physiol. 2006, 19, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiß, B.; Schaefer, U.F.; Lehr, C.M.; Wepf, R.; et al. Nanoparticles--an Efficient Carrier for Drug Delivery into the Hair Follicles. Eur. J. Pharm. Biopharm. 2007, 66, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.; Dagan, A.; Elia, J.; Merims, S.; Benny, O. Physical Properties of Gold Nanoparticles Affect Skin Penetration via Hair Follicles. Nanomedicine 2021, 36, 102414. [Google Scholar] [CrossRef]
- Vogt, A.; Mandt, N.; Lademann, J.; Schaefer, H.; Blume-Peytavi, U. Follicular Targeting—A Promising Tool in Selective Dermatotherapy. J. Investig. Dermatol. Symp. Proc. 2005, 10, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Patzelt, A.; Richter, H.; Knorr, F.; Schäfer, U.; Lehr, C.M.; Dähne, L.; Sterry, W.; Lademann, J. Selective Follicular Targeting by Modification of the Particle Sizes. J. Control. Release 2011, 150, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Radtke, M.; Patzelt, A.; Knorr, F.; Lademann, J.; Netz, R.R. Ratchet Effect for Nanoparticle Transport in Hair Follicles. Eur. J. Pharm. Biopharm. 2017, 116, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Wani, T.U.; Mohi-ud-Din, R.; Majeed, A.; Kawoosa, S.; Pottoo, F.H. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr. Pharm. Des. 2020, 26, 4601–4614. [Google Scholar] [CrossRef] [PubMed]
- Supe, S.; Takudage, P. Methods for Evaluating Penetration of Drug into the Skin: A Review. Ski. Res. Technol. 2021, 27, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M.; Friend, D.S. The Permeability Barrier in Mammalian Epidermis. J. Cell Biol. 1975, 65, 180–191. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Skin Penetration of Nanoparticles. In Emerging Nanotechnologies in Immunology: The Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–88. [Google Scholar] [CrossRef]
- Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid Nanocarriers as Skin Drug Delivery Systems: Properties, Mechanisms of Skin Interactions and Medical Applications. Int. J. Pharm. 2018, 535, 1–17. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Mitragotri, S. Devices for Overcoming Biological Barriers: The Use of Physical Forces to Disrupt the Barriers. Adv. Drug Deliv. Rev. 2013, 65, 100–103. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed. Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Carter, P.; Narasimhan, B.; Wang, Q. Biocompatible Nanoparticles and Vesicular Systems in Transdermal Drug Delivery for Various Skin Diseases. Int. J. Pharm. 2019, 555, 49–62. [Google Scholar] [CrossRef]
- Nelson, A.O.; Patrick, O.O.; Ndidi, C.N. Nanostructures for Drug Delivery. Trop. J. Pharm. Res. 2009, 8, 275–287. [Google Scholar]
- Witika, B.A.; Mweetwa, L.L.; Tshiamo, K.O.; Edler, K.; Matafwali, S.K.; Ntemi, P.V.; Chikukwa, M.T.R.; Makoni, P.A. Vesicular Drug Delivery for the Treatment of Topical Disorders: Current and Future Perspectives. J. Pharm. Pharmacol. 2021, 73, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, C.; Ma, K. Nanovesicles for Transdermal Drug Delivery. Applications of Nanovesicular Drug Delivery; Academic Press: Cambridge, MA, USA, 2022; pp. 103–114. [Google Scholar] [CrossRef]
- Shah, M.R.; Imran, M.; Ullah, S. Transdermal Drug Delivery Nanocarriers for Improved Treatment of Skin Diseases. In Nanocarriers for Organ-Specific and Localized Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780128210932. [Google Scholar]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Rigano, L.; Lionetti, N. Chapter 6—Nanobiomaterials in Galenic Formulations and Cosmetics. In Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 121–148. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Tsai, M.J.; Fu, Y.S.; Lin, Y.H.; Huang, Y.B.; Wu, P.C. The Effect of Nanoemulsion as a Carrier of Hydrophilic Compound for Transdermal Delivery. PLoS ONE 2014, 9, e102850. [Google Scholar] [CrossRef] [Green Version]
- Schmidts, T.; Dobler, D.; Schlupp, P.; Nissing, C.; Garn, H.; Runkel, F. Development of Multiple W/O/W Emulsions as Dermal Carrier System for Oligonucleotides: Effect of Additives on Emulsion Stability. Int. J. Pharm. 2010, 398, 107–113. [Google Scholar] [CrossRef]
- Ledet, G.; Pamujula, S.; Walker, V.; Simon, S.; Graves, R.; Mandal, T.K. Development and in Vitro Evaluation of a Nanoemulsion for Transcutaneous Delivery. Drug Dev. Ind. Pharm. 2014, 40, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Real, D.A.; Hoffmann, S.; Leonardi, D.; Goycoolea, F.M.; Salomon, C.J. A Quality by Design Approach for Optimization of Lecithin/Span® 80 Based Nanoemulsions Loaded with Hydrophobic Drugs. J. Mol. Liq. 2021, 321, 114743. [Google Scholar] [CrossRef]
- Adena, S.K.R.; Herneisey, M.; Pierce, E.; Hartmeier, P.R.; Adlakha, S.; Hosfeld, M.A.I.; Drennen, J.K.; Janjic, J.M. Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion. Pharmaceutics 2021, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- Shaker, D.S.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019, 87, 17. [Google Scholar] [CrossRef] [Green Version]
- Jepps, O.G.; Dancik, Y.; Anissimov, Y.G.; Roberts, M.S. Modeling the Human Skin Barrier - Towards a Better Understanding of Dermal Absorption. Adv. Drug Deliv. Rev. 2013, 65, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y. Bin Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef] [PubMed]
- Geszke-Moritz, M.; Moritz, M. Solid Lipid Nanoparticles as Attractive Drug Vehicles: Composition, Properties and Therapeutic Strategies. Mater. Sci. Eng. C 2016, 68, 982–994. [Google Scholar] [CrossRef]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; Bee, P.C.; Chin, E.; Teh, A.K.H.; et al. Overview of Materials for Microfluidic Applications; IntechOpen: London, UK, 2016; Volume 11, p. 13. [Google Scholar]
- Mirchandani, Y.; Patravale, V.B.; Brijesh, S. Solid Lipid Nanoparticles for Hydrophilic Drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef]
- Ilangala, A. Design, Development and Optimization of Topotecan Hydrochloride Solid Lipid Nanoparticles for Oral Chemotherapy. J. Nanomed. Res. 2016, 3, 00044. [Google Scholar] [CrossRef]
- Zagalo, D.M.; Silva, B.M.A.; Silva, C.; Simões, S.; Sousa, J.J. A Quality by Design (QbD) Approach in Pharmaceutical Development of Lipid-Based Nanosystems: A Systematic Review. J. Drug Deliv. Sci. Technol. 2022, 70, 103207. [Google Scholar] [CrossRef]
- Souto, E.B.; Müller, R.H. Cosmetic Features and Applications of Lipid Nanoparticles (SLN®, NLC®). Int. J. Cosmet. Sci. 2008, 30, 157–165. [Google Scholar] [CrossRef]
- Apostolou, M.; Assi, S.; Fatokun, A.A.; Khan, I. The Effects of Solid and Liquid Lipids on the Physicochemical Properties of Nanostructured Lipid Carriers. J. Pharm. Sci. 2021, 110, 2859–2872. [Google Scholar] [CrossRef]
- Wiemann, S.; Keck, C.M. Are Lipid Nanoparticles Really Superior? A Holistic Proof of Concept Study. Drug Deliv. Transl. Res. 2022, 12, 1433–1444. [Google Scholar] [CrossRef]
- Dubey, S.; Sharma, R.; Mody, N.; Vyas, S.P. Novel Carriers and Approaches: Insight for Psoriasis Management. In Nanostructures for Novel Therapy: Synthesis, Characterization and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 657–684. [Google Scholar] [CrossRef]
- Bibi, N.; Ahmed, N.; Khan, G.M. Nanostructures in Transdermal Drug Delivery Systems. In Nanostructures for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 639–668. [Google Scholar] [CrossRef]
- Dabholkar, N.; Waghule, T.; Krishna Rapalli, V.; Gorantla, S.; Alexander, A.; Narayan Saha, R.; Singhvi, G. Lipid Shell Lipid Nanocapsules as Smart Generation Lipid Nanocarriers. J. Mol. Liq. 2021, 339, 117145. [Google Scholar] [CrossRef]
- Kalvodová, A.; Zbytovská, J. Lipid Nanocapsules Enhance the Transdermal Delivery of Drugs Regardless of Their Physico-Chemical Properties. Int. J. Pharm. 2022, 628, 122264. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Yang, X.; Zhao, L.; Wang, Z.; Zhai, G. Lipid Nanocapsules for Transdermal Delivery of Ropivacaine: In Vitro and in Vivo Evaluation. Int. J. Pharm. 2014, 471, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef] [PubMed]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef] [PubMed]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, C.; Wang, C.; Jankovic, K.E.; Dong, Y. Lipids and Lipid Derivatives for RNA Delivery. Chem. Rev. 2021, 121, 12181–12277. [Google Scholar] [CrossRef]
- Tanaka, H.; Sakurai, Y.; Akita, H. Lipid Nanoparticles for MRNA Delivery. Drug Deliv. Syst. 2022, 37, 237–246. [Google Scholar] [CrossRef]
- Rietwyk, S.; Peer, D. Next-Generation Lipids in RNA Interference Therapeutics. ACS Nano 2017, 11, 7572–7586. [Google Scholar] [CrossRef]
- Antoniou, A.I.; Giofrè, S.; Seneci, P.; Passarella, D.; Pellegrino, S. Stimulus-Responsive Liposomes for Biomedical Applications. Drug Discov. Today 2021, 26, 1794–1824. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and Innovation in the Manufacturing Process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Sakdiset, P.; Okada, A.; Todo, H.; Sugibayashi, K. Selection of Phospholipids to Design Liposome Preparations with High Skin Penetration-Enhancing Effects. J. Drug Deliv. Sci. Technol. 2018, 44, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Tambe, V.S.; Nautiyal, A.; Wairkar, S. Topical Lipid Nanocarriers for Management of Psoriasis-an Overview. J. Drug Deliv. Sci. Technol. 2021, 64, 102671. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Shen, L.N.; Wu, Z.H.; Zhao, J.H.; Feng, N.P. Comparison of Ethosomes and Liposomes for Skin Delivery of Psoralen for Psoriasis Therapy. Int. J. Pharm. 2014, 471, 449–452. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and Skin: From Drug Delivery to Model Membranes. Eur. J. Pharm. Sci. 2008, 34, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, Z.; Wu, Y.; Wu, H.; Chen, T.; Xue, Y.; Wang, Y.; Jiang, C.; Shen, C.; Liu, L.; et al. Mechanisms of Penetration Enhancement and Transport Utilizing Skin Keratine Liposomes for the Topical Delivery of Licochalcone A. Molecules 2022, 27, 2504. [Google Scholar] [CrossRef]
- Subongkot, T.; Pamornpathomkul, B.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Investigation of the Mechanism of Enhanced Skin Penetration by Ultradeformable Liposomes. Int. J. Nanomed. 2014, 9, 3539–3550. [Google Scholar] [CrossRef] [Green Version]
- Bakonyi, M.; Gácsi, A.; Berkó, S.; Kovács, A.; Csányi, E. Stratum Corneum Lipid Liposomes for Investigating Skin Penetration Enhancer Effects. RSC Adv. 2018, 8, 27464–27469. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, D.A.; Vasilieva, E.A.; Kuznetsov, D.M.; Lenina, O.A.; Filippov, S.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Enhancement of the Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Using Liposomes Containing Cationic Surfactants. ACS Omega 2022, 7, 25741–25750. [Google Scholar] [CrossRef]
- Abd, E.; Roberts, M.S.; Grice, J.E. A Comparison of the Penetration and Permeation of Caffeine into and through Human Epidermis after Application in Various Vesicle Formulations. Ski. Pharmacol. Physiol. 2016, 29, 24–30. [Google Scholar] [CrossRef]
- Badran, M.; Shalaby, K.; Al-Omrani, A. Influence of the Flexible Liposomes on the Skin Deposition of a Hydrophilic Model Drug, Carboxyfluorescein: Dependency on Their Composition. Sci. World J. 2012, 2012, 134876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta, M.F.; Guzmán, M.L.; Pérez, A.P.; Apezteguia, G.A.; Fórmica, M.L.; Romero, E.L.; Olivera, M.E.; Carrer, D.C. Liposomes Can Both Enhance or Reduce Drugs Penetration through the Skin. Sci. Rep. 2018, 8, 13253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillet, A.; Lecomte, F.; Hubert, P.; Ducat, E.; Evrard, B.; Piel, G. Skin Penetration Behaviour of Liposomes as a Function of Their Composition. Eur. J. Pharm. Biopharm. 2011, 79, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as Nanocarriers for Drugs across the Skin: Quality by Design from Lab to Industrial Scale. Int. J. Pharm. 2020, 573, 118817. [Google Scholar] [CrossRef]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming Skin Barriers through Advanced Transdermal Drug Delivery Approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Rajan, R.; Vasudevan, D.; Biju Mukund, V.; Jose, S. Transferosomes - A Vesicular Transdermal Delivery System for Enhanced Drug Permeation. J. Adv. Pharm. Technol. Res. 2011, 2, 138. [Google Scholar] [CrossRef]
- Das, B.; Nayak, A.K.; Mallick, S. Transferosomes: A Novel Nanovesicular Approach for Drug Delivery. In Systems of Nanovesicular Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 103–114. [Google Scholar] [CrossRef]
- Cevc, G.; Blume, G. Lipid Vesicles Penetrate into Intact Skin Owing to the Transdermal Osmotic Gradients and Hydration Force. Biochim. Biophys. Acta (BBA) Biomembr. 1992, 1104, 226–232. [Google Scholar] [CrossRef]
- Deng, P.; Athary Abdulhaleem, M.F.; Masoud, R.E.; Alamoudi, W.M.; Zakaria, M.Y. Employment of PEGylated Ultra-Deformable Transferosomes for Transdermal Delivery of Tapentadol with Boosted Bioavailability and Analgesic Activity in Post-Surgical Pain. Int. J. Pharm. 2022, 628, 122274. [Google Scholar] [CrossRef]
- Balata, G.F.; Faisal, M.M.; Elghamry, H.A.; Sabry, S.A. Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 101921. [Google Scholar] [CrossRef]
- Gupta, A.; Aggarwal, G.; Singla, S.; Arora, R. Transfersomes: A Novel Vesicular Carrier for Enhanced Transdermal Delivery of Sertraline: Development, Characterization, and Performance Evaluation. Sci. Pharm. 2012, 80, 1061–1080. [Google Scholar] [CrossRef] [Green Version]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, Optimization and Evaluation of Transferosomal Gel for Transdermal Insulin Delivery. Saudi Pharm. J. 2012, 20, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkanth, S.; Anitha, P.; Gayathri, R.; Mohan, S.; Babu, D. Formulation and Design Optimization of Nano-Transferosomes Using Pioglitazone and Eprosartan Mesylate for Concomitant Therapy against Diabetes and Hypertension. Eur. J. Pharm. Sci. 2021, 162, 105811. [Google Scholar] [CrossRef]
- Maji, R.; Omolo, C.A.; Jaglal, Y.; Singh, S.; Devnarain, N.; Mocktar, C.; Govender, T. A Transferosome-Loaded Bigel for Enhanced Transdermal Delivery and Antibacterial Activity of Vancomycin Hydrochloride. Int. J. Pharm. 2021, 607, 120990. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef]
- Bellefroid, C.; Lechanteur, A.; Evrard, B.; Mottet, D.; Debacq-Chainiaux, F.; Piel, G. In Vitro Skin Penetration Enhancement Techniques: A Combined Approach of Ethosomes and Microneedles. Int. J. Pharm. 2019, 572, 118793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ng, W.; Hu, J.; Mussa, S.S.; Ge, Y.; Xu, H. Formulation and in Vitro Stability Evaluation of Ethosomal Carbomer Hydrogel for Transdermal Vaccine Delivery. Colloids Surf. B Biointerfaces 2018, 163, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Pathak, K. Therapeutic and Cosmeceutical Potential of Ethosomes: An Overview. J. Adv. Pharm. Technol. Res. 2010, 1, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, A.; Kumar, M.; Bharti, K.; Mishra, B. Glycerosomes: A New Tool for Effective Drug Delivery. In Systems of Nanovesicular Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 277–291. [Google Scholar] [CrossRef]
- Manca, M.L.; Manconi, M.; Zaru, M.; Valenti, D.; Peris, J.E.; Matricardi, P.; Maccioni, A.M.; Fadda, A.M. Glycerosomes: Investigation of Role of 1,2-Dimyristoyl-Sn-Glycero-3-Phosphatidycholine (DMPC) on the Assembling and Skin Delivery Performances. Int. J. Pharm. 2017, 532, 401–407. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M. Preparation and Optimization of Fisetin Loaded Glycerol Based Soft Nanovesicles by Box-Behnken Design. Int. J. Pharm. 2020, 578, 119125. [Google Scholar] [CrossRef]
- Younes, N.F.; Habib, B.A. Augmented Local Skin Accumulation Efficiency of Sertaconazole Nitrate via Glycerosomal Hydrogel: Formulation, Statistical Optimization, Ex Vivo Performance and in Vivo Penetration. J. Drug Deliv. Sci. Technol. 2022, 72, 103364. [Google Scholar] [CrossRef]
- Manca, M.L.; Cencetti, C.; Matricardi, P.; Castangia, I.; Zaru, M.; Sales, O.D.; Nacher, A.; Valenti, D.; Maccioni, A.M.; Fadda, A.M.; et al. Glycerosomes: Use of Hydrogenated Soy Phosphatidylcholine Mixture and Its Effect on Vesicle Features and Diclofenac Skin Penetration. Int. J. Pharm. 2016, 511, 198–204. [Google Scholar] [CrossRef]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Invasomes: Potential Vesicular Systems for Transdermal Delivery of Drug Molecules. J. Drug Deliv. Sci. Technol. 2021, 61, 102166. [Google Scholar] [CrossRef]
- Gustafsson, J.; Ljusberg-Wahren, H.; Almgren, M.; Larsson, K. Submicron Particles of Reversed Lipid Phases in Water Stabilized by a Nonionic Amphiphilic Polymer. Langmuir 1997, 13, 6964–6971. [Google Scholar] [CrossRef]
- Abourehab, M.A.S.; Ansari, M.J.; Singh, A.; Hassan, A.; Abdelgawad, M.A.; Shrivastav, P.; Abualsoud, B.M.; Amaral, L.S.; Pramanik, S. Cubosomes as an Emerging Platform for Drug Delivery: A Review of the State of the Art. J. Mater. Chem B. 2022, 10, 2781–2819. [Google Scholar] [CrossRef]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable Drug Delivery Potential. Drug Discov. Today 2016, 21, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Sanjana, A.; Ahmed, M.G.; Gowda, J.B.H. Development and Evaluation of Dexamethasone Loaded Cubosomes for the Treatment of Vitiligo. Mater. Today Proc. 2021, 50, 197–205. [Google Scholar] [CrossRef]
- Nithya, R.; Jerold, P.; Siram, K. Cubosomes of Dapsone Enhanced Permeation across the Skin. J. Drug Deliv. Sci. Technol. 2018, 48, 75–81. [Google Scholar] [CrossRef]
- Elgindy, N.A.; Mehanna, M.M.; Mohyeldin, S.M. Self-Assembled Nano-Architecture Liquid Crystalline Particles as a Promising Carrier for Progesterone Transdermal Delivery. Int. J. Pharm. 2016, 501, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Banerjee, S.; Khan, S.; Jha, P.N.; Gupta, G.; Dua, K.; Hasnain, M.S.; Nayak, A.K.; Dubey, S.K.; Singhvi, G. QbD-Driven Formulation Development and Evaluation of Topical Hydrogel Containing Ketoconazole Loaded Cubosomes. Mater. Sci. Eng. C 2021, 119, 111548. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Meikle, T.G.; Drummond, C.J.; Yang, Y.; Conn, C.E. Comparison of Cubosomes and Liposomes for the Encapsulation and Delivery of Curcumin. Soft Matter 2021, 17, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Steluti, R.; De Rosa, F.S.; Collett, J.; Tedesco, A.C.; Bentley, M.V.L.B. Topical Glycerol Monooleate/Propylene Glycol Formulations Enhance 5-Aminolevulinic Acid in Vitro Skin Delivery and in Vivo Protophorphyrin IX Accumulation in Hairless Mouse Skin. Eur. J. Pharm. Biopharm. 2005, 60, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Sguizzato, M.; Esposito, E.; Cortesi, R. Lipid-based Nanosystems as a Tool to Overcome Skin Barrier. Int. J. Mol. Sci. 2021, 22, 8319. [Google Scholar] [CrossRef]
- Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of Nanoemulsions by High-Energy and Lowenergy Emulsification Methods. IFMBE Proc. 2017, 62, 317–322. [Google Scholar] [CrossRef]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the Preparation and the Recent Advances in Their Food Applications. Innov. Food Sci. Emerg. Technol. 2022, 76, 102914. [Google Scholar] [CrossRef]
- Solè, I.; Maestro, A.; Pey, C.M.; González, C.; Solans, C.; Gutiérrez, J.M. Nano-Emulsions Preparation by Low Energy Methods in an Ionic Surfactant System. Colloids Surf. A Physicochem. Eng. Asp. 2006, 288, 138–143. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Nanoemulsions for Health, Food, and Cosmetics: A Review. Environ. Chem. Lett. 2021, 19, 3381–3395. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Doktorovová, S. Solid Lipid Nanoparticle Formulations: Pharmacokinetic and Biopharmaceutical Aspects in Drug Delivery. Methods Enzymol. 2009, 464, 105–129. [Google Scholar] [CrossRef]
- Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021, 13, 1183. [Google Scholar] [CrossRef]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Czajkowska-Kośnik, A.; Szekalska, M.; Winnicka, K. Nanostructured Lipid Carriers: A Potential Use for Skin Drug Delivery Systems. Pharmacol. Rep. 2019, 71, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Katopodi, A.; Detsi, A. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of Natural Products as Promising Systems for Their Bioactivity Enhancement: The Case of Essential Oils and Flavonoids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127529. [Google Scholar] [CrossRef]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured Lipid Carriers (NLCs) as Drug Delivery Platform: Advances in Formulation and Delivery Strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.T.; Passirani, C.; Saulnier, P.; Benoit, J.P. Lipid Nanocapsules: A New Platform for Nanomedicine. Int. J. Pharm. 2009, 379, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Rolley, N.; Bonnin, M.; Lefebvre, G.; Verron, S.; Bargiel, S.; Robert, L.; Riou, J.; Simonsson, C.; Bizien, T.; Gimel, J.-C.; et al. Galenic Lab-on-a-Chip Concept for Lipid Nanocapsules Production. Nanoscale 2021, 13, 11899–11912, Erratum in Nanoscale 2021, 13, 14572. [Google Scholar] [CrossRef]
- Moura, R.P.; Pacheco, C.; Pêgo, A.P.; des Rieux, A.; Sarmento, B. Lipid Nanocapsules to Enhance Drug Bioavailability to the Central Nervous System. J. Control. Release 2020, 322, 390–400. [Google Scholar] [CrossRef]
- Patil, Y.P.; Jadhav, S. Novel Methods for Liposome Preparation. Chem. Phys. Lipids. 2014, 177, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Chuesiang, P.; Shin, G.H.; Park, H.J. Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Ajeeshkumar, K.K.; Aneesh, P.A.; Raju, N.; Suseela, M.; Ravishankar, C.N.; Benjakul, S. Advancements in Liposome Technology: Preparation Techniques and Applications in Food, Functional Foods, and Bioactive Delivery: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1280–1306. [Google Scholar] [CrossRef]
- Niu, X.Q.; Zhang, D.P.; Bian, Q.; Feng, X.F.; Li, H.; Rao, Y.F.; Shen, Y.M.; Geng, F.N.; Yuan, A.R.; Ying, X.Y.; et al. Mechanism Investigation of Ethosomes Transdermal Permeation. Int. J. Pharm. X 2019, 1, 100027. [Google Scholar] [CrossRef]
- Barupal, A.K.; Gupta, V.; Ramteke, S. Preparation and Characterization of Ethosomes for Topical Delivery of Aceclofenac. Indian J. Pharm. Sci. 2010, 72, 582. [Google Scholar] [CrossRef] [Green Version]
- El-Ridy, M.S.; Badawi, A.A.; Safar, M.M.; Mohsen, A.M. Niosomes as a Novel Pharmaceutical Formulation Encapsulating the Hepatoprotective Drug Silymarin. Int. J. Pharm. Pharm. Sci. 2012, 4, 549–559. [Google Scholar]
- Daniela Stan, C.; Tǎtǎrîngǎ, G.; Gafiţanu, C.; Drǎgan, M.; Braha, S.; Popescu, M.C.; Lisǎ, G.; Ştefanache, A. Preparation and Characterization of Niosomes Containing Metronidazole. Farmacia 2013, 61, 1178–1185. [Google Scholar] [CrossRef]
- Balasubramaniam, A.; Kumar, V.A.; Pillai, K.S. Formulation and in Vivo Evaluation of Niosome-Encapsulated Daunorubicin Hydrochloride. Drug Dev. Ind. Pharm. 2002, 28, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Murthy, P.N.; Sahu, J.; Sahoo, P.; Amir, F. Vesicles of Non-Ionic Surfactants (Niosomes) and Drug Delivery Potential. Int. J. Pharm. Sci. Nanotechnol. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, V.; Rai, G.; Pharmaceutics, R.; Khasla, R. Transfersomes as Versatile and Flexible Nano-Vesicular Carriers in Skin Cancer Therapy: The State of the Art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.N.; Mohapatra, D. Nanovesicular Transferosomes for the Topical Delivery of Plant Bioactives. Nanomedicine 2021, 16, 2491–2495. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, R.; Dash, A.K. Liposomes and Transferosomes: A Breakthrough in Topical and Transdermal Delivery. Ther. Deliv. 2021, 12, 145–158. [Google Scholar] [CrossRef]
- Raju Yalavarthi, P.; Haritha, K.; Lakshmi, N.M.; Yalavarthi, P.R.; Vadlamudi, H.C.; Thanniru, J.; Yaga, G. Cubosomes as Targeted Drug Delivery Systems-a Biopharmaceutical Approach. Curr. Drug Discov. Technol. 2014, 11, 181–188. [Google Scholar] [CrossRef]
- Balata, G.; Amin, M.; Alhalabi, F.; Alansari, S. Cubosomes: A Novel Approach for Delivery of Anticancer Drugs. Am. J. PharmTech Res. 2016, 7, 1–14. [Google Scholar]
- Zakaria, F.; Ashari, S.E.; Azmi, I.D.M.; Rahman, M.B.A. Recent Advances in Encapsulation of Drug Delivery (Active Substance) in Cubosomes for Skin Diseases. J. Drug Deliv. Sci. Technol. 2022, 68, 103097. [Google Scholar] [CrossRef]
- Abraham, T.; Hato, M.; Hirai, M. Glycolipid Based Cubic Nanoparticles: Preparation and Structural Aspects. Colloids Surf. B Biointerfaces 2004, 35, 107–118. [Google Scholar] [CrossRef]
- Fong, C.; Krodkiewska, I.; Wells, D.; Boyd, B.J.; Booth, J.; Bhargava, S.; McDowall, A.; Hartley, P.G.; Fong, C.; Krodkiewska, I.; et al. Submicron Dispersions of Hexosomes Based on Novel Glycerate Surfactants. Aust. J. Chem. 2005, 58, 683–687. [Google Scholar] [CrossRef]
- Hirlekar, R.; Jain, S.; Patel, M.; Garse, H.; Kadam, V. Hexosomes: A Novel Drug Delivery System. Curr. Drug Deliv. 2010, 7, 28–35. [Google Scholar] [CrossRef]
- Naguib, M.J.; Hassan, Y.R.; Abd-Elsalam, W.H. 3D Printed Ocusert Laden with Ultra-Fluidic Glycerosomes of Ganciclovir for the Management of Ocular Cytomegalovirus Retinitis. Int. J. Pharm. 2021, 607, 121010. [Google Scholar] [CrossRef]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A New Tool for Effective Dermal and Transdermal Drug Delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef]
- Gupta, P.; Mazumder, R.; Padhi, S. Glycerosomes: Advanced Liposomal Drug Delivery System. Indian J. Pharm. Sci. 2020, 82, 385–397. [Google Scholar] [CrossRef]
- Loo, H.L.; Goh, B.H.; Lee, L.H.; Chuah, L.H. Application of Chitosan-Based Nanoparticles in Skin Wound Healing. Asian J. Pharm. Sci. 2022, 17, 299–332. [Google Scholar] [CrossRef] [PubMed]
- Bibi, N.; ur Rehman, A.; Rana, N.F.; Akhtar, H.; Khan, M.I.; Faheem, M.; Jamal, S.B.; Ahmed, N. Formulation and Characterization of Curcumin Nanoparticles for Skin Cancer Treatment. Appl. Nanosci. 2022, 12, 3421–3436. [Google Scholar] [CrossRef]
- Gomathi, T.; Rajeshwari, K.; Kanchana, V.; Sudha, P.N.; Parthasarathy, K. Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites. In Sustainable Polymer Composites and Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 313–336. [Google Scholar] [CrossRef]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Liposomes Increase Skin Penetration of Entrapped and Non-Entrapped Hydrophilic Substances into Human Skin: A Skin Penetration and Confocal Laser Scanning Microscopy Study. Eur. J. Pharm. Biopharm. 2003, 55, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle Size of Liposomes Influences Dermal Delivery of Substances into Skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mottaleb, M.M.A.; Mortada, N.D.; El-Shamy, A.A.; Awad, G.A.S. Physically Cross-Linked Polyvinyl Alcohol for the Topical Delivery of Fluconazole. Drug Dev. Ind. Pharm. 2009, 35, 311–320. [Google Scholar] [CrossRef]
- Adib, Z.M.; Ghanbarzadeh, S.; Kouhsoltani, M.; Khosroshahi, A.Y.; Hamishehkar, H. The Effect of Particle Size on the Deposition of Solid Lipid Nanoparticles in Different Skin Layers: A Histological Study. Adv. Pharm. Bull. 2016, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Hua, S. Lipid-Based Nano-Delivery Systems for Skin Delivery of Drugs and Bioactives. Front. Pharmacol. 2015, 6, 219. [Google Scholar] [CrossRef]
- Geusens, B.; Strobbe, T.; Bracke, S.; Dynoodt, P.; Sanders, N.; van Gele, M.; Lambert, J. Lipid-Mediated Gene Delivery to the Skin. Eur. J. Pharm. Sci. 2011, 43, 199–211. [Google Scholar] [CrossRef]
- Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin Penetration and Distribution of Polymeric Nanoparticles. J. Control. Release 2004, 99, 53–62. [Google Scholar] [CrossRef]
- Buya, A.B.; Beloqui, A.; Memvanga, P.B.; Préat, V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020, 12, 1194. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Chen, X.; Zhou, Z.; Pang, J.; Luo, X.; Kong, M. A Surface Charge Dependent Enhanced Th1 Antigen-Specific Immune Response in Lymph Nodes by Transfersome-Based Nanovaccine-Loaded Dissolving Microneedle-Assisted Transdermal Immunization. J. Mater. Chem. B 2019, 7, 4854–4866. [Google Scholar] [CrossRef]
- Ryman-Rasmussen, J.P.; Riviere, J.E.; Monteiro-Riviere, N.A. Penetration of Intact Skin by Quantum Dots with Diverse Physicochemical Properties. Toxicol. Sci. 2006, 91, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mottaleb, M.M.A.; Moulari, B.; Beduneau, A.; Pellequer, Y.; Lamprecht, A. Surface-Charge-Dependent Nanoparticles Accumulation in Inflamed Skin. J. Pharm. Sci. 2012, 101, 4231–4239. [Google Scholar] [CrossRef]
- Sabourian, P.; Yazdani, G.; Ashraf, S.S.; Frounchi, M.; Mashayekhan, S.; Kiani, S.; Kakkar, A. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int. J. Mol. Sci. 2020, 21, 8019. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Gu, N. Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. J. Phys. Chem. B 2008, 112, 16647–16653. [Google Scholar] [CrossRef]
- Cedervall, T.; Lynch, I.; Foy, M.; Berggård, T.; Donnelly, S.C.; Cagney, G.; Linse, S.; Dawson, K.A. Detailed Identification of Plasma Proteins Adsorbed on Copolymer Nanoparticles. Angew. Chem.-Int. Ed. 2007, 46, 5754–5756. [Google Scholar] [CrossRef] [PubMed]
- Gessner, A.; Waicz, R.; Lieske, A.; Paulke, B.R.; Mäder, K.; Müller, R.H. Nanoparticles with Decreasing Surface Hydrophobicities: Influence on Plasma Protein Adsorption. Int. J. Pharm. 2000, 196, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.C.; Chonn, A.; Cullis, P.R. Interactions of Liposomes and Lipid-Based Carrier Systems with Blood Proteins: Relation to Clearance Behaviour in Vivo. Adv. Drug Deliv. Rev. 1998, 32, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Chonn, A.; Semple, S.C.; Cullis, P.R. Association of Blood Proteins with Large Unilamellar Liposomes in Vivo. Relation to Circulation Lifetimes. J. Biol. Chem. 1992, 267, 18759–18765. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.M.; Patel, H.M. Tissue Specific Opsonins for Phagocytic Cells and Their Different Affinity for Cholesterol-Rich Liposomes. FEBS Lett. 1988, 233, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.M.; Hansen, C. Pharmacokinetics of Stealth versus Conventional Liposomes: Effect of Dose. Biochim. Biophys. Acta (BBA)-Biomembr. 1991, 1068, 133–141. [Google Scholar] [CrossRef]
- Senior, J.; Crawley, J.C.W.; Gregoriadis, G. Tissue Distribution of Liposomes Exhibiting Long Half-Lives in the Circulation after Intravenous Injection. Biochim. Biophys. Acta (BBA) Gen. Subj. 1985, 839, 1–8. [Google Scholar] [CrossRef]
- Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.D. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles. J. Control. Release 2013, 172, 782–794. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.M. The Use of Glycolipids and Hydrophilic Polymers in Avoiding Rapid Uptake of Liposomes by the Mononuclear Phagocyte System. Adv. Drug Deliv. Rev. 1994, 13, 285–309. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, S.; Yu, B.; Gao, C.; Wang, J. Hydrophobically Modified Inulin Based Nanoemulsions for Enhanced Stability and Transdermal Delivery of Retinyl Propionate. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129883. [Google Scholar] [CrossRef]
- Barry, B.W.; Bennett, S.L. Effect of Penetration Enhancers on the Permeation of Mannitol, Hydrocortisone and Progesterone through Human Skin. J. Pharm. Pharmacol. 1987, 39, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.R. Increased Skin Permeability for Lipophilic Molecules. J. Pharm. Sci. 1984, 73, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Kand Ima Lla, K.; Nikk Anna, N.N.K.; Ndega, S.A.; Singh, M. Effect of Fatty Acids on the Permeation of Melatonin across Rat and Pig Skin In-Vitro and on the Transepidermal Water Loss in Rats In-Vivo. J. Pharm. Pharmacol. 2010, 51, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. Evidence That Oleic Acid Exists in a Separate Phase Within Stratum Corneum Lipids. Pharm. Res. 1991, 8, 350–354. [Google Scholar] [CrossRef]
- Aungst, B.J.; Rogers, N.J.; Shefter, E. Enhancement of Naloxone Penetration through Human Skin in Vitro Using Fatty Acids, Fatty Alcohols, Surfactants, Sulfoxides and Amides. Int. J. Pharm. 1986, 33, 225–234. [Google Scholar] [CrossRef]
- Aungst, B.J. Structure/Effect Studies of Fatty Acid Isomers as Skin Penetration Enhancers and Skin Irritants. Pharm. Res. Off. J. Am. Assoc. Pharm. Sci. 1989, 6, 244–247. [Google Scholar] [CrossRef]
- Yokomizo, Y.; Sagitani, H. The Effects of Phospholipids on the Percutaneous Penetration of Indomethacin through the Dorsal Skin of Guinea Pig in Vitro. 2. The Effects of the Hydrophobic Group in Phospholipids and a Comparison with General Enhancers. J. Control. Release 1996, 42, 37–46. [Google Scholar] [CrossRef]
- Nanayakkara, G.R.; Bartlett, A.; Forbes, B.; Marriott, C.; Whitfield, P.J.; Brown, M.B. The Effect of Unsaturated Fatty Acids in Benzyl Alcohol on the Percutaneous Permeation of Three Model Penetrants. Int. J. Pharm. 2005, 301, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-Loaded Nanostructured Lipid Carriers (NLCs): Strategy to Overcome Oral Delivery Drawbacks. Drug Deliv. 2017, 24, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured Lipid Carriers: Promising Drug Delivery Systems for Future Clinics. Nanomedicine 2016, 12, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Rege, B.D.; Kao, J.P.Y.; Polli, J.E. Effects of Nonionic Surfactants on Membrane Transporters in Caco-2 Cell Monolayers. Eur. J. Pharm. Sci. 2002, 16, 237–246. [Google Scholar] [CrossRef]
- Parikh, R.; Bunt, C.; Solanki, A.B.; Parikh, J.R.; Parikh, R.H.; Patel, M.R. Evaluation of Different Compositions of Niosomes to Optimize Aceclofenac Transdermal Delivery. Aceclofenac Transdermal Deliv. Asian J. Pharm. Sci. 2010, 5, 87–95. [Google Scholar]
- Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.D.; Kim, J.S.; Yoo, B.K.; Choi, H.G.; et al. Formulation and in Vitro Assessment of Minoxidil Niosomes for Enhanced Skin Delivery. Int. J. Pharm. 2009, 377, 1–8. [Google Scholar] [CrossRef]
- Wohlrab, J.; Klapperstück, T.; Reinhardt, H.W.; Albrecht, M. Interaction of Epicutaneously Applied Lipids with Stratum Corneum Depends on the Presence of Either Emulsifiers or Hydrogenated Phosphatidylcholine. Ski. Pharmacol. Physiol. 2010, 23, 298–305. [Google Scholar] [CrossRef]
- Cornwell, P.A.; Tubek, J.; van Gompel, H.A.H.P.; Little, C.J.; Wiechers, J.W. Glyceryl Monocaprylate/Caprate as a Moderate Skin Penetration Enhancer. Int. J. Pharm. 1998, 171, 243–255. [Google Scholar] [CrossRef]
- Jiao, J. Polyoxyethylated Nonionic Surfactants and Their Applications in Topical Ocular Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1663–1673. [Google Scholar] [CrossRef]
- Myoung, Y.; Choi, H.K. Effects of Vehicles and Pressure Sensitive Adhesives on the Penetration of Isosorbide Dinitrate Across the Hairless Mouse Skin. Drug Deliv. 2008, 9, 121–126. [Google Scholar] [CrossRef]
- Furuishi, T.; Sachiko, O.; Saito, H.; Fukami, T.; Suzuki, T.; Tomono, K. Effect of Permeation Enhancers on the in Vitro Percutaneous Absorption of Pentazocine1). Biol. Pharm. Bull. 2007, 30, 1350–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hoogevest, P.; Fahr, A.; van Hoogevest, P. Phospholipids in Cosmetic Carriers. Nanocosmetics 2019, 95–140. [Google Scholar] [CrossRef] [Green Version]
- Hoppel, M.; Juric, S.; Ettl, H.; Valenta, C. Effect of Monoacyl Phosphatidylcholine Content on the Formation of Microemulsions and the Dermal Delivery of Flufenamic Acid. Int. J. Pharm. 2015, 479, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cullell, N.; Coderch, L.; de La Maza, A.; Parra, J.L.; Estelrich, J. Influence of the Fluidity of Liposome Compositions on Percutaneous Absorption. Drug Deliv. J. Deliv. Target. Ther. Agents 2000, 7, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Carrer, D.C.; Vermehren, C.; Bagatolli, L.A. Pig Skin Structure and Transdermal Delivery of Liposomes: A Two Photon Microscopy Study. J. Control. Release 2008, 132, 12–20. [Google Scholar] [CrossRef]
- Franz, T.J. Percutaneous Absorption on the Relevance of in Vitro Data. J. Investig. Dermatol. 1975, 64, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Salamanca, C.H.; Barrera-Ocampo, A.; Lasso, J.C.; Camacho, N.; Yarce, C.J. Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Addicks, W.J.; Flynn, G.L.; Weiner, N. Validation of a Flow-Through Diffusion Cell for Use in Transdermal Research. Pharm. Res. 1987, 4, 337–341. [Google Scholar] [CrossRef]
- Ng, S.F.; Rouse, J.J.; Sanderson, F.D.; Meidan, V.; Eccleston, G.M. Validation of a Static Franz Diffusion Cell System for In Vitro Permeation Studies. AAPS PharmSciTech 2010, 11, 1432–1441. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Amaro, M.I.; Healy, A.M.; Cabral, L.M.; de Sousa, V.P. Comparative Evaluation of Rivastigmine Permeation from a Transdermal System in the Franz Cell Using Synthetic Membranes and Pig Ear Skin with in Vivo-in Vitro Correlation. Int. J. Pharm. 2016, 512, 234–241. [Google Scholar] [CrossRef]
- Sebe, I.; Zsidai, L.; Zelkó, R. Novel Modified Vertical Diffusion Cell for Testing of in Vitro Drug Release (IVRT) of Topical Patches. HardwareX 2022, 11, e00293. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Garg, A. An Insight of Techniques for the Assessment of Permeation Flux across the Skin for Optimization of Topical and Transdermal Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2021, 62, 102355. [Google Scholar] [CrossRef]
- Zhang, Q.; Sito, L.; Mao, M.; He, J.; Zhang, Y.S.; Zhao, X. Current Advances in Skin-on-a-Chip Models for Drug Testing. Microphysiol. Syst. 2018, 2, 4. [Google Scholar] [CrossRef]
- Ponmozhi, J.; Dhinakaran, S.; Varga-medveczky, Z.; Fónagy, K.; Bors, L.A.; Iván, K.; Erdő, F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. Micromachines 2021, 12, 294. [Google Scholar] [CrossRef]
- Varga-Medveczky, Z.; Kocsis, D.; Naszlady, M.B.; Fónagy, K.; Erdő, F. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery—Starting Points and Recent Developments. Pharmaceutics 2021, 13, 1852. [Google Scholar] [CrossRef]
- Erdo, F.; Hashimoto, N.; Karvaly, G.; Nakamichi, N.; Kato, Y. Critical Evaluation and Methodological Positioning of the Transdermal Microdialysis Technique. A Review. J. Control. Release 2016, 233, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Chávez, J.J.; Merino-Sanjuán, V.; López-Cervantes, M.; Urban-Morlan, Z.; Piñón-Segundo, E.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. The Tape-Stripping Technique as a Method for Drug Quantification in Skin. J. Pharm. Pharm. Sci. 2008, 11, 104–130. [Google Scholar] [CrossRef] [Green Version]
- Binder, L.; SheikhRezaei, S.; Baierl, A.; Gruber, L.; Wolzt, M.; Valenta, C. Confocal Raman Spectroscopy: In Vivo Measurement of Physiological Skin Parameters—A Pilot Study. J. Dermatol. Sci. 2017, 88, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Ji, C.; Miao, M.; Yang, K.; Luo, Y.; Hoptroff, M.; Collins, L.Z.; Janssen, H.G. Ex-Vivo Measurement of Scalp Follicular Infundibulum Delivery of Zinc Pyrithione and Climbazole from an Anti-Dandruff Shampoo. J. Pharm. Biomed. Anal. 2017, 143, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K.; Larsen, J.; Gniadecka, M.; Wulf, H.C. Detection of Skin Cancer by Classification of Raman Spectra. IEEE Trans. Biomed. Eng. 2004, 51, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, N.; Matsumoto, M.; Sakai, S. In Vivo Measurement of the Water Content in the Dermis by Confocal Raman Spectroscopy. Ski. Res. Technol. 2010, 16, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, Q.; Zhang, M.; Wu, Z.; Xue, P. Fluorescence Lifetime Imaging Microscopy and Its Applications in Skin Cancer Diagnosis. J. Innov. Opt. Health Sci. 2019, 12, 1930004. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yu, J.; Zhang, R.; Li, X.; Zheng, W. Two-Photon Excitation Fluorescence Lifetime Imaging Microscopy: A Promising Diagnostic Tool for Digestive Tract Tumors. J. Innov. Opt. Health Sci. 2019, 12, 1930009. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lin, D.; Becker, W.; Niu, J.; Yu, B.; Liu, L.; Qu, J. Fast Fluorescence Lifetime Imaging Techniques: A Review on Challenge and Development. J. Innov. Opt. Health Sci. 2019, 12, 1930003. [Google Scholar] [CrossRef] [Green Version]
- van Munster, E.B.; Gadella, T.W.J. Fluorescence Lifetime Imaging Microscopy (FLIM). Adv. Biochem. Eng. Biotechnol. 2005, 95, 143–175. [Google Scholar] [CrossRef]
- Zhu, Y.; Choe, C.-S.; Ahlberg, S.; Meinke, M.C.; Alexiev, U.; Lademann, J.; Darvin, M.E. Penetration of Silver Nanoparticles into Porcine Skin Ex Vivo Using Fluorescence Lifetime Imaging Microscopy, Raman Microscopy, and Surface-Enhanced Raman Scattering Microscopy. J. Biomed. Opt. 2014, 20, 051006. [Google Scholar] [CrossRef] [PubMed]
- Geusens, B.; van Gele, M.; Braat, S.; de Smedt, S.C.; Stuart, M.C.A.; Prow, T.W.; Sanchez, W.; Roberts, M.S.; Sanders, N.N.; Lambert, J. Flexible Nanosomes (SECosomes) Enable Efficient SiRNA Delivery in Cultured Primary Skin Cells and in the Viable Epidermis of Ex Vivo Human Skin. Adv. Funct. Mater. 2010, 20, 4077–4090. [Google Scholar] [CrossRef]
- Roberts, M.S.; Dancik, Y.; Prow, T.W.; Thorling, C.A.; Lin, L.L.; Grice, J.E.; Robertson, T.A.; König, K.; Becker, W. Non-Invasive Imaging of Skin Physiology and Percutaneous Penetration Using Fluorescence Spectral and Lifetime Imaging with Multiphoton and Confocal Microscopy. Eur. J. Pharm. Biopharm. 2011, 77, 469–488. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.; Bendeck, S.E.; Chen, S.; Estrada, R.; Haddix, A.; McLeod, T.; Mahe, A. Skin Diseases. In Disease Control Priorities in Developing Countries; Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Jha, P., Mills, A., Musgrove, P., Eds.; The International Bank for Reconstruction and Development; The World Bank: Washington DC, USA, 2006; pp. 707–721. [Google Scholar]
- Sabbagh, F.; Kim, B.S. Recent Advances in Polymeric Transdermal Drug Delivery Systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, S.R.; Andonova, V.Y. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals 2021, 14, 1083. [Google Scholar] [CrossRef]
- Godin, B.; Touitou, E. Mechanism of Bacitracin Permeation Enhancement through the Skin and Cellular Membranes from an Ethosomal Carrier. J. Control. Release 2004, 94, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Godin, B.; Touitou, E.; Rubinstein, E.; Athamna, A.; Athamna, M. A New Approach for Treatment of Deep Skin Infections by an Ethosomal Antibiotic Preparation: An in Vivo Study. J. Antimicrob. Chemother. 2005, 55, 989–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for Topical Delivery of the Antimicrobial Peptide LL-37. Eur. J. Pharm. Biopharm. 2019, 134, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Araujo, V.H.S.; Delello Di Filippo, L.; Duarte, J.L.; Spósito, L.; de Camargo, B.A.F.; da Silva, P.B.; Chorilli, M. Exploiting Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery against Cutaneous Fungal Infections. Crit. Rev. Microbiol. 2021, 47, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Ranpise, H.A.; Gujar, K.N.; Pawar, S.C.; Awasthi, R.; Dua, K.; Mathure, D.; Madan, J.R. Formulation, Optimization, and Evaluation of Ketoconazole Loaded Nanostructured Lipid Carrier Gel for Topical Delivery. Drug Deliv. Lett. 2020, 10, 61–71. [Google Scholar] [CrossRef]
- Bhalekar, M.R.; Pokharkar, V.; Madgulkar, A.; Patil, N.; Patil, N. Preparation and Evaluation of Miconazole Nitrate-Loaded Solid Lipid Nanoparticles for Topical Delivery. AAPS PharmSciTech 2009, 10, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Chandrakala, V.; Mamatha, H.S.; Usha, A.; Priya, B. Formulation and Evaluation of Solid Lipid Nanoparticles Baed Gel Containing Antifungal Agent. Int. J. Pharm. Technol. 2020, 12, 32187–32198. [Google Scholar]
- Zafar, A.; Imam, S.S.; Alruwaili, N.K.; Yasir, M.; Alsaidan, O.A.; Alshehri, S.; Ghoneim, M.M.; Khalid, M.; Alquraini, A.; Alharthi, S.S. Formulation and Evaluation of Topical Nano-Lipid-Based Delivery of Butenafine: In Vitro Characterization and Antifungal Activity. Gels 2022, 8, 133. [Google Scholar] [CrossRef]
- Mahdi, W.A.; Bukhari, S.I.; Imam, S.S.; Alshehri, S.; Zafar, A.; Yasir, M. Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity. Pharmaceutics 2021, 13, 1087. [Google Scholar] [CrossRef]
- Riaz, A.; Hendricks, S.; Elbrink, K.; Guy, C.; Maes, L.; Ahmed, N.; Kiekens, F.; Khan, G.M. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020, 21, 185. [Google Scholar] [CrossRef]
- Hassan, H.; Bello, R.O.; Adam, S.K.; Alias, E.; Affandi, M.M.R.M.M.; Shamsuddin, A.F.; Basir, R. Acyclovir-Loaded Solid Lipid Nanoparticles: Optimization, Characterization and Evaluation of Its Pharmacokinetic Profile. Nanomaterials 2020, 10, 1785. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Tawab El-Assal, A. Acyclovir Loaded Solid Lipid Nanoparticle Based Cream: A Novel Drug Delivery System. Int. J. Drug Deliv. Technol. 2017, 7, 52–62. [Google Scholar]
- Ferreira, K.C.B.; Valle, A.B.C.D.S.; Paes, C.Q.; Tavares, G.D.; Pittella, F. Nanostructured Lipid Carriers for the Formulation of Topical Anti-Inflammatory Nanomedicines Based on Natural Substances. Pharmaceutics 2021, 13, 1454. [Google Scholar] [CrossRef] [PubMed]
- Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and Therapy of Psoriasis. Nature 2007, 445, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid Nanoparticles as Vehicles for Topical Psoralen Delivery: Solid Lipid Nanoparticles (SLN) versus Nanostructured Lipid Carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70, 633–640. [Google Scholar] [CrossRef]
- Hengge, U.R.; Ruzicka, T.; Schwartz, R.A.; Cork, M.J. Adverse Effects of Topical Glucocorticosteroids. J. Am. Acad. Dermatol. 2006, 54, 1–15. [Google Scholar] [CrossRef]
- Bikkad, M.L.; Nathani, A.H.; Mandlik, S.K.; Shrotriya, S.N.; Ranpise, N.S. Halobetasol Propionate-Loaded Solid Lipid Nanoparticles (SLN) for Skin Targeting by Topical Delivery. J. Liposome Res. 2014, 24, 113–123. [Google Scholar] [CrossRef]
- Patel, D.; Dasgupta, S.; Dey, S.; Ramani, R.Y.; Ray, S.; Mazumder, B. Nanostructured Lipid Carriers (NLC)-Based Gel for Topical Delivery of Aceclofenac: Preparation, Characterization and In Vivo Evaluation. Sci. Pharm. 2012, 80, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, S.; Tilak, A.; Sharma, J.; Dave, V.; Sharma, S.; Yadav, R.; Patel, S.; Verma, K.; Tak, K. Flurbiprofen Loaded Ethosomes—Transdermal Delivery of Anti-Inflammatory Effect in Rat Model. Lipids Health Dis. 2019, 18, 133. [Google Scholar] [CrossRef] [Green Version]
- Lala, R.R.; Awari, N.G. Nanoemulsion-Based Gel Formulations of COX-2 Inhibitors for Enhanced Efficacy in Inflammatory Conditions. Appl. Nanosci. 2014, 4, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Sachan, A.K.; Ankita, G.; Mona, A. Formulation & Characterization of Nanostructured Lipid Carrier (NLC) Based Gel for Topical Delivery of Etoricoxib. J. Drug Deliv. Ther. 2016, 6, 4–13. [Google Scholar]
- Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin Targeting of Curcumin Solid Lipid Nanoparticles-Engrossed Topical Gel for the Treatment of Pigmentation and Irritant Contact Dermatitis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1471–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moddaresi, M.; Tamburic, S.; Williams, S.; Jones, S.A.; Zhao, Y.; Brown, M.B. Effects of Lipid Nanocarriers on the Performance of Topical Vehicles in Vivo. J. Cosmet. Dermatol. 2009, 8, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.A.; Müller, R.H. The Influence of Solid Lipid Nanoparticles on Skin Hydration and Viscoelasticity—In Vivo Study. Eur. J. Pharm. Biopharm. 2003, 56, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Štecová, J.; Mehnert, W.; Blaschke, T.; Kleuser, B.; Sivaramakrishnan, R.; Zouboulis, C.C.; Seltmann, H.; Korting, H.C.; Kramer, K.D.; Schäfer-Korting, M. Cyproterone Acetate Loading to Lipid Nanoparticles for Topical Acne Treatment: Particle Characterisation and Skin Uptake. Pharm. Res. 2007, 24, 991–1000. [Google Scholar] [CrossRef]
- Lello, S.; Primavera, G.; Colonna, L.; Vittori, G.; Guardianelli, F.; Sorge, R.; Raskovic, D. Effects of Two Estroprogestins Containing Ethynilestradiol 30 Microgram and Drospirenone 3 Mg and Ethynilestradiol 30 micrograms and Chlormadinone 2 Mg on Skin and Hormonal Hyperandrogenic Manifestations. Gynecol. Endocrinol. 2008, 24, 718–723. [Google Scholar] [CrossRef]
- Pawar, R.; Dawre, S. Solid Lipid Nanoparticles Dispersed Topical Hydrogel for Co-Delivery of Adapalene and Minocycline for Acne Treatment. J. Drug Deliv. Sci. Technol. 2023, 80, 104149. [Google Scholar] [CrossRef]
- Nayak, K.; Katiyar, S.S.; Kushwah, V.; Jain, S. Coenzyme Q10 and Retinaldehyde Co-Loaded Nanostructured Lipid Carriers for Efficacy Evaluation in Wrinkles. J. Drug Target. 2017, 26, 333–344. [Google Scholar] [CrossRef]
- Touti, R.; Noun, M.; Guimberteau, F.; Lecomte, S.; Faure, C. What Is the Fate of Multi-Lamellar Liposomes of Controlled Size, Charge and Elasticity in Artificial and Animal Skin? Eur. J. Pharm. Biopharm. 2020, 151, 18–31. [Google Scholar] [CrossRef]
- Zylberberg, C.; Matosevic, S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Jain, P.; Kurmi, J.; Jain, D.; Jain, R.; Chandel, S.; Sahu, A.; Mody, N.; Upadhaya, S.; Jain, A. Novel Strategies for Effective Transdermal Drug Delivery: A Review. Crit. Rev. Ther. Drug Carr. Syst. 2014, 31, 219–272. [Google Scholar] [CrossRef]
- Jain, S.; Tiwary, A.; Jain, N. Sustained and Targeted Delivery of an Anti-HIV Agent Using Elastic Liposomal Formulation: Mechanism of Action. Curr. Drug Deliv. 2006, 3, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.G.S.; Tekade, R.K.; Sharma, P.A.; Darwhekar, G.; Tyagi, A.; Patel, R.P.; Jain, D.K. Ethosomes and Ultradeformable Liposomes for Transdermal Delivery of Clotrimazole: A Comparative Assessment. Saudi Pharm. J. 2012, 20, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachmawati, H.; Budiputra, D.K.; Mauludin, R. Curcumin Nanoemulsion for Transdermal Application: Formulation and Evaluation. Drug Dev. Ind. Pharm. 2015, 41, 560–566. [Google Scholar] [CrossRef]
- Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid Lipid Nanoparticles for Transdermal Delivery of Avanafil: Optimization, Formulation, in-Vitro and Ex-Vivo Studies. J. Liposome Res. 2016, 26, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Rostamkalaei, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Nokhodchi, A. Topical Gel of Metformin Solid Lipid Nanoparticles: A Hopeful Promise as a Dermal Delivery System. Colloids Surf. B Biointerfaces 2019, 175, 150–157. [Google Scholar] [CrossRef]
- Chen, M.; Shamim, M.A.; Shahid, A.; Yeung, S.; Andresen, B.T.; Wang, J.; Nekkanti, V.; Meyskens, F.L.; Kelly, K.M.; Huang, Y. Topical Delivery of Carvedilol Loaded Nano-Transfersomes for Skin Cancer Chemoprevention. Pharmaceutics 2020, 12, 1151. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Ajitha, M. Transdermal Delivery of Fluvastatin Loaded Nanoemulsion Gel: Preparation, Characterization and in Vivo Anti-Osteoporosis Activity. Eur. J. Pharm. Sci. 2019, 136, 104956. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Hussain, A.; AlRajhi, M.; Alshehri, S.; Sarim Imam, S.; Qamar, W. Luteolin-Loaded Elastic Liposomes for Transdermal Delivery to Control Breast Cancer: In Vitro and Ex Vivo Evaluations. Pharmaceuticals 2021, 14, 1143. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G. Transdermal Drug Delivery of Insulin with Ultradeformable Carriers. Clin. Pharmacokinet. 2012, 42, 461–474. [Google Scholar] [CrossRef]
- Guo, J.; Ping, Q.; Zhang, L. Transdermal Delivery of Insulin in Mice by Using Lecithin Vesicles as a Carrier. Drug Deliv. 2008, 7, 113–116. [Google Scholar] [CrossRef]
- Foldvari, M.; Baca-Estrada, M.E.; He, Z.; Hu, J.; Attah-Poku, S.; King, M. Dermal and Transdermal Delivery of Protein Pharmaceuticals: Lipid-Based Delivery Systems for Interferon α. Biotechnol. Appl. Biochem. 1999, 30, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Papania, M.J.; Zehrung, D.; Jarrahian, C. Technologies to Improve Immunization. In Plotkin’s Vaccines; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1320–1353. [Google Scholar] [CrossRef]
- Karande, P.; Mitragotri, S. Transcutaneous Immunization: An Overview of Advantages, Disease Targets, Vaccines, and Delivery Technologies. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, S.; Okada, N.; Nakagawa, S. Transcutaneous Vaccines—Current and Emerging Strategies. Expert Opin. Drug Deliv. 2013, 10, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.M.; Ding, Z.; van Riet, E.; Jiskoot, W.; Bouwstra, J.A. Advances in Transcutaneous Vaccine Delivery: Do All Ways Lead to Rome? J. Control. Release 2010, 148, 266–282. [Google Scholar] [CrossRef]
- Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J. Pharm. Sci. 2017, 106, 423–445. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.H.; Li, F.Q.; Liu, G.Z.; Zhu, Q.G.; Liu, J.Y.; Ma, H.J.; Peng, C.; Si, F.G. Strong Cellular and Humoral Immune Responses Induced by Transcutaneous Immunization with HBsAg DNA–Cationic Deformable Liposome Complex. Exp. Dermatol. 2007, 16, 724–729. [Google Scholar] [CrossRef]
- Mishra, D.; Mishra, P.K.; Dubey, V.; Nahar, M.; Dabadghao, S.; Jain, N.K. Systemic and Mucosal Immune Response Induced by Transcutaneous Immunization Using Hepatitis B Surface Antigen-Loaded Modified Liposomes. Eur. J. Pharm. Sci. 2008, 33, 424–433. [Google Scholar] [CrossRef]
- Tyagi, R.K.; Garg, N.K.; Jadon, R.; Sahu, T.; Katare, O.P.; Dalai, S.K.; Awasthi, A.; Marepally, S.K. Elastic Liposome-Mediated Transdermal Immunization Enhanced the Immunogenicity of P. Falciparum Surface Antigen, MSP-119. Vaccine 2015, 33, 4630–4638. [Google Scholar] [CrossRef]
- Kumar, G.; Sharma, N.; Gupta, P.; Joshi, B.; Gupta, U.D.; Cevc, G.; Chopra, A. Improved Protection against Tuberculosis after Boosting the BCG-Primed Mice with Subunit Ag 85a Delivered through Intact Skin with Deformable Vesicles. Eur. J. Pharm. Sci. 2016, 82, 11–20. [Google Scholar] [CrossRef]
- Estevan, M.; Irache, J.M.; Grilló, M.J.; Blasco, J.M.; Gamazo, C. Encapsulation of Antigenic Extracts of Salmonella Enterica Serovar: Abortusovis into Polymeric Systems and Efficacy as Vaccines in Mice. Vet. Microbiol. 2006, 118, 124–132. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non Viral Vectors in Gene Therapy- An Overview. J. Clin. Diagn Res. 2015, 9, GE01. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, J.; Khositsuntiwong, N.; Manosroi, W.; Götz, F.; Werner, R.G.; Manosroi, A. Enhancement of Transdermal Absorption, Gene Expression and Stability of Tyrosinase Plasmid (PMEL34)-Loaded Elastic Cationic Niosomes: Potential Application in Vitiligo Treatment. J. Pharm. Sci. 2010, 99, 3533–3541. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, A.; Oh, Y.K.; Kim, C.K. Effect of Edge Activators on the Formation and Transfection Efficiency of Ultradeformable Liposomes. Biomaterials 2005, 26, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Khositsuntiwong, N.; Gtz, F.; Werner, R.G.; Manosroi, J. Transdermal Enhancement through Rat Skin of Luciferase Plasmid DNA Loaded in Elastic Nanovesicles. J. Liposome Res. 2009, 19, 91–98. [Google Scholar] [CrossRef]
- van der Meulen, B.; Bremmers, H.; Purnhagen, K.; Gupta, N.; Bouwmeester, H.; Geyer, L.L. Governing Nano Foods: Principles-Based Responsive Regulation; Academic Press: Cambridge, MA, USA, 2014; pp. 1–111. [Google Scholar] [CrossRef]
- Arts, J.H.E.; Hadi, M.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; Warheit, D.; et al. A Critical Appraisal of Existing Concepts for the Grouping of Nanomaterials. Regul. Toxicol. Pharmacol. 2014, 70, 492–506. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk, R.; Kwarciak-Kozłowska, A. Nanoparticles from the Cosmetics and Medical Industries in Legal and Environmental Aspects. Sustainability 2021, 13, 5805. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Jafari, S.M. Regulatory Principles on Food Nanoparticles Legislated by Asian and Oceanian Countries. In Safety and Regulatory Issues of Nanoencapsulated Food Ingredients; Academic Press: Cambridge, MA, USA, 2021; pp. 201–238. [Google Scholar] [CrossRef]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef]
- Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology (accessed on 9 December 2022).
- Nanomaterials European Parliament Resolution of 24 April 2009 on Regulatory Aspects of Nanomaterials (2008/2208(INI))—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/f50687f9-5764-4fe1-8f80-69d1dfa65bc9/language-en (accessed on 9 December 2022).
- European NGOs Position Paper on the Regulation of Nanomaterials. Health Care Without Harm. Available online: https://noharm-europe.org/documents/european-ngos-position-paper-regulation-nanomaterials (accessed on 9 December 2022).
- Falkner, R.; Jaspers, N. Regulating Nanotechnologies: Risk, Uncertainty and the Global Governance Gap. Glob. Environ. Politics 2012, 12, 30–55. [Google Scholar] [CrossRef] [Green Version]
- Amenta, V.; Aschberger, K.; Arena, M.; Bouwmeester, H.; Botelho Moniz, F.; Brandhoff, P.; Gottardo, S.; Marvin, H.J.P.; Mech, A.; Quiros Pesudo, L.; et al. Regulatory Aspects of Nanotechnology in the Agri/Feed/Food Sector in EU and Non-EU Countries. Regul. Toxicol. Pharmacol. 2015, 73, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures. Expert Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Nardin, I.; Köllner, S. Successful Development of Oral SEDDS: Screening of Excipients from the Industrial Point of View. Adv. Drug Deliv. Rev. 2019, 142, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Mickova, A.; Buzgo, M.; Benada, O.; Rampichova, M.; Fisar, Z.; Filova, E.; Tesarova, M.; Lukas, D.; Amler, E. Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules 2012, 13, 952–962. [Google Scholar] [CrossRef]
- Shetty, K.; Bhandari, A.; Yadav, K.S. Nanoparticles Incorporated in Nanofibers Using Electrospinning: A Novel Nano-in-Nano Delivery System. J. Control. Release 2022, 350, 421–434. [Google Scholar] [CrossRef]
- Liu, P.; Guo, B.; Wang, S.; Ding, J.; Zhou, W. A Thermo-Responsive and Self-Healing Liposome-in-Hydrogel System as an Antitubercular Drug Carrier for Localized Bone Tuberculosis Therapy. Int. J. Pharm. 2019, 558, 101–109. [Google Scholar] [CrossRef]
- Hurler, J.; Berg, O.A.; Skar, M.; Conradi, A.H.; Johnsen, P.J.; Škalko-Basnet, N. Improved Burns Therapy: Liposomes-in-Hydrogel Delivery System for Mupirocin. J. Pharm. Sci. 2012, 101, 3906–3915. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, Y.; Hu, K.; Li, F. Enhancement of Skin Permeation of Docetaxel: A Novel Approach Combining Microneedle and Elastic Liposomes. J. Control. Release 2008, 129, 144–150. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, M.; Zhao, J.; Zhang, X.; Huang, Z.; Zang, Y.; Ding, Y.; Zhang, J.; Ding, Z. Transdermal Delivery of Lidocaine-Loaded Elastic Nano-Liposomes with Microneedle Array Pretreatment. Biomedicines 2021, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Schmolka, I.R. Clear Analgesic Gels with Reduced Tackiness. U.S. Patent 4,511,563, 16 April 1985. [Google Scholar]
- Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Transdermal Absorption Enhancement of Papain Loaded in Elastic Niosomes Incorporated in Gel for Scar Treatment. Eur. J. Pharm. Sci. 2013, 48, 474–483. [Google Scholar] [CrossRef]
- Wang, W.; Shu, G.F.; Lu, K.J.; Xu, X.L.; Sun, M.C.; Qi, J.; Huang, Q.L.; Tan, W.Q.; Du, Y.Z. Flexible Liposomal Gel Dual-Loaded with All-Trans Retinoic Acid and Betamethasone for Enhanced Therapeutic Efficiency of Psoriasis. J. Nanobiotechnol. 2020, 18, 80. [Google Scholar] [CrossRef]
- Shirsand, S.; Kanani, K.; Keerthy, D.; Nagendrakumar, D.; Para, M. Formulation and Evaluation of Ketoconazole Niosomal Gel Drug Delivery System. Int. J. Pharm. Investig. 2012, 2, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciobanu, B.C.; Cadinoiu, A.N.; Popa, M.; Desbrières, J.; Peptu, C.A. Modulated Release from Liposomes Entrapped in Chitosan/Gelatin Hydrogels. Mater. Sci. Eng. C 2014, 43, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Hough, W.L.; Rogers, R.D. Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. Bull. Chem. Soc. Jpn. 2007, 80, 2262–2269. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids: Industrial Applications for Green Chemistry. In Low-Lying Potential Energy Surfaces; ACS Symposium Series; American Chemical Society: New York, NY, USA, 2002; Volume 828, p. 474. [Google Scholar]
- Rodríguez, H.; Bica, K.; Rogers, R. Ionic Liquid Technology: A Potential New Platform for the Pharmaceutical Industry. Trop. J. Pharm. Res. 2008, 7, 1011–1012. [Google Scholar]
- Black, S.N.; Collier, E.A.; Davey, R.J.; Roberts, R.J. Structure, Solubility, Screening, and Synthesis of Molecular Salts. J. Pharm. Sci. 2007, 96, 1053–1068. [Google Scholar] [CrossRef]
- Evans, D.F.; Kaler, E.W.; Benton, W.J. Liquid Crystals in a Fused Salt:.Beta.,.Gamma.-Distearoylphosphatidylcholine in N-Ethylammonium Nitrate. J. Phys. Chem. 1983, 87, 533–535. [Google Scholar] [CrossRef]
- Gayet, F.; Marty, J.-D.; Brûlet, A.; Viguerie, N.L. Vesicles in Ionic Liquids. Langmuir 2011, 27, 9706–9710. [Google Scholar] [CrossRef]
- Patra, D.; el Khoury, E.; Ahmadieh, D.; Darwish, S.; Tafech, R.M. Effect of Curcumin on Liposome: Curcumin as a Molecular Probe for Monitoring Interaction of Ionic Liquids with 1,2-Dipalmitoyl-Sn-Glycero-3- Phosphocholine Liposome. Photochem. Photobiol. 2012, 88, 317–327. [Google Scholar] [CrossRef]
- Sakuragi, M.; Tsutsumi, S.; Kusakabe, K. Deep Eutectic Solvent-Induced Structural Transition of Microemulsions Explored with Small-Angle X-Ray Scattering. Langmuir 2018, 34, 12635–12641. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A Comparison between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Stott, P.W.; Williams, A.C.; Barry, B.W. Transdermal Delivery from Eutectic Systems: Enhanced Permeation of a Model Drug, Ibuprofen. J. Control. Release 1998, 50, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Pedro, S.N.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D. Deep Eutectic Solvents Comprising Active Pharmaceutical Ingredients in the Development of Drug Delivery Systems. Expert Opin. Drug Deliv. 2019, 16, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- Bryant, S.J.; Atkin, R.; Warr, G.G. Effect of Deep Eutectic Solvent Nanostructure on Phospholipid Bilayer Phases. Langmuir 2017, 33, 6878–6884. [Google Scholar] [CrossRef] [Green Version]
- Bryant, S.J.; Atkin, R.; Warr, G.G. Spontaneous Vesicle Formation in a Deep Eutectic Solvent. Soft Matter 2016, 12, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Dziemidowicz, K.; Williams, G.R.; Ramakrishna, S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials 2021, 11, 1968. [Google Scholar] [CrossRef]
- Sofi, H.S.; Abdal-hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun Nanofibers for the Delivery of Active Drugs through Nasal, Oral and Vaginal Mucosa: Current Status and Future Perspectives. Mater. Sci. Eng. C 2020, 111, 110756. [Google Scholar] [CrossRef]
- Lv, H.; Guo, S.; Zhang, G.; He, W.; Wu, Y.; Yu, D.G. Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release. Polymers 2021, 13, 4286. [Google Scholar] [CrossRef]
- Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer-Based Nanofiber–Nanoparticle Hybrids and Their Medical Applications. Polymers 2022, 14, 351. [Google Scholar] [CrossRef]
- Singh, P.; Carrier, A.; Chen, Y.; Lin, S.; Wang, J.; Cui, S.; Zhang, X. Polymeric Microneedles for Controlled Transdermal Drug Delivery. J. Control. Release 2019, 315, 97–113. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; Wang, M.; Yang, X.; Tang, Y.; Pang, M.; Wang, W.; Chen, L.; Wu, C.; Xu, Y. Microneedles Mediated Bioinspired Lipid Nanocarriers for Targeted Treatment of Alopecia. J. Control. Release 2021, 329, 1–15. [Google Scholar] [CrossRef] [PubMed]
Active Pharmaceutical Ingredient | Brand Name | Manufacturer | Indication/Marketed Country |
---|---|---|---|
Rotigotine | Neupro® | Schwarz | Parkinson’s disease restless legs syndrome/USA |
Isosorbide dinitrate | Frandor Tape® | Yamanouchi | Myocardial ischemia/Japan |
Methylphenidate | Daytrana® | Noven | Attention deficit hyperactivity disorder/USA |
Tulobuterol | Hokunalin® Tape | Abbott Japan | Asthma/Japan |
Fentanyl | Duragesic® | Alza/Janssen | Analgesic/USA |
Scopolamine | Transderm-Scop® | Alza/Ciba-Geigy | Motion sickness/USA |
Ethinyl estradiol | Ortho Evra® | Ortho-McNeil | Contraception/USA |
Clonidine | Catapres-TTS® | Boehringer Ingelheim | Hypertension/USA |
Nicotine | Nicotinell® | Ciba-Geigy | Smoking cessation/Switzerland |
Nitroglycerin | Transderm-Nitro® | Ciba-Geigy | Stenocardia/USA |
Testosterone | Androderm® | Watson Pharma | Testosterone deficiency/USA |
Nanosystems | Basic Composition | Methods of Preparation | Benefits | Limitations | Refs |
---|---|---|---|---|---|
Nanoemulsions/Self-emulsifying systems | Oil, surfactant and co-surfactant/cosolvent | High and Low-energy emulsification |
|
| [140,141,142,143] |
Solid-lipid nanoparticles (SLNs) | Solid lipid, surfactant and cosurfactant | Emulsification-solvent diffusion, High-pressure homogenisation, Double emulsion technique |
|
| [77,144,145,146] |
Nanostructured lipid carrier (NLCs) | Blend of solid and liquid lipids, surfactant, cosurfactant | High-pressure homogenisation and ultrasound |
|
| [147,148,149,150] |
Lipid nanocapsules (LNCs) | Oil, nonionic surfactant, lipophile surfactant | Phase inversion temperature technique |
|
| [85,151,152,153] |
Liposomes | Cholesterol, phospholipids, antioxidants | Film hydration, solvent injection, and reversed-phase evaporation |
|
| [89,154,155,156] |
Ethosomes | Cholesterol, phospholipids, antioxidants, Ethanol | Film hydration, solvent injection, and reversed-phase evaporation |
|
| [61,123,157,158] |
Niosomes | Non-ionic surfactants, Cholesterol, Charge inducers | Film hydration, solvent injection, and reversed-phase evaporation |
|
| [159,160,161,162] |
Transferosomes | Cholesterol, phospholipids, antioxidants, edge-activators | Film hydration, solvent injection, and reversed-phase evaporation |
|
| [163,164,165] |
Cubosomes | Glyceryl monooleate, poloxamer | Top down and bottom down techniques |
|
| [166,167,168,169,170,171] |
Glycerosomes | Phospholipids, glycerol, cholesterol | Film hydration, Solvent spherule, small unilamillar vesicles sonication |
|
| [172,173,174] |
Invasomes | Phospholipids, terpenes, ethanol, water | Mechanical dispersion, film hydration |
|
| [166,167,168,169,170,171] |
Additive Approach | Benefits | Limitations | Refs |
---|---|---|---|
Stimuli-responsive nanocomposite gels |
|
| [324,325,326,327] |
Ionic Liquids |
|
| [332,333,334] |
Deep Eutectic Solvents |
|
| [335,336,337,340,341] |
Nanofibers |
|
| [317,318] |
Microneedles |
|
| [321,322] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akombaetwa, N.; Ilangala, A.B.; Thom, L.; Memvanga, P.B.; Witika, B.A.; Buya, A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023, 15, 656. https://doi.org/10.3390/pharmaceutics15020656
Akombaetwa N, Ilangala AB, Thom L, Memvanga PB, Witika BA, Buya AB. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics. 2023; 15(2):656. https://doi.org/10.3390/pharmaceutics15020656
Chicago/Turabian StyleAkombaetwa, Nakamwi, Ange B. Ilangala, Lorraine Thom, Patrick B. Memvanga, Bwalya Angel Witika, and Aristote B. Buya. 2023. "Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications" Pharmaceutics 15, no. 2: 656. https://doi.org/10.3390/pharmaceutics15020656
APA StyleAkombaetwa, N., Ilangala, A. B., Thom, L., Memvanga, P. B., Witika, B. A., & Buya, A. B. (2023). Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics, 15(2), 656. https://doi.org/10.3390/pharmaceutics15020656