Development of Nanoemulsions for Topical Application of Mupirocin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solubility Determination
2.3. HPLC Method
2.4. Gas Chromatography (GC) Method
2.5. Construction of Pseudoternary Phase Diagrams
2.6. Preparation of Blank Nanoemulsions
2.7. Optimisation of the Nanoemulsion Formulation
Central Composite Design
2.8. Preparation of MUP-Loaded Nanoemulsions
2.9. Measurement of Size, Polydispersity Index and Zeta Potential of Nanoemulsions
2.10. Determination of pH
2.11. Determination of the Nanoemulsion Viscosity
2.12. Determination of Entrapment Efficiency (EE%)
2.13. Fourier Transform Infrared (FTIR) Spectroscopy
2.14. Thermodynamic Stability Study
2.14.1. Long-Term Stability Studies
2.14.2. Accelerated Stability Studies
Heating–Cooling Cycle
Centrifugation
Freeze–Thaw Cycle
2.15. In Vitro Release and Skin Permeation Studies
2.15.1. In Vitro Release Studies of Nanoemulsion
2.15.2. Preparation of the Skin and In Vitro Skin Permeation Studies of Nanoemulsion
2.15.3. Determination of MUP Deposited in Skin
2.16. Statistical Data Analysis
3. Results and Discussion
3.1. Solubility of MUP
3.2. HPLC Method Development and Validation
3.3. GC Method Development and Validation
3.4. Construction of Peudoternary Phase Diagrams
3.5. Preparation and Optimisation of Nanoemulsions
3.5.1. Optimisation of Nanoemulsion
Dependent Variable 1: Droplet Size
Dependent Variable 2: PDI
3.5.2. Influence of Homogenisation Time
3.5.3. Influence of Ultrasonication Time
3.5.4. Influence of Ultrasonic Amplitude
3.6. Physicochemical Characterisation of Nanoemulsion Formulation
3.6.1. Measurement of the Particle Size and Polydispersity Index (PDI)
3.6.2. Determination of Zeta Potential
3.6.3. Determination of the Entrapment Efficiency and Drug Loading of MUP in Nanoemulsion
3.6.4. Fourier Transforms Infrared Spectrometry (FTIR)
3.7. Thermodynamic Stability Studies
3.7.1. Long-Term Stability Studies
3.7.2. Accelerated Stability Studies
3.8. In Vitro Release and Skin Permeation Studies
3.8.1. In Vitro Release Study of MUP from Nanoemulsion Formulations
3.8.2. In Vitro Skin Permeation Study of MUP from Nanoemulsion Formulation
3.8.3. Quantification of MUP in Skin Using Differential Stripping Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [Green Version]
- Bakkiyaraj, D.; Sritharadol, R.; Padmavathi, A.R.; Nakpheng, T.; Srichana, T. Anti-biofilm properties of a mupirocin spray formulation against Escherichia coli wound infections. Biofouling 2017, 33, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Nakama, T.; Nureki, O.; Yokoyama, S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J. Biol. Chem. 2001, 276, 47387–47393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem. Mupirocin. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Mupirocin (accessed on 28 November 2022).
- Goldmann, O.; Cern, A.; Müsken, M.; Rohde, M.; Weiss, W.; Barenholz, Y.; Medina, E. Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. J. Control. Release 2019, 316, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Roth, V.R.; Murphy, C.; Perl, T.M.; DeMaria, A.; Sohn, A.H.; Sinkowitz-Cochran, R.L.; Jarvis, W.R. Should we routinely use mupirocin to prevent staphylococcal infections? Infect. Control. Hosp. Epidemiol. 2000, 21, 745–749. [Google Scholar] [CrossRef]
- Buckingham, R. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2020. [Google Scholar]
- Tucaliuc, A.; Blaga, A.C.; Galaction, A.I.; Cascaval, D. Mupirocin: Applications and production. Biotechnol. Lett. 2019, 41, 495–502. [Google Scholar] [CrossRef]
- Conly, J.M.; Johnston, B.L. Mupirocin–Are we in danger of losing it? Can. J. Infect. Dis. 2002, 13, 157–159. [Google Scholar] [CrossRef]
- Drugbank. Mupirocin. 2021. Available online: https://go.drugbank.com/drugs/DB00410 (accessed on 28 November 2022).
- Lee, D.-K.; Kim, Y.-N.; Park, K.-S.; Yang, J.-W.; Kim, K.-J.; Ha, N.-J. Antimicrobial activity of mupirocin, daptomycin, linezolid, quinupristin/dalfopristin and tigecycline against vancomycin-resistant enterococci (VRE) from clinical isolates in Korea (1998 and 2005). BMB Rep. 2007, 40, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Sharma, S.K.; Gaur, P.K.; Gupta, D.K. Fabrication of Mupirocin-Loaded Nanostructured Lipid Carrier and Its In Vitro Characterization. Assay Drug Dev. Technol. 2021, 19, 216–225. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Pawar, K.R.; Babu, R.J. Lipid materials for topical and transdermal delivery of nanoemulsions. Crit. Rev. Ther. Drug Carr. Syst. 2014, 31, 429–458. [Google Scholar] [CrossRef]
- Md Saari, N.H.; Chua, L.S.; Hasham, R.; Yuliati, L. Curcumin-loaded nanoemulsion for better cellular permeation. Sci. Pharm. 2020, 88, 44. [Google Scholar] [CrossRef]
- Abd, E.; Namjoshi, S.; Mohammed, Y.H.; Roberts, M.S.; Grice, J.E. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen. J. Pharm. Sci. 2016, 105, 212–220. [Google Scholar] [CrossRef]
- Abd, E.; Benson, H.A.; Roberts, M.S.; Grice, J.E. Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: Enhanced diffusivity and follicular targeting. Pharmaceutics 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Tagne, J.-B.; Kakumanu, S.; Ortiz, D.; Shea, T.; Nicolosi, R.J. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol. Pharm. 2008, 5, 280–286. [Google Scholar] [CrossRef]
- Alhasso, B.; Ghori, M.U.; Conway, B.R. Systematic review on the effectiveness of essential and carrier oils as skin penetration enhancers in pharmaceutical formulations. Sci. Pharm. 2022, 90, 14. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Dey, A.; Neogi, S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J. Mater. Chem. B 2021, 9, 5329–5339. [Google Scholar] [CrossRef]
- Sharma, A.D.; Farmaha, M.D.; Kaur, I.D. Preparation and characterization of O/W nanoemulsion with eucalyptus essential oil and study of in vitro antibacterial activity. Nanomed. Res. J. 2020, 5, 347–354. [Google Scholar]
- Yeh, Y.-C.; Huang, T.-H.; Yang, S.-C.; Chen, C.-C.; Fang, J.-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front. Chem. 2020, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K.; Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007, 66, 227–243. [Google Scholar] [CrossRef] [PubMed]
- EMEA. ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology; EMEA: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Mazonde, P.; Khamanga, S.M.; Walker, R.B. Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions. Pharmaceutics 2020, 12, 797. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.G.; Pandit, A.B. Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason. Sonochemistry 2008, 15, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of High-Drug-Loading Nanoparticles. Chem. Plus Chem. 2020, 85, 2143–2157. [Google Scholar] [CrossRef]
- Teichmann, A.; Jacobi, U.; Ossadnik, M.; Richter, H.; Koch, S.; Sterry, W.; Lademann, J. Differential stripping: Determination of the amount of topically applied substances penetrated into the hair follicles. J. Investig. Dermatol. 2005, 125, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Ma, H.; Lei, M.; Li, N.; Tan, F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur. J. Pharm. Biopharm. 2014, 88, 92–103. [Google Scholar] [CrossRef]
- Church, A.S.; Witting, M.D. Laboratory testing in ethanol, methanol, ethylene glycol, and isopropanol toxicities. J. Emerg. Med. 1997, 15, 687–692. [Google Scholar] [CrossRef]
- Chowdary, K.R.; Manjula, T. Effect of surfactants on the solubility and dissolution rate of nimesulide from tablets. Indian J. Pharm. Sci. 2000, 62, 97. [Google Scholar]
- Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Kelidari, H.R.; Moghanlou, F.S.; Zareh, G.; Rostamkalaei, S. The effect of Tween 20, 60, and 80 on dissolution behavior of sprionolactone in solid dispersions prepared by PEG 6000. Adv. Pharm. Bull. 2015, 5, 435. [Google Scholar] [CrossRef] [Green Version]
- Huibers, P.D.; Shah, D.O. Evidence for synergism in nonionic surfactant mixtures: Enhancement of solubilization in water-in-oil microemulsions. Langmuir 1997, 13, 5762–5765. [Google Scholar] [CrossRef]
- Gowrisankar, D.; Abbulu, K.; Bala Souri, O.; Sujana, K. Validation and Calibration of Analytical Instruments. J. Biomed. Sci. Res. 2010, 2, 89–99. [Google Scholar]
- Djekic, L.; Ibric, S.; Primorac, M. The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int. J. Pharm. 2008, 361, 41–46. [Google Scholar] [CrossRef]
- Aulton, M.E.; Taylor, K. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Syed, H.K.; Peh, K.K. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Pol. Pharm. 2014, 71, 301–309. [Google Scholar]
- Asadinezhad, S.; Khodaiyan, F.; Salami, M.; Hosseini, H.; Ghanbarzadeh, B. Effect of different parameters on orange oil nanoemulsion particle size: Combination of low energy and high energy methods. J. Food Meas. Charact. 2019, 13, 2501–2509. [Google Scholar] [CrossRef]
- Affandi, M.; Julianto, T.; Majeed, A. Development and stability evaluation of astaxanthin nanoemulsion. Asian J. Pharm. Clin. Res. 2011, 4, 142–148. [Google Scholar]
- Hashtjin, A.M.; Abbasi, S. Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll. 2015, 44, 40–48. [Google Scholar] [CrossRef]
- Li, P.-H.; Chiang, B.-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochemistry 2012, 19, 192–197. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: Effect of ultrasound processing parameters. Food Bioprocess Technol. 2013, 6, 2439–2446. [Google Scholar] [CrossRef]
- Shahavi, M.H.; Hosseini, M.; Jahanshahi, M.; Darzi, G.N. Optimization of encapsulated clove oil particle size with biodegradable shell using design expert methodology. Pak. J. Biotechnol. 2015, 12, 149–160. [Google Scholar]
- Sivakumar, M.; Tang, S.Y.; Tan, K.W. Cavitation technology–a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason. Sonochemistry 2014, 21, 2069–2083. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 2007, 82, 478–488. [Google Scholar] [CrossRef]
- Kentish, S.; Wooster, T.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 2008, 9, 170–175. [Google Scholar] [CrossRef]
- Desrumaux, A.; Marcand, J. Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): Effect of pressure on emulsion characteristics. Int. J. Food Sci. Technol. 2002, 37, 263–269. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartwright, A.C. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards and the State; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Kundu, P.; Arora, K.; Gu, Y.; Kumar, V.; Mishra, I.M. Formation and stability of water-in-oil nano-emulsions with mixed surfactant using in-situ combined condensation-dispersion method. Can. J. Chem. Eng. 2019, 97, 2039–2049. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Chow, A.H.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm. 2010, 383, 170–177. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Florence, A.; Rogers, J. Emulsion stabilization by non-ionic surfactants: Experiment and theory. J. Pharm. Pharmacol. 1971, 23, 233–251. [Google Scholar] [CrossRef]
- Chaudhari, P.M.; Kuchekar, M.A. Development and evaluation of nanoemulsion as a carrier for topical delivery system by box-behnken design. Asian J. Pharmaceut. Clin. Res. 2018, 11, 286–293. [Google Scholar] [CrossRef]
- Higgins, C.; Palmer, A.; Nixon, R. Eucalyptus oil: Contact allergy and safety. Contact Dermat. 2015, 72, 344–346. [Google Scholar] [CrossRef]
- Kumar, S.; Randhawa, J.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Adv. 2015, 5, 68743–68750. [Google Scholar] [CrossRef]
- Klang, V.; Valenta, C. Lecithin-based nanoemulsions. J. Drug Deliv. Sci. Technol. 2011, 21, 55–76. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Rodrigues, F.; Diniz, L.; Sousa, R.; Honorato, T.; Simão, D.; Araújo, C.; Gonçalves, T.; Rolim, L.; Goto, P.; Tedesco, A.; et al. Preparation and characterization of nanoemulsion containing a natural naphthoquinone. Química Nova 2018, 41, 756–761. [Google Scholar] [CrossRef]
- Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J. Nanobiotechnology 2011, 9, 44. [Google Scholar] [CrossRef]
- Galvão, K.; Vicente, A.; Sobral, P.d.A. Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization. Food Bioprocess Technol. 2018, 11, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.; Parkinson, C.; Sherman, P. Factors affecting emulsion stability, and the HLB concept. J. Colloid Interface Sci. 1972, 41, 359–370. [Google Scholar] [CrossRef]
- Donsì, F.; Wang, Y.; Huang, Q. Freeze–thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocoll. 2011, 25, 1327–1336. [Google Scholar] [CrossRef]
- Ghosh, S.; Coupland, J.N. Factors affecting the freeze–thaw stability of emulsions. Food Hydrocoll. 2008, 22, 105–111. [Google Scholar] [CrossRef]
- Ding, Z.; Jiang, Y.; Liu, X. Nanoemulsions-Based Drug Delivery for Brain Tumors. In Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 327–358. [Google Scholar]
- Rajan, R.; Vasudevan, D.T. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. J. Adv. Pharm. Technol. Res. 2012, 3, 112–116. [Google Scholar] [CrossRef]
- Eid, R.K.; Essa, E.A.; El Maghraby, G.M. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm. Dev. Technol. 2019, 24, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Maha, H.; Masfria. Formula comparison of nanoemulsion and cream containing miconazole nitrate: Penetration test using franz diffusion cells and antifungal activity test on Tricophyton mentagrophytes, Microsporum canis and Candida albicans. Rasayan J. Chem. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Iskandar, B.; Karsono, J.S. Preparation of Spray Nanoemulsion and Cream Containing Vitamin E as Anti-Aging Product Tested in Vitro and in Vivo Method. Int. J. PharmTech Res. 2016, 9, 307–315. [Google Scholar]
- El-Nabarawi, M.; El Meshad, A.N.; Moutasim, M.Y. Assessment of bioavailability of sumatriptan transdermal delivery systems in rabbits. Int. J. Pharm. Pharm. Sci. 2013, 5, 225–240. [Google Scholar]
- Akhlaq, M.; Siddiqua, A.; Ullah, H.; Akram, M.; Abdur, R.S.; Khan, M.; Nazir, R.; Imran, M.; Sherazi, M.; Baloch, M. Development of semi-solid formulation for skin administration of pioglitazone. Lat. Am. J. Pharm. 2019, 38, 771–779. [Google Scholar]
- Kakadia, P.G. Formulation and Evaluation of Nanoencapsulated Antimicrobial Agents for Dermal Delivery. Ph.D. Thesis, University of Huddersfield, Huddersfield, UK, 2016. [Google Scholar]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Terpenes and the lipid–protein–partitioning theory of skin penetration enhancement. Pharm. Res. 1991, 8, 17–24. [Google Scholar] [CrossRef]
- Arianto, A.; Amelia, R.; Bangun, H. The Effect of Tween 80, Palm Kernel Oil, and Its Conversion Product on in Vitro Penetration Enhancement of Indomethacin through Rabbit Skin. Asian J. Pharm. Clin. Res. 2017, 10, 284–288. [Google Scholar] [CrossRef]
- Subongkot, T.; Duangjit, S.; Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T. Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J. Liposome Res. 2012, 22, 254–262. [Google Scholar] [CrossRef]
- Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal drug delivery enhancement by compounds of natural origin. Molecules 2011, 16, 10507–10540. [Google Scholar] [CrossRef] [Green Version]
- Mahanty, J.; Rasheed, S.H.; Kumar, S.; Singh, H.; Sharma, A. Potential of essential oils as alternative permeation enhancers for transdermal delivery. World J. Tradit. Chin. Med. 2022. ahead of print. [Google Scholar]
- Monti, D.; Najarro, M.; Chetoni, P.; Burgalassi, S.; Saettone, M.; Boldrini, E. Vehicle and enhancer effects on transdermal permeation of estradiol from gel formulations: Evaluation in vitro. J. Drug Deliv. Sci. Technol. 2005, 15, 469–473. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, F.-Y.; Hung, D.-K. Terpene microemulsions for transdermal curcumin delivery: Effects of terpenes and cosurfactants. Colloids Surf. B Biointerfaces 2011, 82, 63–70. [Google Scholar] [CrossRef]
- Cornwell, P.A.; Barry, B.W.; Bouwstra, J.A.; Gooris, G.S. Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int. J. Pharm. 1996, 127, 9–26. [Google Scholar] [CrossRef]
- Cal, K.; Janicki, S.; Sznitowska, M. In vitro studies on penetration of terpenes from matrix-type transdermal systems through human skin. Int. J. Pharm. 2001, 224, 81–88. [Google Scholar] [CrossRef]
- Cal, K.; Kupiec, K.; Sznitowska, M. Effect of physicochemical properties of cyclic terpenes on their ex vivo skin absorption and elimination kinetics. J. Dermatol. Sci. 2006, 41, 137–142. [Google Scholar] [CrossRef]
- Saporito, F.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Boselli, C.; Cornaglia, A.I.; Mannucci, B.; Grisoli, P.; Vigani, B.; Ferrari, F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomed. 2018, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Motwani, M.R.; Rhein, L.D. Influence of vehicles on the phase transitions of model sebum. J. Cosmet. Sci. 2002, 53, 35–42. [Google Scholar]
Quantity (% w/w) | ||||
---|---|---|---|---|
Formulation Code | Blank-NE EO | Blank-NE EU | MUP-NE EO | MUP-NE EU |
Aqueous phase | 90 | 90 | 90 | 90 |
T80 | 5 | 5 | 5 | 5 |
Deionised water | 85 | 85 | 84.6 | 84.6 |
Oil phase | 10 | 10 | 10 | 10 |
S80 | 2.5 | 2.5 | 2.5 | 2.5 |
EO | 7.5 | 7.5 | ||
EU | 7.5 | 7.5 | ||
MUP | 0.4 | 0.4 |
Independent Variables | Level | Dependent Variables | Aim | ||||
---|---|---|---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |||||
X1 | Homogenisation time (min) | 10 | 7.5 | 5 | Y1 | Particle size (nm) | Reduction |
X2 | Ultrasonication time (min) | 20 | 15 | 10 | Y2 | PDI | Reduction |
X3 | Amplitude (%) | 70 | 60 | 50 |
Run | Homogenisation Time (min) | Ultrasonication Time (min) | Amplitude (%) |
---|---|---|---|
1 | 5 | 10 | 50 |
2 | 10 | 10 | 50 |
3 | 5 | 20 | 50 |
4 | 10 | 20 | 50 |
5 | 5 | 10 | 70 |
6 | 10 | 10 | 70 |
7 | 5 | 20 | 70 |
8 | 10 | 20 | 70 |
9 | 5 | 15 | 60 |
10 | 10 | 15 | 60 |
11 | 7.5 | 10 | 60 |
12 | 7.5 | 20 | 60 |
13 | 7.5 | 15 | 50 |
14 | 7.5 | 15 | 70 |
15 | 7.5 | 15 | 60 |
16 | 7.5 | 15 | 60 |
17 | 7.5 | 15 | 60 |
Components | Solubility of MUP (mg/mL) |
---|---|
Eucalyptus oil (EO) | 21.00 ± 0.17 |
Eucalyptol (EU) | 7.94 ± 0.25 |
Methanol (MeOH) | 189.67 ± 0.52 |
Absolute ethanol (EtOH) | 179.24 ± 0.34 |
Phosphate buffer saline (PBS) | 3.39 ± 0.11 |
MeOH-PBS (1:9) | 3.51 ± 0.13 |
MeOH-PBS (3:7) | 10.17 ± 0.10 |
MeOH-PBS (5:5) | 39.51 ± 0.27 |
Deionised water | 1.64 ± 0.23 |
Acetonitrile | 32.86 ± 0.21 |
T80 in water (4.91% w/w) | 2.24 ± 0.06 |
S80 in EO (4.44% w/w) | 23.05 ± 0.23 |
S80 in EU (4.89% w/w) | 22.57 ± 0.08 |
T80: S80: EO (4.60% w/w) | 26.13 ± 0.02 |
T80: S80: EU (5.23% w/w) | 25.89 ± 0.22 |
Formulations | DLS | NTA | |||||
---|---|---|---|---|---|---|---|
Average Particle Size (nm) | PDI | Cumulative Data | Mean Size (nm) | Span | |||
D10 | D50 | D90 | |||||
MUP-NE EO | 35.89 ± 0.68 | 0.10 ± 0.02 | 19 | 28 | 44 | 31.0 ± 1.0 | 0.89 |
MUP-NE EU | 37.52 ± 3.65 | 0.16 ± 0.06 | 21 | 29 | 47 | 33.3 ± 1.5 | 0.90 |
Formulations | Smix | Oil Concentration | Zeta Potential (mV) | pH | Viscosity (cP) |
---|---|---|---|---|---|
MUP-NE EO | 7.50% | 7.50% | −3.7 ± 0.36 | 3.91 ± 0.03 | 38.15 ± 0.87 |
MUP-NE EU | 7.50% | 7.50% | −5.57 ± 0.62 | 4.13 ± 0.05 | 25.85 ± 6.22 |
Formulation | Amount of Drug in Nanoemulsion (mg) | Entrapment Efficiency (EE%) |
---|---|---|
MUP-NE EO | 316.57 ± 48.58 | 79.14 ± 12.15 |
MUP-NE EU | 276.63 ± 8.08 | 69.15 ± 2.02 |
Formulation | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
MUP-NE EO | 33.21 ± 0.21 | 0.09 ± 0.01 | −4.53 ± 0.88 |
MUP-NE EU | 34.54 ± 0.27 | 0.10 ± 0.01 | −3.79 ± 0.89 |
Parameters | MUP-NE EO | MUP-NE EU | Control |
---|---|---|---|
tlag (h) | 2.93 | 1.7 | 1.86 |
Jmax (µg/cm2) | 1522.72 ± 70.87 | 2025.1 ± 25.42 | 1141.61 ± 40.45 |
Jss (µg/cm2/h) | 68.35 ± 2.87 | 72.31 ± 2.46 | 39.32 ± 4.27 |
Kp (×10−4 cm/h) | 87.22 ± 2.97 | 66 ± 19.1 | 40.5 ± 4.4 |
Enhancement ratio (ER) | 1.33 | 1.77 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhasso, B.; Ghori, M.U.; Conway, B.R. Development of Nanoemulsions for Topical Application of Mupirocin. Pharmaceutics 2023, 15, 378. https://doi.org/10.3390/pharmaceutics15020378
Alhasso B, Ghori MU, Conway BR. Development of Nanoemulsions for Topical Application of Mupirocin. Pharmaceutics. 2023; 15(2):378. https://doi.org/10.3390/pharmaceutics15020378
Chicago/Turabian StyleAlhasso, Bahjat, Muhammad Usman Ghori, and Barbara R. Conway. 2023. "Development of Nanoemulsions for Topical Application of Mupirocin" Pharmaceutics 15, no. 2: 378. https://doi.org/10.3390/pharmaceutics15020378
APA StyleAlhasso, B., Ghori, M. U., & Conway, B. R. (2023). Development of Nanoemulsions for Topical Application of Mupirocin. Pharmaceutics, 15(2), 378. https://doi.org/10.3390/pharmaceutics15020378