An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery
Abstract
:1. Introduction
2. Nanoemulgel, a Potential Carrier System
3. Nanoemulgels in Topical Delivery for Anti-Inflammatory Drugs
Mechanistic Approach of Nanoemulgel Delivery via Topical Route
4. Components of Nanoemulgel
4.1. Aqueous Solvents
4.2. Oil Phase
4.3. Surfactants
4.4. Cosurfactants
4.5. Gelling Agents
4.6. Miscellaneous Additives
5. Stages of Nanoemulgel Formulation Design
5.1. Preformulation Studies
5.2. Preparation of Nanoemulsion
5.3. Preparation of Gel Base
5.4. Incorporation of Nanoemulsion into Gel Base
6. Evaluation Properties of Nanoemulgels
6.1. Droplet Size and Poly Dispersity Index (PDI)
6.2. Zeta Potential
6.3. pH
6.4. Rheological Properties
6.5. Spreadability
6.6. Adhesive Property
6.7. In Vitro Drug Release
S. No. | Formulation | Characterization of Nanoemulsion | Characterization of Nanoemulgel | Reference | ||||
---|---|---|---|---|---|---|---|---|
Droplet Size (nm) | PDI | Zeta Potential (mV) | pH | Viscosity | Spreadability | |||
1 | Minocycline-loaded NEG | 90–201 | 0.348–0.563 | −17.40 mV | 5.40 | - | 5 cm/s | [99] |
2 | Atorvastatin-loaded NEG | 148 | 0.3 | - | - | 85,900 ± 2050 cps | 51 ± 0.66 mm | [100] |
3 | Thymoquinone-loaded topical NEG | 40.02–99.66 | 0.052–0.542 | −26.7–−30.6 | 5.53 ± 0.04 | 88.82–71.04 mPas | - | [101] |
4 | Coriandrum sativum oil NEG | 165.72–189.59 | 0.177–0.243 | Less than −35 | 6 | - | - | [102] |
5 | Glimepiride-loaded NEG (recheck) | 143.1–233.3 | 0.315–0.421 | −12.8–−17.1 | 5.06 to 5.45 | 34.7–58.7 mPas | 1.35–1.41 cm2/g | [103] |
6 | Quercetin-loaded NEG | 173.1 ± 1.2 | 0.353 ± 0.13 | −36.1 ± 5.99 | 5.8 | 100,803 ± 1234 cps | - | [104] |
7 | Tamoxifen citrate-containing topical NEG | 29.65–95.73 | 8.1–16.3 | 0.163–0.163 | 5.55–5.57 | - | 1.27–1.29 cm2/g | [105] |
8 | Retinyl palmitate NEG | 16.71–71.95 | 0.015–0.606 | −19.03 to −20.36 | 5.53 ± 0.06 | 77.48–89.22mPas | 1.34 ± 0.03 cm2/g | [106] |
9 | Fusidic acid-incorporated NEG | 113.6 ± 3.21 | - | - | 6.61 | 25,265 cps | 33.6 mm | [107] |
10 | Curcumin NEG | 49.61–84.23 | 0.05–0.23 | −15.96 to −20.26 | - | 83.74–89.82 mPas | - | [108] |
7. Permeability and Bioavailability Enhancement of Anti-Inflammatory Drugs by Topical Nanoemulgel System
7.1. Herbal Anti-Inflammatory Compounds
7.2. Synthetic Anti-Inflammatory Compounds
8. Toxicity Concerns
9. Current and Future Perspectives of Anti-Inflammatory Topical Nanoemulgel
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eyerich, K.; Eyerich, S. Immune response patterns in non-communicable inflammatory skin diseases. J. Eur. Acad. Derm. Venereol. 2018, 32, 692–703. [Google Scholar] [CrossRef]
- Zeng, W.J.; Tan, Z.; Lai, X.F.; Xu, Y.N.; Mai, C.L.; Zhang, J.; Lin, Z.J.; Liu, X.G.; Sun, S.L.; Zhou, L.J. Topical delivery of l-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation. Chem. Biol. Interact. 2018, 284, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Saito-Sasaki, N.; Mashima, E.; Nakamura, M. Daily Lifestyle and Inflammatory Skin Diseases. Int. J. Mol. Sci. 2021, 22, 5204. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Mohanty, S.; Pal, A.; Chanotiya, C.S.; Bawankule, D.U. The essential oil from Citrus limetta Risso peels alleviates skin inflammation: In-vitro and in-vivo study. J. Ethnopharmacol. 2018, 212, 86–94. [Google Scholar] [CrossRef]
- Conigliaro, P.; Triggianese, P.; De Martino, E.; Fonti, G.L.; Chimenti, M.S.; Sunzini, F.; Viola, A.; Canofari, C.; Perricone, R. Challenges in the treatment of Rheumatoid Arthritis. Autoimmun. Rev. 2019, 18, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.Y.; Chin, K.-Y. The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediat. Inflamm. 2020, 2020, 8293921. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, M.; McGonagle, D.; Werfel, T. Cytokines as therapeutic targets in skin inflammation. Cytokine Growth Factor Rev. 2014, 25, 443–451. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Silva-Abreu, M.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Fábrega, M.-J.; Garduño-Ramírez, M.L.; Clares, B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomed. Nanotechnol. Biol. Med. 2019, 19, 115–125. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.; Garg, N.; Siril, P.F. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason. Sonochemistry 2018, 40, 686–696. [Google Scholar] [CrossRef]
- Chantereau, G.; Sharma, M.; Abednejad, A.; Neves, B.M.; Sèbe, G.; Coma, V.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D. Design of Nonsteroidal Anti-Inflammatory Drug-Based Ionic Liquids with Improved Water Solubility and Drug Delivery. ACS Sustain. Chem. Eng. 2019, 7, 14126–14134. [Google Scholar] [CrossRef]
- Wei, W.; Evseenko, V.I.; Khvostov, M.V.; Borisov, S.A.; Tolstikova, T.G.; Polyakov, N.E.; Dushkin, A.V.; Xu, W.; Min, L.; Su, W. Solubility, Permeability, Anti-Inflammatory Action and In Vivo Pharmacokinetic Properties of Several Mechanochemically Obtained Pharmaceutical Solid Dispersions of Nimesulide. Molecules 2021, 26, 1513. [Google Scholar] [CrossRef]
- Ullah, I.; Baloch, M.K.; Durrani, G.F. Solubility of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) in Aqueous Solutions of Non-ionic Surfactants. J. Solut. Chem. 2011, 40, 1341–1348. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.; Shen, Y.; Zhang, Y.; Liu, L.; Yang, X. Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–27. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, G.; Aydoğmuş, Z.; Senkal, F.; Turan, G. Investigation of Curcumin Water Solubility Through Emulsifying with Biocompatible Polyethylene Glycol–Based Polymers. Food Anal. Methods 2019, 12, 2129–2138. [Google Scholar] [CrossRef]
- Su, S.; Wu, J.; Gao, Y.; Luo, Y.; Yang, D.; Wang, P. The pharmacological properties of chrysophanol, the recent advances. Biomed. Pharmacother. 2020, 125, 110002. [Google Scholar] [CrossRef]
- Ghiasi, Z.; Esmaeli, F.; Aghajani, M.; Ghazi-Khansari, M.; Faramarzi, M.A.; Amani, A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int. J. Pharm. 2019, 559, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med. Drug Discov. 2020, 7, 100027. [Google Scholar] [CrossRef]
- Beig, A.; Miller, J.M.; Lindley, D.; Carr, R.A.; Zocharski, P.; Agbaria, R.; Dahan, A. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay. J. Pharm. Sci. 2015, 104, 2941–2947. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013, 2013, 848043. [Google Scholar] [CrossRef] [Green Version]
- Nazneen, S.; Juber, A.; Badruddeen; Mohammad Irfan, K.; Usama, A.; Muhammad, A.; Mohammad, A.; Tanmay, U. Nanoemulgel: For Promising Topical and Systemic Delivery. In Drug Development Life Cycle; Juber, A., Badruddeen, Mohammad, A., Mohammad Irfan, K., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 1–20. [Google Scholar]
- Sengupta, P.; Chatterjee, B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int. J. Pharm. 2017, 526, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Chapter 10—Bioavailability of Herbal Products: Approach Toward Improved Pharmacokinetics. In Evidence-Based Validation of Herbal Medicine; Mukherjee, P.K., Ed.; Elsevier: Boston, MA, USA, 2015; pp. 217–245. [Google Scholar]
- Choudhury, H.; Gorain, B.; Karmakar, S.; Biswas, E.; Dey, G.; Barik, R.; Mandal, M.; Pal, T.K. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm. 2014, 460, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.N.; Ahmed, M.H.; Saqib, M.; Shaikh, S.N. Chemical Modification: A unique solutions to Solubility problem. J. Drug Deliv. Ther. 2019, 9, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weng, P.; Liu, Y.; Wu, Z.; Wang, L.; Liu, L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll. 2022, 133, 107910. [Google Scholar] [CrossRef]
- Lee, M.K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019, 9, 36–48. [Google Scholar] [CrossRef]
- Abdelkader, H.; Alani, A.W.G.; Alany, R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014, 21, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Ag Seleci, D.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef] [Green Version]
- Kaur, D.; Kumar, S. Niosomes: Present scenario and future aspects. J. Drug Deliv. Ther. 2018, 8, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, N.; Ahmad, I.; Zulfakar, M.H.; Kargarzadeh, H.; Ramli, S. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr. Polym. 2021, 254, 117401. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Sun, L.; Xu, N.; Gu, H.; Ji, H.; Wu, L. Development and Evaluation of Topical Delivery of Microemulsions Containing Adapalene (MEs-Ap) for Acne. AAPS PharmSciTech 2021, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent. Pat. Nanotechnol. 2020, 14, 276–293. [Google Scholar] [CrossRef]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal Drug Delivery Enhancement by Compounds of Natural Origin. Molecules 2011, 16, 10507–10540. [Google Scholar] [CrossRef] [Green Version]
- Ojha, B.; Jain, V.K.; Gupta, S.; Talegaonkar, S.; Jain, K. Nanoemulgel: A promising novel formulation for treatment of skin ailments. Polym. Bull. 2022, 79, 4441–4465. [Google Scholar] [CrossRef]
- Rai, V.K.; Sharma, A.; Thakur, A. Quality Control of Nanoemulsion: By PDCA Cycle and 7QC Tools. Curr. Drug Deliv. 2021, 18, 1244–1255. [Google Scholar] [CrossRef]
- Indrati, O.; Martien, R.; Rohman, A.; Nugroho, A.K. Development of Nanoemulsion-based Hydrogel Containing Andrographolide: Physical Properties and Stability Evaluation. J. Pharm. Bioallied. Sci. 2020, 12, S816–S820. [Google Scholar] [CrossRef]
- Kass, L.E.; Nguyen, J. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1756. [Google Scholar] [CrossRef]
- Aithal, G.C.; Narayan, R.; Nayak, U.Y. Nanoemulgel: A Promising Phase in Drug Delivery. Curr. Pharm. Des. 2020, 26, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Gorain, B.; Pandey, M.; Chatterjee, L.A.; Sengupta, P.; Das, A.; Molugulu, N.; Kesharwani, P. Recent Update on Nanoemulgel as Topical Drug Delivery System. J. Pharm. Sci. 2017, 106, 1736–1751. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, V.H. Glucocorticoids: Mechanisms of action and anti-inflammatory potential in asthma. Mediat. Inflamm. 1998, 7, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res. 1998, 47, S78–S87. [Google Scholar] [CrossRef]
- Rao, C.V. Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol. 2007, 595, 213–226. [Google Scholar] [CrossRef]
- Benson, H.A.E.; Grice, J.E.; Mohammed, Y.; Namjoshi, S.; Roberts, M.S. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr. Drug Deliv. 2019, 16, 444–460. [Google Scholar] [CrossRef]
- Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Chapter 7—Challenges in oral drug delivery: A nano-based strategy to overcome. In Nanostructures for Oral Medicine; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 173–201. [Google Scholar]
- Heyneman, C.A.; Lawless-Liday, C.; Wall, G.C. Oral versus Topical NSAIDs in Rheumatic Diseases. Drugs 2000, 60, 555–574. [Google Scholar] [CrossRef]
- Permawati, M.; Anwar, E.; Arsianti, A.; Bahtiar, A. Anti-inflammatory Activity of Nanoemulgel formulated from Ageratum conyzoides (L.) L. and Oldenlandia corymbosa L. Extracts in Rats. J. Nat. Remedies 2019, 19, 124–134. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef]
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef] [PubMed]
- Zoabi, A.; Touitou, E.; Margulis, K. Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids Interfaces 2021, 5, 18. [Google Scholar] [CrossRef]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal delivery systems in cosmetics. Biomed. Dermatol. 2020, 4, 10. [Google Scholar] [CrossRef]
- Wiechers, J.W. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm. Weekbl. 1989, 11, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Oshima, S.; Suzuki, C.; Yajima, R.; Egawa, Y.; Hosoya, O.; Juni, K.; Seki, T. The use of an artificial skin model to study transdermal absorption of drugs in inflamed skin. Biol. Pharm. Bull. 2012, 35, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somagoni, J.; Boakye, C.H.; Godugu, C.; Patel, A.R.; Mendonca Faria, H.A.; Zucolotto, V.; Singh, M. Nanomiemgel—A novel drug delivery system for topical application--in vitro and in vivo evaluation. PLoS ONE 2014, 9, e115952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azeem, A.; Ahmad, F.J.; Khar, R.K.; Talegaonkar, S. Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech 2009, 10, 1093–1103. [Google Scholar] [CrossRef]
- Hussain, A.; Samad, A.; Singh, S.K.; Ahsan, M.N.; Haque, M.W.; Faruk, A.; Ahmed, F.J. Nanoemulsion gel-based topical delivery of an antifungal drug: In vitro activity and in vivo evaluation. Drug Deliv. 2016, 23, 642–647. [Google Scholar] [CrossRef]
- Begur, M.; Vasantakumar Pai, K.; Gowda, D.; Srivastava, A.; Raghundan, H. Development and characterization of nanoemulgel based transdermal delivery system for enhancing permeability of tacrolimus. Adv. Sci. Eng. Med. 2016, 8, 324–332. [Google Scholar] [CrossRef]
- Wais, M.; Samad, A.; Nazish, I.; Khale, A.; Aqil, M.; Khan, M. Formulation Development Ex-Vivo and in-Vivo Evaluation of Nanoemulsion for transdermal delivery of glibenclamide. Int. J. Pharm. Pharm. Sci 2013, 5, 747–754. [Google Scholar]
- Pratap, S.B.; Brajesh, K.; Jain, S.; Kausar, S. Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. Int. J. Drug Dev. Res 2012, 4, 151–161. [Google Scholar]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, M.; Gabriel, S.; Lichterfeld-Kottner, A.; Blume-Peytavi, U.; Kottner, J. Transepidermal water loss in healthy adults: A systematic review and meta-analysis update. Br. J. Derm. 2018, 179, 1049–1055. [Google Scholar] [CrossRef]
- Vandamme, T.F. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. J. Nanomed. Nanotechnol. 2014, 5, 1000190. [Google Scholar] [CrossRef]
- Goodarzi, F.; Zendehboudi, S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef] [Green Version]
- Sapra, B.; Thatai, P.; Bhandari, S.; Sood, J.; Jindal, M.; Tiwary, A. A critical appraisal of microemulsions for drug delivery: Part I. Ther. Deliv. 2013, 4, 1547–1564. [Google Scholar] [CrossRef]
- Ruckenstein, E. Microemulsions, macroemulsions, and the Bancroft rule. Langmuir 1996, 12, 6351–6353. [Google Scholar] [CrossRef]
- Wang, J.; Shi, A.; Agyei, D.; Wang, Q. Formulation of water-in-oil-in-water (W/O/W) emulsions containing trans-resveratrol. RSC Adv. 2017, 7, 35917–35927. [Google Scholar] [CrossRef] [Green Version]
- Som, I.; Bhatia, K.; Yasir, M. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied. Sci. 2012, 4, 2–9. [Google Scholar] [CrossRef]
- Bali, V.; Ali, M.; Ali, J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf. B Biointerfaces 2010, 76, 410–420. [Google Scholar] [CrossRef]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef]
- Syed, H.K.; Peh, K.K. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram. Acta Pol. Pharm. 2014, 71, 301–309. [Google Scholar]
- Wang, Z.; Mu, H.J.; Zhang, X.M.; Ma, P.K.; Lian, S.N.; Zhang, F.P.; Chu, S.Y.; Zhang, W.W.; Wang, A.P.; Wang, W.Y.; et al. Lower irritation microemulsion-based rotigotine gel: Formulation optimization and in vitro and in vivo studies. Int. J. Nanomed. 2015, 10, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Kar, M.; Chourasiya, Y.; Maheshwari, R.; Tekade, R.K. Chapter 2—Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 29–83. [Google Scholar]
- Zhang, Y.; Dong, L.; Liu, L.; Wu, Z.; Pan, D.; Liu, L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. J. Agric. Food Chem. 2022, 70, 6300–6316. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Y.; Li, T.; Zhang, J.; Tian, H. Stimuli-responsive hydrogels: Fabrication and biomedical applications. VIEW 2022, 3, 20200112. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jaiswal, A.; Costliow, Z.; Herbst, P.; Creasey, E.A.; Oshiro-Rapley, N.; Daly, M.J.; Carey, K.L.; Graham, D.B.; Xavier, R.J. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat. Immunol. 2022, 23, 1063–1075. [Google Scholar] [CrossRef]
- Jose, M.; Bronckaers, A.; Kumar, R.S.N.; Reenaers, D.; Vandenryt, T.; Thoelen, R.; Deferme, W. Stretchable printed device for the simultaneous sensing of temperature and strain validated in a mouse wound healing model. Sci. Rep. 2022, 12, 10138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Huang, J.; Li, Y.; Lv, X.; Zhou, H.; Wang, H.; Xu, Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020, 258, 120286. [Google Scholar] [CrossRef]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Nikmaram, N.; Roohinejad, S.; Estevinho, B.N.; Rocha, F.; Greiner, R.; McClements, D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 108–126. [Google Scholar] [CrossRef]
- Solans, C.; Solé, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012, 17, 246–254. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, F.; Zahmatkeshan, M.; Yousefpoor, Y.; Alipanah, H.; Safari, E.; Osanloo, M. Anti-inflammatory and anti-nociceptive effects of Cinnamon and Clove essential oils nanogels: An in vivo study. BMC Complement. Med. 2022, 22, 143. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.; Ray, S.; Rahman, M.; Shaharyar, A.; Bhowmik, R.; Bera, R.; Karmakar, S. Nano-emulgel: Emerging as a Smarter Topical Lipidic Emulsion-based Nanocarrier for Skin Healthcare Applications. Recent Pat. Antiinfect. Drug Discov. 2019, 14, 16–35. [Google Scholar] [CrossRef]
- Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution—A perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 2018, 19, 732–745. [Google Scholar] [CrossRef] [Green Version]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov. Food Sci. Emerg. Technol. 2022, 76, 102914. [Google Scholar] [CrossRef]
- Rehman, A.; Iqbal, M.; Khan, B.A.; Khan, M.K.; Huwaimel, B.; Alshehri, S.; Alamri, A.H.; Alzhrani, R.M.; Bukhary, D.M.; Safhi, A.Y.; et al. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics 2022, 14, 1971. [Google Scholar] [CrossRef]
- Djiobie Tchienou, G.E.; Tsatsop Tsague, R.K.; Mbam Pega, T.F.; Bama, V.; Bamseck, A.; Dongmo Sokeng, S.; Ngassoum, M.B. Multi-Response Optimization in the Formulation of a Topical Cream from Natural Ingredients. Cosmetics 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Amorós-Galicia, L.; Nardi-Ricart, A.; Verdugo-González, C.; Arroyo-García, C.M.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Suñé-Pou, M. Development of a Standardized Method for Measuring Bioadhesion and Mucoadhesion That Is Applicable to Various Pharmaceutical Dosage Forms. Pharmaceutics 2022, 14, 1995. [Google Scholar] [CrossRef]
- Shah, V.P.; Simona Miron, D.; Ștefan Rădulescu, F.; Cardot, J.-M.; Maibach, H.I. In vitro release test (IVRT): Principles and applications. Int. J. Pharm. 2022, 626, 122159. [Google Scholar] [CrossRef]
- Sheshala, R.; Anuar, N.K.; Abu Samah, N.H.; Wong, T.W. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: A Comprehensive Review. AAPS PharmSciTech 2019, 20, 164. [Google Scholar] [CrossRef]
- Kanfer, I.; Rath, S.; Purazi, P.; Mudyahoto, N.A. In vitro release testing of semi-solid dosage forms. Dissolut. Technol. 2017, 24, 52–60. [Google Scholar] [CrossRef]
- Siddiqui, A.; Jain, P.; Alex, T.S.; Ali, M.A.; Hassan, N.; Haneef, J.; Naseef, P.P.; Kuruniyan, M.S.; Mirza, M.A.; Iqbal, Z. Investigation of a Minocycline-Loaded Nanoemulgel for the Treatment of Acne Rosacea. Pharmaceutics 2022, 14, 2322. [Google Scholar] [CrossRef]
- Morsy, M.A.; Abdel-Latif, R.G.; Nair, A.B.; Venugopala, K.N.; Ahmed, A.F.; Elsewedy, H.S.; Shehata, T.M. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics 2019, 11, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algahtani, M.S.; Ahmad, M.Z.; Shaikh, I.A.; Abdel-Wahab, B.A.; Nourein, I.H.; Ahmad, J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021, 26, 3863. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Issa, L.; Al-kharouf, O.; Jaber, R.; Hreash, F. Development of Coriandrum sativum Oil Nanoemulgel and Evaluation of Its Antimicrobial and Anticancer Activity. BioMed. Res. Int. 2021, 2021, 5247816. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, F.A.; Asif, M.; Asghar, S.; Iqbal, M.S.; Khan, I.U.; Khan, S.-U.-D.; Irfan, M.; Syed, H.K.; Khames, A.; Mahmood, H.; et al. Glimepiride-Loaded Nanoemulgel; Development, In Vitro Characterization, Ex Vivo Permeation and In Vivo Antidiabetic Evaluation. Cells 2021, 10, 2404. [Google Scholar] [CrossRef]
- Chitkara, A.; Mangla, B.; Kumar, P.; Javed, S.; Ahsan, W.; Popli, H. Design-of-Experiments (DoE)-Assisted Fabrication of Quercetin-Loaded Nanoemulgel and Its Evaluation against Human Skin Cancer Cell Lines. Pharmaceutics 2022, 14, 2517. [Google Scholar] [CrossRef]
- Alyami, M.H.; Alyami, H.S.; Alshehri, A.A.; Alsharif, W.K.; Shaikh, I.A.; Algahtani, T.S. Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. Nanomaterials 2020, 10, 848. [Google Scholar] [CrossRef]
- Almostafa, M.M.; Elsewedy, H.S.; Shehata, T.M.; Soliman, W.E. Novel Formulation of Fusidic Acid Incorporated into a Myrrh-Oil-Based Nanoemulgel for the Enhancement of Skin Bacterial Infection Treatment. Gels 2022, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Albarqi, H.A.; Alyami, H.S.; Alyami, M.H.; Alqahtani, A.A.; Alasiri, A.; Algahtani, T.S.; Mohammed, A.A.; et al. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation. Gels 2021, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 2013, 3, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of Anti-Inflammatory Herbal Medicines. Adv. Pharm. Sci. 2016, 2016, 9130979. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.H.; Abu Lila, A.S.; Unissa, R.; Elsewedy, H.S.; Elghamry, H.A.; Soliman, M.S. Preparation, characterization and evaluation of anti-inflammatory and anti-nociceptive effects of brucine-loaded nanoemulgel. Colloids Surf. B Biointerfaces 2021, 205, 111868. [Google Scholar] [CrossRef]
- El-Salamouni, N.S.; Ali, M.M.; Abdelhady, S.A.; Kandil, L.S.; Elbatouti, G.A.; Farid, R.M. Evaluation of chamomile oil and nanoemulgels as a promising treatment option for atopic dermatitis induced in rats. Expert. Opin. Drug Deliv. 2020, 17, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.M.; Abu Hasim, I.I.; Meshali, M.M. Novel Clove Essential Oil Nanoemulgel Tailored by Taguchi’s Model and Scaffold-Based Nanofibers: Phytopharmaceuticals with Promising Potential as Cyclooxygenase-2 Inhibitors in External Inflammation. Int. J. Nanomed. 2020, 15, 2171–2195. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, K.; Ali, A.; Ahmad, F.J.; Hafeez, Z.; Rizvi, M.M.A.; Akhter, S.; Beg, S. Novel nanoemulsion gel containing triple natural bio-actives combination of curcumin, thymoquinone, and resveratrol improves psoriasis therapy: In vitro and in vivo studies. Drug Deliv. Transl. Res. 2021, 11, 1245–1260. [Google Scholar] [CrossRef]
- Jeengar, M.K.; Rompicharla, S.V.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.; Sistla, R. Emu oil based nano-emulgel for topical delivery of curcumin. Int. J. Pharm. 2016, 506, 222–236. [Google Scholar] [CrossRef]
- Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers 2021, 13, 577. [Google Scholar] [CrossRef]
- Siddiqui, B.; Rehman, A.u.; Ahmed, N. Development and In Vitro Characterization of Diacerein Loaded Chitosan–Chondroitin Sulfate Nanoemulgel for Osteoarthritis. Mater. Proc. 2021, 4, 47. [Google Scholar] [CrossRef]
- Chandra, A.; Arya, R.K.K.; Pal, G.R.; Tewari, B. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis. J. Drug Deliv. Ther. 2019, 9, 559–570. [Google Scholar] [CrossRef]
- Astuti, K.W.; Wijayanti, N.P.A.D.; Yustiantara, P.S.; Laksana, K.P.; Putra, P.S.A. Anti-inflammatory activity of mangosteen (Garcinia Mangostana Linn.) rind extract nanoemulgel and gel dosage forms. Biomed. Pharmacol. J. 2019, 12, 1767–1774. [Google Scholar] [CrossRef]
- Ahmad, N.; Khalid, M.S.; Khan, M.F.; Ullah, Z. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J. Drug Deliv. Sci. Technol. 2023, 80, 104094. [Google Scholar] [CrossRef]
- Benbow, T.; Campbell, J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): A literature review. Drug Dev. Ind. Pharm. 2019, 45, 1849–1855. [Google Scholar] [CrossRef]
- Haley, R.M.; von Recum, H.A. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp. Biol. Med. 2019, 244, 433–444. [Google Scholar] [CrossRef]
- Thakur, S.; Riyaz, B.; Patil, A.; Kaur, A.; Kapoor, B.; Mishra, V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed. Pharmacother. 2018, 106, 1011–1023. [Google Scholar] [CrossRef]
- Gupta, S.K. Formulation and evaluation of nanoemulsion based nanoemulgel of aceclofenac. J. Pharm. Sci. Res. 2020, 12, 524–532. [Google Scholar]
- Alam, M.S.; Algahtani, M.S.; Ahmad, J.; Kohli, K.; Shafiq-Un-Nabi, S.; Warsi, M.H.; Ahmad, M.Z. Formulation design and evaluation of aceclofenac nanogel for topical application. Ther. Deliv. 2020, 11, 767–778. [Google Scholar] [CrossRef]
- Alam, M.S.; Ali, M.S.; Alam, N.; Alam, M.I.; Anwer, T.; Imam, F.; Ali, M.D.; Siddiqui, M.R.; Shamim, M. Design and characterization of nanostructure topical gel of betamethasone dipropionate for psoriasis. J. Appl. Pharm. Sci. 2012, 2, 148–158. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Prajapati, B.G. Formulation and optimization of celecoxib nanoemulgel. Asian J. Pharm. Clin. Res. 2017, 10, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zhang, J.; Lu, B.; Lin, H.; Sarkar, R.; Wu, T.; Li, X. Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization. AAPS PharmSciTech 2021, 22, 163. [Google Scholar] [CrossRef] [PubMed]
- Morteza-Semnani, K.; Saeedi, M.; Akbari, J.; Eghbali, M.; Babaei, A.; Hashemi, S.M.H.; Nokhodchi, A. Development of a novel nanoemulgel formulation containing cumin essential oil as skin permeation enhancer. Drug Deliv. Transl. Res. 2022, 12, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Kotta, S.; Ahmad, J.; Akhter, S.; Shoaib Alam, M.; Khan, M.A.; Awan, Z.; Sivakumar, P.M. Improved Analgesic and Anti-Inflammatory Effect of Diclofenac Sodium by Topical Nanoemulgel: Formulation Development—In Vitro and In Vivo Studies. J. Chem. 2020, 2020, 4071818. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.; Ahmad, J.; Asif, M.; Khan, S.U.; Irfan, M.; Ibrahim, A.Y.; Asghar, S.; Khan, I.U.; Iqbal, M.S.; Haseeb, A.; et al. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: In vitro and in vivo Evaluation. Int. J. Nanomed. 2021, 16, 1457–1472. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Kotta, S.; Ali, J.; Alam, M.S.; Hosny, K.M.; Shaik, R.A.; Eid, B.G.; Riadi, Y.; Asfour, H.Z.; Ashy, N.; et al. Formulation Development, Statistical Optimization, In Vitro and In Vivo Evaluation of Etoricoxib-Loaded Eucalyptus Oil-Based Nanoemulgel for Topical Delivery. Appl. Sci. 2021, 11, 7294. [Google Scholar] [CrossRef]
- Radhika, P.R.; Guruprasad, S. Nanoemulsion based emulgel formulation of lipophilic drug for topical delivery. Int. J. PharmTech Res. 2016, 9, 210–223. [Google Scholar]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion Based Hydrogel for Enhanced Transdermal Delivery of Ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ghosh, S.K.; Ray, S.; Kaurav, S.S.; Mazumder, B. In vitro & in vivo studies on lornoxicam loaded nanoemulsion gels for topical application. Curr. Drug Deliv. 2014, 11, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Shehata, T.M.; Elnahas, H.M.; Elsewedy, H.S. Development, Characterization and Optimization of the Anti-Inflammatory Influence of Meloxicam Loaded into a Eucalyptus Oil-Based Nanoemulgel. Gels 2022, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci. 2013, 92, 383–392. [Google Scholar] [CrossRef]
- Dhawan, B.; Aggarwal, G.; Harikumar, S. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int. J. Pharm. Investig. 2014, 4, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishal, S.; Jhawat, V.; Phaugat, P.; Dutt, R. In vitro characterization of tofacitinib loaded novel nanoemulgel for topical delivery for the management of rheumatic arthritis. Drug Dev. Ind. Pharm. 2022, 48, 374–383. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Rebello, S.; Asok, A.K.; Mundayoor, S.; Jisha, M.S. Surfactants: Chemistry, Toxicity and Remediation. In Pollutant Diseases, Remediation and Recycling; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 277–320. [Google Scholar]
- Lim, T.Y.; Poole, R.L.; Pageler, N.M. Propylene Glycol Toxicity in Children. J. Pediatr. Pharmacol. Ther. 2014, 19, 277–282. [Google Scholar] [CrossRef]
- Sharma, S.; Parveen, R.; Chatterji, B.P. Toxicology of Nanoparticles in Drug Delivery. Curr. Pathobiol. Rep. 2021, 9, 133–144. [Google Scholar] [CrossRef]
- Semashko, V.V.; Pudovkin, M.S.; Cefalas, A.-C.; Zelenikhin, P.V.; Gavriil, V.E.; Nizamutdinov, A.S.; Kollia, Z.; Ferraro, A.; Sarantopoulou, E. Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions. Nanoscale Res. Lett. 2018, 13, 370. [Google Scholar] [CrossRef]
- Kaufman, R.C. Methods of Treating Inflammatory Disorders and Global Inflammation with Compositions Comprising Phospholipid Nanoparticle Encapsulations of Anti-Inflammatory Nutraceuticals. WO/2016/100228, 23 June 2016. [Google Scholar]
- Munira Momin, T.K.; Chando, A.; Lalka, S. Topical Nanoemulgel Formulation for Arthritic Inflammation and Pain. 2022. Available online: https://ipindiaservices.gov.in/PublicSearch/ (accessed on 22 February 2023).
- Gaikwad Ravindra Ganpati, S.A.J.; More, H.N. Novel Nano Emulgel Formulation Containing Extract of Clerodendrum inerme for Management of Psoriasis. 2022. Available online: https://ipindiaservices.gov.in/PublicSearch/ (accessed on 22 February 2023).
- Kiran Singh Sharma, D.J.S. Nanoemulgel Formulation for Topical Delivery of Curcumin. 2021. Available online: https://ipindiaservices.gov.in/PublicSearch/ (accessed on 22 February 2023).
S. No. | Active Moiety | Oil | Surfactant and Co-Surfactant | Gelling Agent | Indication | Inference | Reference |
---|---|---|---|---|---|---|---|
1 | Brucine | Myrrh oil | Tween 80 and PEG 400 | Carboxymethyl-cellulose sodium | Anti-nociceptive and Anti-inflammatory | NEG showed a higher cumulative drug release, enhanced transdermal flux and permeation, and thus enhanced invivo activity compared to conventional gels and emulgels | [111] |
2 | Chamomile oil | Chamomile and olive oil | Gelucire 44/14, Tween 20, Tween 80, and PG | HPMC | Atopic Dermatitis (AD) | The NEG-enhanced permeation of oil through skin, as a result of the CM emulgel, augmented AD lesions by reducing oedema, inflammatory cells, and the drying and scaling of skin better than CM alone | [112] |
3 | Clove oil and Cinnamon oil | Clove and Cinnamon oils | Tween-20 | Carboxymethylcellulose | Anti-inflammatory and Anti-nociceptive | A cinnamon NEG had a superior anti-nociceptive effect and inhibitory action on oedema | [89] |
4 | Clove oil | Glycerol monoacetate (GMA) | Tween 80 and Labrasol | Chitosan, gum acacia, and guar gum | External Inflammation | NEG showed high permeation and prompted enhanced anti-inflammatory action compared to pure clove oil | [113] |
5 | Curcumin, resveratrol, and thymoquinone | Oleic acid | Tween 20, and PEG 200 | Carbopol 940 | Psoriasis | NEG formulation incorporated all three active moieties effectively and aided in their permeation through the skin because of the nano size range of NE. Meanwhile, hydrogel improved the drug’s retention on the skin. | [114] |
6 | Curcumin | emu oil | Cremophor RH 40 and Labrafil M2125CS | Carbopol 940 | Rheumatoid Arthritis | Improved anti-inflammatory action was demonstrated by Curcumin NEG due to higher steady state flux (1.71 times), and increased drug retention was shown compared to curcumin dispersion in emu oil and water. Moreover, emu oil ameliorated inflammation via synergistic action. | [115] |
7 | Curcumin | Myrrh oil | Tween 80 and PG | Sodium CMC | Anti-Inflammatory | NEG formulation enhanced skin permeation of curcumin and exhibited maximum steady-state transdermal flux, showing the maximum enhancement ratio of 7.1; thus, curcumin NEG demonstrated the synergistic action of curcumin and myrrh oil. | [116] |
8 | Diacerein | Argan oil | Tween 80 | Chitosan–Chondroitin Sulfate | Osteoarthritis | NEG demonstrated prolonged drug release with excellent penetration and improved therapeutic activity. The anti-inflammatory properties of chitosan, chondroitin sulfate, and argan oil further enhanced the therapeutic profile of the formulation | [117] |
9 | Ginger Extract | Isopropyl myristate | Tween 80 and Ethanol | Carbopol 934 | Rheumatoid Arthritis | The NEG formulation exhibited good release behavior and spreadability. NEG demonstrated anti-inflammatory action comparable to that of standard ibuprofen. | [118] |
10 | Mangosteen Rind Extract | Olive oil | PEG 400 and Chromophore RH 40 | Anti-inflammatory | NEG formulation enhanced the permeation through skin, and an improved onset of action compared conventional gels. The therapeutic effect was equivalent to diclofenac sodium | [119] | |
11 | Oldenlandia corymbosa and Ageratum conyzoides Extract | Virgin Coconut Oil | Tween 80 and PEG 400 | Carbomer 940 | Osteoarthritis (OA) | NEG, whether it is used in combination or as a single extract, has good physical characteristics and shows signs of having a positive impact on cartilage degeneration brought on by MIA through anti-inflammatory action. | [52] |
12 | Swietenia macrophylla oil | Swietenia macrophylla oil | sucrose ester | Carbopol 934 and 940 | Anti-inflammatory | Anti-inflammatory activity of SM oil was enhanced when applied as a nanoemulgel. This can be attributed to the increased permeation of the nanosized droplets of NEG through a rat skin oil solution | [68] |
13 | 6-Gingerol (GL) | Oleic Acid | Tween 20 and PEG-400 | Carbopol 934 | Anti-inflammatory | NEG improved skin penetration and significantly enhanced bioavailability of optimized formulation compared to 6-GL-conventional gel, as revealed by dermatokinetic study | [120] |
S.No. | Active Moiety | Oil | Surfactant and Co-Surfactant | Gelling Agent | Disease | Inference | Reference |
---|---|---|---|---|---|---|---|
1 | Aceclofenac | Oleic acid | Tween 20, ethanol | Carbopol-940 | Arthritis | The NEG showed a higher drug release and permeation rate in vitro and ex vivo than the simple gel, resulting in a significant enhancement in bioavailability | [124] |
2 | Aceclofenac | Labrafil and Triacetin | Cremophor EL and tween 80 and Transcutol HP and PEG 400 | Carbopol-940 | Osteoarthritis (OA) | NEG showed a twofold flux compared to that of the marketed Aceclofenac sample. Overall, it shows a higher permeation rate and permeation coefficient. | [125] |
3 | Betamethasone Dipropionate | Babchi oil and eucalyptus oil | Tween 20 and ethanol | Psoriasis | NEG formulation-enhanced drug permeation sustained its release and showed good spreading properties. The formulation demonstrated a better inhibition of oedema than that of marketed formulation | [126] | |
4 | Celecoxib | Acetonitrile, triacetin, campul 908P | Acconon MC8-2EP and Capmul MCM C-10 | Carbopol-940 | Rheumatoid arthritis | The NEG formulation exhibited a good drug release profile, enhanced ex vivo permeation (3 times more than that of conventional gel), and thus higher anti-inflammatory activity. | [127] |
5 | Desonide | Eucalyptus oil, Oleic acid and Triacetin | Tween 80, Span 80 and Poloxamer 407 | Carbopol 980 | Anti-Inflammatory | NEG improved drug permeation through skin, and prolonged drug release, resulting in improved dosing frequency | [128] |
6 | Diclofenac sodium | cumin essential oil | Tween 80, Tween 20, or a mixture of Tween 80/Span 80 | Carbopol 940 | Inflammatory pain | NEG improved the permeation by 1.5 times and demonstrated better antinociceptive activity compared to the simple gel and marketed preparation | [129] |
7 | Diclofenac sodium | Clove oil, isopropyl myristate, eucalyptus oil and peppermint oil | Tween 20 and PEG 400 | Carbopol 980 | Analgesic and Anti-Inflammatory | Diclofenac sodium-loaded emulgel showed better in vitro drug release, and enhanced analgesic and anti-inflammatory activity compared to simple and marketed Diclofenac sodium gel | [130] |
8 | Diflunisal (DIF) and solubility enhanced diflunisal (DIF-IC) | Eucalyptus oil | Tween 80 and Transcutol-P | Sodium alginate, carboxymethylcellulose sodium and xanthan gum | Rheumatoid arthritis | DIF-IC-laden NEG showed better in vitro skin permeation than simple DIF NEG. DIF-IC NEG prepared with XG demonstrated superior anti-inflammatory activity in vivo | [131] |
9 | Etoricoxib (ETB) | Eucalyptus Oil | Tween 20, and PEG 200 | carbopol 934 | Inflammation and pain | ETB-loaded NEG increased the permeability coefficient by more than 1.5-fold and improved the analgesic and anti-inflammatory effect in vivo | [132] |
10 | Flurbiprofen | Camphor methyl salicylate, linseed oil and triacetin | tween 80, propylene glycol | Carbopol 934 | anti–inflammatory | The optimized NEG significantly enhanced the permeability and exhibited a substantial surge in the inhibition of inflammation compared to the marketed gel | [133] |
11 | Ketoprofen | Oleic acid | Tween 80, and Transcutol P | Carbopol 940 | anti-inflammatory (rheumatism) | NEG showed better retention, and high cumulative drug penetration and flux with low lag duration compaerd to the marketed product | [134] |
12 | Lornoxicam | Labrafac | Tween 80 and Pluronic F68 | Carbopol 934 | Anti-inflammatory | NEG showed almost 3 times more in vitro drug release than the conventional gel. The permeability, steady-state flux, coefficient, and enhancement ratio were significantly higher for the nanoemulsion based gel than the simple gel | [135] |
13 | Meloxicam | Eucalyptus Oil | Tween 80 and PEG 400 | HPMC | Anti-inflammatory | NEG showed high drug permeation and enhanced anti-inflammatory action due to the synergistic effect of meloxicam with eucalyptus oil | [136] |
14 | Meloxicam | Caprylic acid | Tween 80 and the Propylene glycol | Carbopol 940 | Anti-inflammatory | NEG increased the permeation and penetration by reducing the subcutaneous barrier and showed exceptional efficacy in managing inflammation compared to the drug solution | [137] |
15 | Piroxicam | Oleic acid | Tween 80 and ethanol | Carbopol 934 | Anti-inflammatory | NEG exhibited higher drug permeation and flux. Moreover, it showed better drug retention and a reduced lag time compared to the marketed preparation | [138] |
16 | Tofacitinib (TFB) | Oleic acid | Tween 80 and propylene glycol | Carbopol-934 | Rheumatic arthritis | NEG formulation showed higher drug-loading efficiency and enhanced permeation via skin | [139] |
Application No. | API | Title | Indication | Inventors | Year of Publication/Grant | Reference |
---|---|---|---|---|---|---|
CA3050535C | Nutraceuticals possessing anti-inflammatory properties such as resveratrol, polyphenols, cinnamaldehyde, lipoic acid, etc.) | Methods of treating inflammatory disorders and global inflammation with compositions comprising phospholipid nanoparticle encapsulations of anti-inflammatory nutraceuticals | Inflammatory disorders | Nanosphere Health Sciences Inc. | 2019 | [145] |
202021044492 | Ginger oleoresin and lipid guggul extract | Topical NEG formulation for arthritic inflammation and pain | Arthritic Inflammation and Pain | Dr. Munira Momin | 2022 | [146] |
202221026634 | Clerodendrum inerme ethanolic extract | Novel nanoemulgel formulation containing extract of Clerodendrum inerme for management of psoriasis | Psoriasis | Gaikwad Ravindra Ganpati | 2022 | [147] |
202111020026 | Curcumin | NEG formulation for topical delivery of curcumin | Anti-inflammatory, antioxidant, angiogenesis and anti-proliferative | Kiran Singh Sharma, Dr. Jagannath Sahoo | 2021 | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lal, D.K.; Kumar, B.; Saeedan, A.S.; Ansari, M.N. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023, 15, 1187. https://doi.org/10.3390/pharmaceutics15041187
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics. 2023; 15(4):1187. https://doi.org/10.3390/pharmaceutics15041187
Chicago/Turabian StyleLal, Diwya Kumar, Bhavna Kumar, Abdulaziz S. Saeedan, and Mohd Nazam Ansari. 2023. "An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery" Pharmaceutics 15, no. 4: 1187. https://doi.org/10.3390/pharmaceutics15041187
APA StyleLal, D. K., Kumar, B., Saeedan, A. S., & Ansari, M. N. (2023). An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics, 15(4), 1187. https://doi.org/10.3390/pharmaceutics15041187