Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Fatty Acid Methyl Esters (FAMEs) for Lipase Activity Analysis
2.3. NMR Analysis of Fatty Acid Methyl Esters (FAMEs)
2.4. Preparation of Nanofibrous Masks by Electrospinning Technique
2.4.1. Preparation of Lipase-Containing PLA and PVP Precursors for Electrospinning
2.4.2. Preparation of Nadifloxacin-Containing PLA and PVP Precursors for Electrospinning
2.4.3. Formulation of Nadifoxacin and Lipases into PLA and PVP Nanofibers by Electrospinning
2.4.4. Preparation of Multi-Layered Nanofibrous Face Masks by Electrospinning
2.5. Morphological Characterization by SEM
2.6. Structural Characterization by Raman Microscopy
2.7. Determination of the Elastic Modulus of Nanofibers
2.8. Water Contact Angle Measurement
2.9. Measurement of Enzymatic Activity
2.10. Ex Vivo Skin Permeability Studies
2.11. HPLC Analysis
3. Results and Discussion
3.1. Formulation of Lipases and Nadifloxacin into Polymeric Nanofibers
3.2. Structural Analysis by Raman Microscopy
3.3. Characterization of Nanofibers by Water Contact Angle Measurement and Mechanical Stressing
3.4. Effect of Nanofibrous Formulation of Enzymatic Activity
3.5. Investigation of Drug Penetration in Human Skin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Punekar, N.S. ENZYMES: Catalysis, Kinetics and Mechanisms; Springer: Singapore, 2018; ISBN 9789811307843. [Google Scholar]
- Sunar, K.; Kumar, U.; Deshmukh, S.K. Recent Applications of Enzymes in Personal Care Products. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–298. ISBN 9780128023921. [Google Scholar]
- Pyo, S.M.; Maibach, H.I. Skin Metabolism: Relevance of Skin Enzymes for Rational Drug Design. Skin Pharmacol. Physiol. 2019, 32, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Pasparakis, M.; Haase, I.; Nestle, F.O. Mechanisms Regulating Skin Immunity and Inflammation. Nat. Rev. Immunol. 2014, 14, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, E.; Labrou, N.E. Development of Enzyme-Based Cosmeceuticals: Studies on the Proteolytic Activity of Arthrospira Platensis and Its Efficient Incorporation in a Hydrogel Formulation. Cosmetics 2022, 9, 106. [Google Scholar] [CrossRef]
- Trevisol, T.C.; Henriques, R.O.; Souza, A.J.A.; Furigo, A. An Overview of the Use of Proteolytic Enzymes as Exfoliating Agents. J. Cosmet. Dermatol. 2022, 21, 3300–3307. [Google Scholar] [CrossRef]
- Biswas, P.; Mukherjee, G.; Singh, J.; Rastogi, A.; Banerjee, R. Enzymes in Health Care: Cost-Effective Production and Applications of Therapeutic Enzymes in Health Care Sector. In Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment; Thatoi, H., Mohapatra, S., Das, S.K., Eds.; Springer: Singapore, 2021; pp. 291–314. ISBN 9789813341944. [Google Scholar]
- Clark, L.E.; Mellette, J.R. The Use of Hyaluronidase as an Adjunct to Surgical Procedures. J. Dermatol. Surg. Oncol. 1994, 20, 842–844. [Google Scholar] [CrossRef]
- Stege, H. Effect of Xenogenic Repair Enzymes on Photoimmunology and Photocarcinogenesis. J. Photochem. Photobiol. B Biol. 2001, 65, 105–108. [Google Scholar] [CrossRef]
- Pencreac’h, G.; Baratti, J.C. Comparison of Hydrolytic Activity in Water and Heptane for Thirty-Two Commercial Lipase Preparations. Enzym. Microb. Technol. 2001, 28, 473–479. [Google Scholar] [CrossRef]
- Sandoval, G.; Marty, A. Screening Methods for Synthetic Activity of Lipases. Enzym. Microb. Technol. 2007, 40, 390–393. [Google Scholar] [CrossRef]
- Carvalho, A.; Fonseca, T.; Mattos, M.; Oliveira, M.; Lemos, T.; Molinari, F.; Romano, D.; Serra, I. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates. Int. J. Mol. Sci. 2015, 16, 29682–29716. [Google Scholar] [CrossRef] [Green Version]
- Trbojević Ivić, J.; Veličković, D.; Dimitrijević, A.; Bezbradica, D.; Dragačević, V.; Gavrović Jankulović, M.; Milosavić, N. Design of Biocompatible Immobilized Candida Rugosa Lipase with Potential Application in Food Industry: Design of Biocompatible Immobilized Candida Rugosa Lipase. J. Sci. Food Agric. 2016, 96, 4281–4287. [Google Scholar] [CrossRef]
- Phukon, L.C.; Chourasia, R.; Kumari, M.; Godan, T.K.; Sahoo, D.; Parameswaran, B.; Rai, A.K. Production and Characterisation of Lipase for Application in Detergent Industry from a Novel Pseudomonas Helmanticensis HS6. Bioresour. Technol. 2020, 309, 123352. [Google Scholar] [CrossRef] [PubMed]
- Moujehed, E.; Zarai, Z.; Khemir, H.; Miled, N.; Bchir, M.S.; Gablin, C.; Bessueille, F.; Bonhommé, A.; Leonard, D.; Carrière, F.; et al. Cleaner Degreasing of Sheepskins by the Yarrowia Lipolytica LIP2 Lipase as a Chemical-Free Alternative in the Leather Industry. Colloids Surf. B Biointerfaces 2022, 211, 112292. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.K.; Kumar, M.; Mohanty, S.; Sawyer, M.; Rahman, P.K.S.M.; Sukla, L.B.; Subudhi, E. Statistical Optimization for Lipase Production from Solid Waste of Vegetable Oil Industry. Prep. Biochem. Biotechnol. 2018, 48, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial Lipases and Their Industrial Applications: A Comprehensive Review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Shibatani, T.; Omori, K.; Akatsuka, H.; Kawai, E.; Matsumae, H. Enzymatic Resolution of Diltiazem Intermediate by Serratia Marcescens Lipase: Molecular Mechanism of Lipase Secretion and Its Industrial Application. J. Mol. Catal. B Enzym. 2000, 10, 141–149. [Google Scholar] [CrossRef]
- Gilani, S.L.; Najafpour, G.D.; Heydarzadeh, H.D.; Moghadamnia, A. Enantioselective Synthesis of (S)-Naproxen Using Immobilized Lipase on Chitosan Beads. Chirality 2017, 29, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Memarpoor-Yazdi, M.; Karbalaei-Heidari, H.R.; Doroodmand, M.M. Enantioselective Hydrolysis of Ibuprofen Ethyl Ester by a Thermophilic Immobilized Lipase, ELT, from Rhodothermus Marinus. Biochem. Eng. J. 2018, 130, 55–65. [Google Scholar] [CrossRef]
- Mertoli, P.; Nicolosi, G.; Patti, A.; Piattelli, M. Convenient Lipase-Assisted Preparation of Both Enantiomers of Suprofen, a Non-Steroidal Anti-Inflammatory Drug. Chirality 1996, 8, 377–380. [Google Scholar] [CrossRef]
- Cousins, R.P.C.; Mahmoudian, M.; Youds, P.M. Enzymic Resolution of Oxathiolane Intermediates—An Alternative Approach to the Anti-Viral Agent Lamivudine (3TCTM). Tetrahedron Asymmetry 1995, 6, 393–396. [Google Scholar] [CrossRef]
- Samsonowicz-Górski, J.; Koszelewski, D.; Kowalczyk, P.; Śmigielski, P.; Hrunyk, A.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. Int. J. Mol. Sci. 2022, 23, 8819. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Y.; Jiang, L.; Gong, J.; Huang, H. Synthesis of Vitamin E Succinate from Candida Rugosa Lipase in Organic Medium. Chem. Res. Chin. Univ. 2013, 29, 223–226. [Google Scholar] [CrossRef]
- Recke, V.K.; Beyrle, C.; Gerlitzki, M.; Hausmann, R.; Syldatk, C.; Wray, V.; Tokuda, H.; Suzuki, N.; Lang, S. Lipase-Catalyzed Acylation of Microbial Mannosylerythritol Lipids (Biosurfactants) and Their Characterization. Carbohydr. Res. 2013, 373, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-J.; Gong, Q.-T.; Wang, Y.; Yu, Y.; Liu, Y.-H.; Wang, N.; Yu, X.-Q. Biocatalytic Tandem Multicomponent Reactions for One-Pot Synthesis of 2-Amino-4H-Pyran Library and in Vitro Biological Evaluation. Mol. Catal. 2020, 491, 110983. [Google Scholar] [CrossRef]
- Sachdeva, V.; Roy, A.; Bharadvaja, N. Current Prospects of Nutraceuticals: A Review. Curr. Pharm. Biotechnol. 2020, 21, 884–896. [Google Scholar] [CrossRef]
- Peter, L.; Jutta, K.; Lankisch, P.G. Pancreatic Enzyme Replacement Therapy. Curr. Gastroenterol. Rep. 2001, 3, 101–108. [Google Scholar] [CrossRef]
- De La Iglesia-García, D.; Huang, W.; Szatmary, P.; Baston-Rey, I.; Gonzalez-Lopez, J.; Prada-Ramallal, G.; Mukherjee, R.; Nunes, Q.M.; Domínguez-Muñoz, J.E.; Sutton, R.; et al. Efficacy of Pancreatic Enzyme Replacement Therapy in Chronic Pancreatitis: Systematic Review and Meta-Analysis. Gut 2017, 66, 1354–1355. [Google Scholar] [CrossRef] [Green Version]
- Forsmark, C.E.; Tang, G.; Xu, H.; Tuft, M.; Hughes, S.J.; Yadav, D. The Use of Pancreatic Enzyme Replacement Therapy in Patients with a Diagnosis of Chronic Pancreatitis and Pancreatic Cancer in the US Is Infrequent and Inconsistent. Aliment. Pharmacol. Ther. 2020, 51, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.A.; Abdel-Mageed, H.M.; Tayel, S.A.; El-Nabrawi, M.A.; Fahmy, A.S. Characterization of Mucor Racemosus Lipase with Potential Application for the Treatment of Cellulite. Process Biochem. 2011, 46, 642–648. [Google Scholar] [CrossRef]
- Boussouira, B.; Pham, D.M. Topical Application Product Containing a Lipase, a Vitamin Precursor and a Fatty Alcohol. USA Patent US6153205A, 28 November 2000. [Google Scholar]
- Ansorge-Schumacher, M.B.; Thum, O. Immobilised Lipases in the Cosmetics Industry. Chem. Soc. Rev. 2013, 42, 6475. [Google Scholar] [CrossRef]
- Allhorn, M.; Arve, S.; Brüggemann, H.; Lood, R. A Novel Enzyme with Antioxidant Capacity Produced by the Ubiquitous Skin Colonizer Propionibacterium Acnes. Sci. Rep. 2016, 6, 36412. [Google Scholar] [CrossRef] [Green Version]
- Heng, A.H.S.; Chew, F.T. Systematic Review of the Epidemiology of Acne Vulgaris. Sci. Rep. 2020, 10, 5754. [Google Scholar] [CrossRef] [Green Version]
- Araviiskaia, E.; Dréno, B. The Role of Topical Dermocosmetics in Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, N.; Hernandez, L.E.; Martin, M.R.; Does, A.V.; Nouri, K. Acne Treatment Review and Future Perspectives. Dermatol. Ther. 2022, 35, e15719. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, J.; Jeong, S.; Im, B.N.; Kim, M.-K.; Yang, S.-G.; Na, K. Lipase-Sensitive Transfersomes Based on Photosensitizer/Polymerizable Lipid Conjugate for Selective Antimicrobial Photodynamic Therapy of Acne. Adv. Healthcare Mater. 2016, 5, 3139–3147. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Lee, J.; Im, B.N.; Park, H.; Na, K. Combined Photodynamic and Antibiotic Therapy for Skin Disorder via Lipase-Sensitive Liposomes with Enhanced Antimicrobial Performance. Biomaterials 2017, 141, 243–250. [Google Scholar] [CrossRef]
- Higaki, S. Lipase Inhibitors for the Treatment of Acne. J. Mol. Catal. B Enzym. 2003, 22, 377–384. [Google Scholar] [CrossRef]
- Wen, P.; Zong, M.-H.; Linhardt, R.J.; Feng, K.; Wu, H. Electrospinning: A Novel Nano-Encapsulation Approach for Bioactive Compounds. Trends Food Sci. Technol. 2017, 70, 56–68. [Google Scholar] [CrossRef]
- Tóth, G.D.; Kazsoki, A.; Gyarmati, B.; Szilágyi, A.; Vasvári, G.; Katona, G.; Szente, L.; Zelkó, R.; Poppe, L.; Balogh-Weiser, D.; et al. Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies. Pharmaceutics 2021, 13, 972. [Google Scholar] [CrossRef]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Balogh-Weiser, D.; Németh, C.; Ender, F.; Gyarmati, B.; Szilágyi, A.; Poppe, L. Electrospun Nanofibers for Entrapment of Biomolecules. In Electrospinning Method Used to Create Functional Nanocomposites Films; Tański, T., Jarka, P., Matysiak, W., Eds.; InTech: London, UK, 2018; ISBN 9781789235807. [Google Scholar]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on Immobilization of Enzymes on Synthetic Polymeric Nanofibers Fabricated by Electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. [Google Scholar] [CrossRef]
- Babitha, S.; Rachita, L.; Karthikeyan, K.; Shoba, E.; Janani, I.; Poornima, B.; Purna Sai, K. Electrospun Protein Nanofibers in Healthcare: A Review. Int. J. Pharm. 2017, 523, 52–90. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, V.; Motlekar, S.; Kadhe, G.; Bhagat, S. Efficacy and safety of nadifloxacin for bacterial skin infections: Results from clinical and post-marketing studies. Dermatol. Ther. 2014, 4, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox, S.; O’Boyle, N.M. Skin lipids in health and disease: A review. Chem. Phys. Lipids 2021, 236, 105055. [Google Scholar] [CrossRef]
- Available online: https://www.chemicalbook.com/SpectrumEN_112-39-0_1HNMR.htm (accessed on 22 March 2023).
- Available online: https://www.chemicalbook.com/SpectrumEN_112-63-0_1HNMR.htm (accessed on 22 March 2023).
- Available online: https://www.chemicalbook.com/SpectrumEN_112-62-9_1HNMR.htm (accessed on 22 March 2023).
- Gihaz, S.; Weiser, D.; Dror, A.; Sátorhelyi, P.; Jerabek-Willemsen, M.; Poppe, L.; Fishman, A. Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel. ChemSusChem 2016, 9, 3161–3170. [Google Scholar] [CrossRef]
- Mahadevan, G.D.; Neelagund, S.E. Thermostable lipase from Geobacillus sp. Iso5: Bioseparation, characterization and native structural studies. J. Basic Microbiol. 2014, 54, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms from Semi-interpenetrating Networks of Gelatin and Poly(ethylene glycol) diacrylate. Pharm. Res. 2009, 26, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Fassihi, A.R. Kinetics of drug release from solid matrices: Effect of compaction pressure. Int. J. Pharm. 1987, 37, 119–125. [Google Scholar] [CrossRef]
- Columbo, P.; Bettini, R.; Santi, P.; Peppas, N.A. Swellable matrices for controlled drug delivery: Gel-layer behaviour, mechanisms and optimal performance. Pharm. Sci. Tecnol. Today 2000, 3, 198–204. [Google Scholar] [CrossRef]
Formulated Agent | |||||
---|---|---|---|---|---|
Polymer Matrix | - | CrL | RmL | NF | Multilayered Mask |
Fiber Diameter (nm) | |||||
PVP | 359 ± 68 | 157 ± 44 | 233 ± 55 | 612 ± 233 | 279 ± 70 |
PLA | 1563 ± 230 | 1110 ± 378 | 904 ± 333 | 945 ± 340 | 1109 ± 297 |
Polymer Matrix | Loading | E (MPa) | CAwater (°) | SFE (mN m−1) |
---|---|---|---|---|
PVP | – | 92.5 ± 3.8 | 5.6 ± 0.9 | 81.2 ± 0.5 |
RmL, CrL, NF | 13.7 ± 3.2 | 11.7 ± 1.2 | 79.9 ± 0.4 | |
PLA | – | 22.4 ± 2.3 | 123.6 ± 2.9 | 39.7 ± 0.9 |
RmL, CrL, NF | 10.0 ± 0.2 | 112.6 ± 2.9 | 42.3 ± 0.7 |
Polymer Matrix | Loading | UB (U × g−1) | ||
---|---|---|---|---|
PA-ME | LA-ME | OA-ME | ||
PVP | RmL | 231 ± 59 | 213 ± 96 | 290 ± 48 |
CrL | 209 ± 40 | 54 ± 7 | 280 ± 31 | |
RmL, CrL | 192 ± 39 | 221 ± 9 | 146 ± 42 | |
RmL, CrL, NF | 28 ± 4 | 256 ± 6 | 208 ± 67 | |
PLA | RmL | 453 ± 1 | 375 ± 28 | 408 ± 40 |
CrL | 389 ± 39 | 413 ± 1 | 418 ± 35 | |
RmL, CrL | 343 ± 40 | 331 ± 1 | 350 ± 24 | |
RmL, CrL, NF | 182 ± 49 | 316 ± 27 | 345 ± 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogh-Weiser, D.; Molnár, A.; Tóth, G.D.; Koplányi, G.; Szemes, J.; Decsi, B.; Katona, G.; Salamah, M.; Ender, F.; Kovács, A.; et al. Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics 2023, 15, 1174. https://doi.org/10.3390/pharmaceutics15041174
Balogh-Weiser D, Molnár A, Tóth GD, Koplányi G, Szemes J, Decsi B, Katona G, Salamah M, Ender F, Kovács A, et al. Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics. 2023; 15(4):1174. https://doi.org/10.3390/pharmaceutics15041174
Chicago/Turabian StyleBalogh-Weiser, Diána, Alexandra Molnár, Gergő D. Tóth, Gábor Koplányi, József Szemes, Balázs Decsi, Gábor Katona, Maryana Salamah, Ferenc Ender, Anita Kovács, and et al. 2023. "Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique" Pharmaceutics 15, no. 4: 1174. https://doi.org/10.3390/pharmaceutics15041174
APA StyleBalogh-Weiser, D., Molnár, A., Tóth, G. D., Koplányi, G., Szemes, J., Decsi, B., Katona, G., Salamah, M., Ender, F., Kovács, A., Berkó, S., Budai-Szűcs, M., & Balogh, G. T. (2023). Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics, 15(4), 1174. https://doi.org/10.3390/pharmaceutics15041174