Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents
Abstract
:1. Introduction
2. Materials and Methods
3. Orofacial Pain
4. Etiopathogenesis of Orofacial Pain
4.1. Nociceptive Orofacial Pain
4.1.1. Toothache
4.1.2. Lesions to the Oral Mucosa
4.1.3. Temporomandibular Dysfunction (TMD)
4.2. Neuropathic Orofacial Pain
4.2.1. Trigeminal Neuralgia
4.2.2. Glossopharyngeal Neuralgia
4.2.3. Postherpetic Neuralgia, Post-Traumatic Neuropathies and Neuropathies of Neoplastic Origin
4.2.4. Atypical Odontalgia (AO)
4.2.5. Burning Mouth Syndrome (BMS)
- Higher BR stimulation thresholds were observed in patients with BMS, indicating dysfunction affecting tactile sensory fibers outside intraoral sites [18]. In addition, BR abnormalities were found in 20% of patients, suggesting possible subclinical brainstem disease and peripheral trigeminal neuropathy of the lingual or mandibular nerves [17].
- QST abnormalities, understood as hypoesthesias, were observed in patients with BMS when the results obtained were compared with laboratory reference values [17,18,59]. These findings would indicate peripheral small-fiber neuropathy or deafferentation of the central trigeminal thermal pathways. Evidence supporting focal small-fiber neuropathy in BMS comes from neuropathologic studies showing decreased epithelial nerve fiber densities (ENFDs) of the mucosa of the tongue [58,60,61]. However, since thermal QST and ENFD are age-dependent, further studies taking this into consideration would be needed.
- -
- Psychological disorders (depression and anxiety) play an important role in pain modulation and perception, as they affect nerve transmission of pain and decrease the individual perception of pain [2]. A considerable percentage of BMS patients report depression and anxiety, and improvements in perceived symptomatology have been observed as a result of cognitive behavioral therapy and the use of anxiolytics [55]. This would indicate that psychological disorders might predispose to the development of BMS, although how they might influence its etiology remains unclear [2].
- -
- Hormonal alterations associated with reduced estrogen and progesterone levels could promote mucosal dryness and the onset of psychological disorders. This is suggested by the observation that BMS has a higher prevalence in the female sex: middle-aged and postmenopausal women [66]. Supporting this hypothesis would be the good results in terms of xerostomia following oral hormone replacement therapy [67].
4.3. Another Type of Pain: Sympathetic Reflex Pain
5. Palmitoylethanolamide
Palmitoylethanolamide in the Management of Diseases of Dental Interest
6. Other Natural Agents with Potential in the Treatment of Pain
6.1. Compounds Derived from Aesculus Hippocastanum
6.2. Compounds Derived from Scutellaria Baicalensis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A. The revised IASP definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976. [Google Scholar] [CrossRef] [PubMed]
- Low, P.A.; Dotson, R.M. Symptomatic treatment of painful neuropathy. JAMA 1998, 280, 1863–1864. [Google Scholar] [CrossRef] [PubMed]
- Renton, T. Tooth-Related Pain or Not? Headache 2020, 60, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Van Deun, L.; de Witte, M.; Goessens, T.; Halewyck, S.; Ketelaer, M.C.; Matic, M.; Moens, M.; Vaes, P.; Van Lint, M.; Versijpt, J. Facial Pain: A Comprehensive Review and Proposal for a Pragmatic Diagnostic Approach. Eur. Neurol. 2020, 83, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Handa, S.; Keith, D.A.; Abou-Ezzi, J.; Rosèn, A. Neuropathic orofacial pain: Characterization of different patient groups using the ICOP first edition, in a tertiary level Orofacial Pain Clinic. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132, 653–661. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Byers, M.; Narhi, M. Dental injury models: Experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit. Rev. Oral Biol. Med. 1999, 10, 4–39. [Google Scholar] [CrossRef]
- Dabiri, D.; Harper, D.E.; Kapila, Y.; Kruger, G.H.; Clauw, D.J.; Harte, S. Applications of sensory and physiological measurement in oral-facial dental pain. Spec. Care Dent. 2018, 38, 395–404. [Google Scholar] [CrossRef]
- Olgart, L. The role of local factors in dentin and pulp in intradental pain mechanisms. J. Dent. Res. 1985, 64, 572–578. [Google Scholar] [CrossRef]
- Ismail, S.B.; Kumar, S.K.; Zain, R.B. Oral lichen planus and lichenoid reactions: Etiopathogenesis, diagnosis, management and malignant transformation. J. Oral Sci. 2007, 49, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Michelozzi, G.; Mourou, M.; Schiavoni, S.; Gandolfo, N.; Calabrò, F. Patologia dell’articolazione temporo-mandibolare. Riv. Neuroradiol. 2000, 13, 475–494. [Google Scholar] [CrossRef]
- Woolf, C.J.; Mannion, R.J. Neuropathic pain: Aetiology, symptoms, mechanisms, and management. Lancet 1999, 353, 1959–1964. [Google Scholar] [CrossRef]
- Vadalouca, A.; Siafaka, I.; Argyra, E.; Vrachnou, E.; Moka, E. Therapeutic management of chronic neuropathic pain: An examination of pharmacologic treatment. Ann. N. Y. Acad. Sci. 2006, 1088, 164–186. [Google Scholar] [CrossRef]
- Beniczky, S.; Tajti, J.; Timea Varga, E.; Vécsei, L. Evidence-based pharmacological treatment of neuropathic pain syndromes. J. Neural Transm. 2005, 112, 735–749. [Google Scholar] [CrossRef]
- Forssell, H.; Teerijoki-Oksa, T.; Kotiranta, U.; Kantola, R.; Bäck, M.; Vuorjoki-Ranta, T.-R.; Siponen, M.; Leino, A.; Puukka, P.; Estlander, A.-M. Pain and pain behavior in burning mouth syndrome: A pain diary study. J. Orofac. Pain 2012, 26, 117–125. [Google Scholar]
- Souza, F.T.; Santos, T.P.; Bernardes, V.F.; Teixeira, A.L.; Kümmer, A.M.; Silva, T.A.; Abreu, M.H. The impact of burning mouth syndrome on health-related quality of life. Health Qual. Life Outcomes 2011, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Forssell, H.; Jääskeläinen, S.; Tenovuo, O.; Hinkka, S. Sensory dysfunction in burning mouth syndrome. Pain 2002, 99, 41–47. [Google Scholar] [CrossRef]
- Jääskeläinen, S.K.; Forssell, H.; Tenovuo, O. Abnormalities of the blink reflex in burning mouth syndrome. Pain 1997, 73, 455–460. [Google Scholar] [CrossRef]
- Schimmel, M.; Aarab, G.; Baad-Hansen, L.; Lobbezoo, F.; Svensson, P. A conceptual model of oro-facial health with an emphasis on function. J. Oral Rehabil. 2021, 48, 1283–1294. [Google Scholar] [CrossRef]
- International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia 2020, 40, 129–221. [CrossRef] [Green Version]
- Bender, S.D. Orofacial Pain: Where We Are and Where We Are Going. Dent. Clin. 2018, 62, ix–x. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. Int. J. Mol. Sci. 2021, 22, 5305. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Ribes, S.; Djukic, M.; Eiffert, H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front. Cell. Neurosci. 2014, 8, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, E.; Cuzzocrea, S. Palmitoylethanolamide in homeostatic and traumatic central nervous system injuries. CNS Neurol. Disord. Drug Targets 2013, 12, 55–61. [Google Scholar] [CrossRef]
- Citraro, R.; Russo, E.; Scicchitano, F.; van Rijn, C.M.; Cosco, D.; Avagliano, C.; Russo, R.; D’Agostino, G.; Petrosino, S.; Guida, F. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. Neuropharmacology 2013, 69, 115–126. [Google Scholar] [CrossRef]
- Borrelli, F.; Romano, B.; Petrosino, S.; Pagano, E.; Capasso, R.; Coppola, D.; Battista, G.; Orlando, P.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br. J. Pharmacol. 2015, 172, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Petrosino, S.; Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 2017, 174, 1349–1365. [Google Scholar] [CrossRef]
- Rankin, L.; Fowler, C.J. The Basal Pharmacology of Palmitoylethanolamide. Int. J. Mol. Sci. 2020, 21, 7942. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Peritore, A.F.; Piras, C.; Cuzzocrea, S.; Crupi, R. Palmitoylethanolamide and related aliamides: Prohomeostatic lipid compounds for animal health and wellbeing. Vet. Sci. 2020, 7, 78. [Google Scholar] [CrossRef]
- Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the treatment of pain: Pharmacokinetics, safety and efficacy. Br. J. Clin. Pharmacol. 2016, 82, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Jäger, A.; Setiawan, M.; Beins, E.; Schmidt-Wolf, I.; Konermann, A. Analogous modulation of inflammatory responses by the endocannabinoid system in periodontal ligament cells and microglia. Head Face Med. 2020, 16, 26. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Iorio-Siciliano, V.; Alibrandi, A.; Ramaglia, L.; Leonardi, R. Effectiveness of a nutraceutical agent in the non-surgical periodontal therapy: A randomized, controlled clinical trial. Clin. Oral Investig. 2021, 25, 1035–1045. [Google Scholar] [CrossRef]
- Nosratzehi, T. Burning mouth syndrome: A review of therapeutic approach. J. Complement. Integr. Med. 2021, 19, 83–90. [Google Scholar] [CrossRef]
- Siracusa, R.; Fusco, R.; Cordaro, M.; Peritore, A.F.; D’Amico, R.; Gugliandolo, E.; Crupi, R.; Genovese, T.; Evangelista, M.; Di Paola, R.; et al. The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. Int. J. Mol. Sci. 2020, 21, 7700. [Google Scholar] [CrossRef]
- Rankin, L.; Gouveia-Figueira, S.; Danielsson, K.P.; Fowler, C.J. Relative Deficiency of Anti-Inflammatory N-Acylethanolamines Compared to Prostaglandins in Oral Lichen Planus. Biomedicines 2020, 8, 481. [Google Scholar] [CrossRef]
- Ottaviani, G.; Rupel, K.; Gobbo, M.; Poropat, A.; Zoi, V.; Faraon, M.; Di Lenarda, R.; Biasotto, M. Efficacy of ultramicronized palmitoylethanolamide in burning mouth syndrome-affected patients: A preliminary randomized double-blind controlled trial. Clin. Oral Investig. 2019, 23, 2743–2750. [Google Scholar] [CrossRef]
- Marini, I.; Lavinia Bartolucci, M.; Bortolotti, F.; Rosaria Gatto, M.; Alessandri Bonetti, G. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain. J. Orofac. Pain 2012, 26, 99. [Google Scholar]
- Donaldson, D.; Kroening, R. Recognition and treatment of patients with chronic orofacial pain. J. Am. Dent. Assoc. 1979, 99, 961–966. [Google Scholar] [CrossRef]
- Spencer, C.J.; Gremillion, H.A. Neuropathic orofacial pain: Proposed mechanisms, diagnosis, and treatment considerations. Dent. Clin. 2007, 51, 209–224. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.E. Pain management: Part 1: Managing acute and postoperative dental pain. Anesth. Prog. 2010, 57, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Abbott, P.V. An overview of the dental pulp: Its functions and responses to injury. Aust. Dent. J. 2007, 52, S4–S6. [Google Scholar] [CrossRef] [PubMed]
- Renton, T. Dental (odontogenic) pain. Rev. Pain 2011, 5, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, D.E.; Schrepf, A.; Clauw, D.J. Pain Mechanisms and Centralized Pain in Temporomandibular Disorders. J. Dent. Res. 2016, 95, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benoliel, R.; Eliav, E. Neuropathic orofacial pain. Oral Maxillofac. Surg. Clin. N. Am. 2008, 20, 237–254. [Google Scholar] [CrossRef]
- Mongini, F. Le Cefalee e il Dolore Facciale; UTET, 1998. [Google Scholar]
- Cruccu, G.; Di Stefano, G.; Truini, A. Trigeminal Neuralgia. N. Engl. J. Med. 2020, 383, 754–762. [Google Scholar] [CrossRef]
- Araya, E.I.; Claudino, R.F.; Piovesan, E.J.; Chichorro, J.G. Trigeminal Neuralgia: Basic and Clinical Aspects. Curr. Neuropharmacol. 2020, 18, 109–119. [Google Scholar] [CrossRef]
- Han, A.; Montgomery, C.; Zamora, A.; Winder, E.; Kaye, A.; Carroll, C.; Aquino, A.; Kakazu, J.; Kaye, A. Glossopharyngeal Neuralgia: Epidemiology, Risk factors, Pathophysiology, Differential diagnosis, and Treatment Options. Health Psychol. Res. 2022, 10, 36042. [Google Scholar] [CrossRef]
- Rushton, J.G.; Stevens, J.C.; Miller, R.H. Glossopharyngeal (vagoglossopharyngeal) neuralgia: A study of 217 cases. Arch. Neurol. 1981, 38, 201–205. [Google Scholar] [CrossRef]
- Giovannini, S.; Coraci, D.; Brau, F.; Galluzzo, V.; Loreti, C.; Caliandro, P.; Padua, L.; Maccauro, G.; Biscotti, L.; Bernabei, R. Neuropathic Pain in the Elderly. Diagnostics 2021, 11, 613. [Google Scholar] [CrossRef]
- Hanakawa, T. Neural mechanisms underlying deafferentation pain: A hypothesis from a neuroimaging perspective. J. Orthop. Sci. 2012, 17, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Nixdorf, D.; Moana-Filho, E. Persistent dento-alveolar pain disorder (PDAP): Working towards a better understanding. Rev. Pain 2011, 5, 18–27. [Google Scholar] [CrossRef]
- Takenoshita, M.; Miura, A.; Shinohara, Y.; Mikuzuki, R.; Sugawara, S.; Tu, T.T.H.; Kawasaki, K.; Kyuragi, T.; Umezaki, Y.; Toyofuku, A. Clinical features of atypical odontalgia; three cases and literature reviews. Biopsychosoc. Med. 2017, 11, 21. [Google Scholar] [CrossRef]
- Scala, A.; Checchi, L.; Montevecchi, M.; Marini, I.; Giamberardino, M.A. Update on burning mouth syndrome: Overview and patient management. Crit. Rev. Oral Biol. Med. 2003, 14, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, S.K. Pathophysiology of primary burning mouth syndrome. Clin. Neurophysiol. 2012, 123, 71–77. [Google Scholar] [CrossRef]
- Svensson, P.; Kaaber, S. General health factors and denture function in patients with burning mouth syndrome and matched control subjects. J. Oral Rehabil. 1995, 22, 887–895. [Google Scholar] [CrossRef]
- Kolkka, M.; Forssell, H.; Virtanen, A.; Puhakka, A.; Pesonen, U.; Jääskeläinen, S.K. Neurophysiology and genetics of burning mouth syndrome. Eur. J. Pain 2019, 23, 1153–1161. [Google Scholar] [CrossRef]
- Ito, M.; Kurita, K.; Ito, T.; Arao, M. Pain threshold and pain recovery after experimental stimulation in patients with burning mouth syndrome. Psychiatry Clin. Neurosci. 2002, 56, 161–168. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Renton, T.; Yiangou, Y.; Zakrzewska, J.; Chessell, I.; Bountra, C.; Anand, P. Burning mouth syndrome as a trigeminal small fibre neuropathy: Increased heat and capsaicin receptor TRPV1 in nerve fibres correlates with pain score. J. Clin. Neurosci. 2007, 14, 864–871. [Google Scholar] [CrossRef]
- Puhakka, A.; Forssell, H.; Soinila, S.; Virtanen, A.; Röyttä, M.; Laine, M.; Tenovuo, O.; Teerijoki-Oksa, T.; Jääskeläinen, S. Peripheral nervous system involvement in primary burning mouth syndrome—Results of a pilot study. Oral Dis. 2016, 22, 338–344. [Google Scholar] [CrossRef]
- Hagelberg, N.; Forssell, H.; Rinne, J.O.; Scheinin, H.; Taiminen, T.; Aalto, S.; Luutonen, S.; Någren, K.; Jääskeläinen, S. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain 2003, 101, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, I.K.; Hagelberg, N.; Jääskeläinen, S.K.; Hietala, J.; Pertovaara, A. Dopaminergic and serotonergic mechanisms in the modulation of pain: In vivo studies in human brain. Eur. J. Pharmacol. 2018, 834, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarneri, F.; Guarneri, C.; Marini, H. Contribution of neuroinflammation in burning mouth syndrome: Indications from benzodiazepine use. Dermatol. Ther. 2008, 21 (Suppl. S2), S21–S24. [Google Scholar] [CrossRef] [PubMed]
- Minguez-Sanz, M.P.; Salort-Llorca, C.; Silvestre-Donat, F.J. Etiology of burning mouth syndrome: A review and update. Med. Oral Patol. Oral Cir. Bucal 2011, 16, e144–e148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardrop, R.W.; Hailes, J.; Burger, H.; Reade, P.C. Oral discomfort at menopause. Oral Surg. Oral Med. Oral Pathol. 1989, 67, 535–540. [Google Scholar] [CrossRef]
- Laine, M.; Leimola-Virtanen, R. Effect of hormone replacement therapy on salivary flow rate, buffer effect and pH on perimenopausal and postmenopausal women. Arch. Oral Biol. 1996, 41, 91–96. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, Y.; Yoo, T.; Han, P.; Inman, J. Burning mouth syndrome: A systematic review of treatments. Oral Dis. 2018, 24, 325–334. [Google Scholar] [CrossRef]
- Manfredini, D.; Brady Bucci, M.; Montagna, F.; Guarda-Nardini, L. Elettromiografia dei muscoli masticatori non è utile in ambito medico legale. Tagete-Arch. Leg. Med. Dent. 2008, 6, 1–19. [Google Scholar]
- Barbero, M.; Schneebeli, A.; Koetsier, E.; Maino, P. Myofascial pain syndrome and trigger points: Evaluation and treatment in patients with musculoskeletal pain. Curr. Opin. Support Palliat. Care 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Beggiato, S.; Tomasini, M.C.; Ferraro, L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer’s disease. Front. Pharmacol. 2019, 10, 821. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, G.; Russo, R.; Avagliano, C.; Cristiano, C.; Meli, R.; Calignano, A. Palmitoylethanolamide protects against the amyloid-β25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology 2012, 37, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular actions of PPAR α in lipid metabolism and inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The novel role of PPAR alpha in the brain: Promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem. Res. 2020, 45, 972–988. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.; Comelli, F.; Costa, B.; Fowler, C.J. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: Comparison with indomethacin and possible involvement of cannabinoid receptors. Br. J. Pharmacol. 2005, 146, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Huggins, J.P.; Smart, T.S.; Langman, S.; Taylor, L.; Young, T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 2012, 153, 1837–1846. [Google Scholar]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Popeijus, H.E.; van Otterdijk, S.D.; van der Krieken, S.E.; Konings, M.; Serbonij, K.; Plat, J.; Mensink, R.P. Fatty acid chain length and saturation influences PPARα transcriptional activation and repression in HepG2 cells. Mol. Nutr. Food Res. 2014, 58, 2342–2349. [Google Scholar] [CrossRef]
- Gabrielsson, L.; Gouveia-Figueira, S.; Häggström, J.; Alhouayek, M.; Fowler, C.J. The anti-inflammatory compound palmitoylethanolamide inhibits prostaglandin and hydroxyeicosatetraenoic acid production by a macrophage cell line. Pharmacol. Res. Perspect. 2017, 5, e00300. [Google Scholar] [CrossRef]
- Aloe, L.; Leon, A.; Levi-Montalcini, R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents Actions 1993, 39, C145–C147. [Google Scholar] [CrossRef]
- Hesselink, J.K.; de Boer, T.; Witkamp, R.F. Palmitoylethanolamide: A Natural Body-Own Anti-Inflammatory Agent; GIHI Chemicals: Zhejiang, China, 2013. [Google Scholar]
- Isola, G.; Matarese, G.; Cordasco, G.; Rotondo, F.; Crupi, A.; Ramaglia, L. Anticoagulant therapy in patients undergoing dental interventions: A critical review of the literature and current perspectives. Minerva Stomatol. 2015, 64, 21–46. [Google Scholar]
- Skaper, S.D.; Facci, L.; Giusti, P. Mast cells, glia and neuroinflammation: Partners in crime? Immunology 2014, 141, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Tsuboi, K.; Uyama, T. Metabolism of endocannabinoids and related N-acylethanolamines: Canonical and alternative pathways. FEBS J. 2013, 280, 1874–1894. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Majorana, A.; Cocchi, M.A.; Conti, G.; Bonadeo, S.; Padovani, A.; Lauria, G.; Bardellini, E.; Rezzani, R.; Rodella, L.F. Epithelial expression of vanilloid and cannabinoid receptors: A potential role in burning mouth syndrome pathogenesis. Histol. Histopathol. 2014, 29, 523–533. [Google Scholar] [PubMed]
- Barry, A.; O’Halloran, K.D.; McKenna, J.P.; McCreary, C.; Harhen, B.; Kerr, D.M.; Finn, D.P.; Downer, E.J. Plasma N-acylethanolamine and endocannabinoid levels in burning mouth syndrome: Potential role in disease pathogenesis. J. Oral Pathol. Med. 2018, 47, 440–442. [Google Scholar] [CrossRef]
- Ueda, N.; Tsuboi, K.; Uyama, T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2010, 1801, 1274–1285. [Google Scholar] [CrossRef]
- Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors. Pain 2008, 139, 541–550. [Google Scholar] [CrossRef]
- Bettoni, I.; Comelli, F.; Colombo, A.; Bonfanti, P.; Costa, B. Non-neuronal cell modulation relieves neuropathic pain: Efficacy of the endogenous lipid palmitoylethanolamide. CNS Neurol. Disord. Drug Targets 2013, 12, 34–44. [Google Scholar] [CrossRef]
- Ardizzone, A.; Fusco, R.; Casili, G.; Lanza, M.; Impellizzeri, D.; Esposito, E.; Cuzzocrea, S. Effect of Ultra-Micronized-Palmitoylethanolamide and Acetyl-l-Carnitine on Experimental Model of Inflammatory Pain. Int. J. Mol. Sci. 2021, 22, 1967. [Google Scholar] [CrossRef]
- Esposito, E.; Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Siracusa, R.; Gugliandolo, E.; Crupi, R.; Cuzzocrea, S. A new co-micronized composite containing palmitoylethanolamide and polydatin shows superior oral efficacy compared to their association in a rat paw model of carrageenan-induced inflammation. Eur. J. Pharm. 2016, 782, 107–118. [Google Scholar] [CrossRef]
- Olaoluwa, O.; Taiwo, O.; Nahar, L.; Sarker, S.D. Ethnopharmacology, phytochemistry and biological activities of the African species of the genus Ficus. Trends Phytochem. Res. 2022, 6, 46–69. [Google Scholar]
- Mouthe Kemayou, G.P.; Fotsing Kache, S.; Dzouemo, L.C.; Happi, G.M.; Fogue Kouam, S.; Tchouankeu, J.C. Phytochemistry, traditional uses, and pharmacology of the genus Ekebergia (Meliaceae): A review. Trends Phytochem. Res. 2021, 5, 110–125. [Google Scholar]
- Mohammadhosseini, M.; Frezza, C.; Venditti, A.; Akbarzadeh, A. Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 2019, 23, 1828–1842. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Venditti, A.; Akbarzadeh, A. The genus Perovskia Kar.: Ethnobotany, chemotaxonomy and phytochemistry: A review. Toxin Rev. 2021, 40, 484–505. [Google Scholar] [CrossRef]
- Idris, S.; Mishra, A.; Khushtar, M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J. Basic Clin. Physiol. Pharm. 2020, 10, 31. [Google Scholar] [CrossRef]
- Wen, K.; Fang, X.; Yang, J.; Yao, Y.; Nandakumar, K.S.; Salem, M.L.; Cheng, K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021, 28, 1042–1066. [Google Scholar] [CrossRef]
- Uddin, M.S.; Mamun, A.A.; Rahman, M.A.; Kabir, M.T.; Alkahtani, S.; Alanazi, I.S.; Perveen, A.; Ashraf, G.M.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Exploring the Promise of Flavonoids to Combat Neuropathic Pain: From Molecular Mechanisms to Therapeutic Implications. Front. Neurosci. 2020, 14, 478. [Google Scholar] [CrossRef]
- Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev. Med. Chem. 2020, 20, 1475–1488. [Google Scholar] [CrossRef]
- Gallelli, L. Escin: A review of its anti-edematous, anti-inflammatory, and venotonic properties. Drug Des. Dev. Ther. 2019, 13, 3425–3437. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Kim, T.H.; Park, S.A.; Kim, W.T.; Park, Y.W.; Ahn, J.S.; Jeong, M.; Kim, M.Y.; Seo, K. Efficacy of horse chestnut leaf extract ALH-L1005 as a matrix metalloproteinase inhibitor in ligature-induced periodontitis in canine model. J. Vet Sci. 2017, 18, 245–251. [Google Scholar] [CrossRef]
- Zhao, T.; Tang, H.; Xie, L.; Zheng, Y.; Ma, Z.; Sun, Q.; Li, X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharm. 2019, 71, 1353–1369. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Ye, J.; Gao, L.; Liu, Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed. Pharm. 2021, 133, 110917. [Google Scholar] [CrossRef] [PubMed]
- Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017, 131, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, K.; Zhang, H.; Yuan, M.; An, N.; Wei, Y.; Wang, L.; Sun, Y.; Xing, Y.; Gao, Y. Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res. Bull. 2020, 164, 314–324. [Google Scholar] [CrossRef] [PubMed]
CLASSIFICATION | EXPLANATION |
---|---|
1. OROFACIAL PAIN ATTRIBUTED TO DISORDERS OF DENTOALVEOLAR AND RELATED ANATOMICAL STRUCTURES. | Pain caused by disease, injury or abnormal functioning of the tooth pulp, periodontium, gingiva, oral mucosa, salivary glands or jaw tissue, or pain resulting from the normal functioning of the tooth pulp that signals the risk of tooth damage.
|
2. MYOFASCIAL OROFACIAL PAIN. | Localized pain in the masticatory muscles, with or without functional impairment.
|
3. TEMPOROMANDIBULAR JOINT (TMJ) PAIN. | Localized TMJ pain, occurs at rest or during movement or palpation of the jaw.
|
4. OROFACIAL PAIN ATTRIBUTED TO CRANIAL NERVE INJURY OR DISEASE. | A localized pain in the distribution area of one of the cranial sensory nerves (i.e., the trigeminal and glossopharyngeal nerves) with a history of trauma or disease known to cause nerve injury.
|
5. OROFACIAL PAIN SIMILAR TO PRIMARY HEADACHE PRESENTATIONS. | Pain in the orofacial area, similar to one of the primary headache types in character, duration, and intensity of pain with or without the symptoms associated with these headache types but without concomitant headache.
|
6. IDIOPATHIC OROFACIAL PAIN. | Unilateral or bilateral intra-oral or facial pain in the distribution of one or more branches of the trigeminal nerve for which the etiology is unknown.
|
Oral Disorder | Outcomes | Refs | Year |
---|---|---|---|
Periodontal disease | Improvement in clinical inflammatory and post-treatment pain after SRP. | [32] | 2021 |
OLP | Potential reduction in inflammation through the decrease in levels of pro-inflammatory cytokines. | [35] | 2020 |
BMS | Neurological pain relief. | [89] | 2013 |
Osteoarthritis or arthralgia of TMJ | Pain reduction and improvement in maximum mouth opening. | [37] | 2012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santonocito, S.; Donzella, M.; Venezia, P.; Nicolosi, G.; Mauceri, R.; Isola, G. Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents. Pharmaceutics 2023, 15, 1193. https://doi.org/10.3390/pharmaceutics15041193
Santonocito S, Donzella M, Venezia P, Nicolosi G, Mauceri R, Isola G. Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents. Pharmaceutics. 2023; 15(4):1193. https://doi.org/10.3390/pharmaceutics15041193
Chicago/Turabian StyleSantonocito, Simona, Martina Donzella, Pietro Venezia, Giada Nicolosi, Rodolfo Mauceri, and Gaetano Isola. 2023. "Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents" Pharmaceutics 15, no. 4: 1193. https://doi.org/10.3390/pharmaceutics15041193
APA StyleSantonocito, S., Donzella, M., Venezia, P., Nicolosi, G., Mauceri, R., & Isola, G. (2023). Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents. Pharmaceutics, 15(4), 1193. https://doi.org/10.3390/pharmaceutics15041193