Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis
Abstract
:1. Introduction
2. Classification and Characteristics of Tumor Ablation Therapy
2.1. Radiofrequency Ablation
2.2. High-Intensity Focus Ultrasound
2.3. Microwave Ablation
2.4. Magnetic Hyperthermia Ablation
2.5. Cryoablation
2.6. Photothermal Ablation
2.7. Others
3. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dupuy, D.E. Tumor ablation: Treatment and palliation using image-guided therapy. Oncology 2005, 19, 4–5. [Google Scholar] [PubMed]
- Goldberg, S.N.; Grassi, C.J.; Cardella, J.F.; Charboneau, J.W.; Gerald, D.; Dodd, I.; Dupuy, D.E.; Gervais, D.; Gillams, A.R.; Kane, R.A.; et al. Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Radiology 2005, 235, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Bagchee-Clark, A.; Hwang, A.; Milovanovic, L. Image-Guided Tumor Ablative Therapies. In Demystifying Interventional Radiology: A Guide for Medical Students; Athreya, S., Albahhar, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 75–94. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 2018, 6, 746–765. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, N.; Takara, K.; Ohto, M.; Okuda, K.; Hirooka, N. Treatment of small hepatocellular carcinoma by percutaneous injection of ethanol into tumor with real-time ultrasound monitoring. Acta Hepatol. Jpn. 1983, 24, 920. [Google Scholar]
- Livraghi, T.; Bajetta, E.; Matricardi, L.; Villa, E.; Lovati, R.; Vettori, C. Fine Needle Percutaneous Intratumoral Chemotherapy under Ultrasound Guidance: A Feasibility Study. Tumori J. 1986, 72, 81–87. [Google Scholar] [CrossRef]
- Celikoglu, F.; Celikoglu, S.I.; Goldberg, E.P. Bronchoscopic intratumoral chemotherapy of lung cancer. Lung Cancer 2008, 61, 1–12. [Google Scholar] [CrossRef]
- Livraghi, T.; Festi, D.; Monti, F.; Salmi, A.; Vettori, C. US-guided percutaneous alcohol injection of small hepatic and abdominal tumors. Radiology 1986, 161, 309–312. [Google Scholar] [CrossRef]
- Livraghi, T.; Vettori, C. Percutaneous ethanol injection therapy of hepatoma. Cardiovasc. Interv. Radiol. 1990, 13, 146–152. [Google Scholar] [CrossRef]
- Schoengen, A.; Binder, T.; Schiffelholz, W.; Schulz, P.C.; Zeelen, U. Fine-Needle Aspiration Guided by Ultrasound in Suspected Cancer. Oncol. Res. Treat. 1994, 17, 420–426. [Google Scholar] [CrossRef]
- Livraghi, T.; Grigiori, W.; Mazziotti, A.; Sangalli, G.; Vettori, C. Percutaneous Alcohol Injection of Portal Thrombosis in Hepatocellular Carcinoma: A New Possible Treatment. Tumori J. 1990, 76, 394–397. [Google Scholar] [CrossRef]
- Rossi, S.; Di Stasi, M.; Buscarini, E.; Cavanna, L.; Quaretti, P.; Squassante, E.; Garbagnati, F.; Buscarini, L. Percutaneous radiofrequency interstitial thermal ablation in the treatment of small hepatocellular carcinoma. Cancer J. Sci. Am. 1995, 1, 73–81. [Google Scholar]
- Seki, T.; Wakabayashi, M.; Nakagawa, T.; Itho, T.; Shiro, T.; Kunieda, K.; Sato, M.; Uchiyama, S.; Inoue, K. Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma. Cancer 1994, 74, 817–825. [Google Scholar] [CrossRef]
- Caracalos, A.; Levita, E.; Cooper, I.S. A study of roentgeno-anatomic lesion location and results in cryosurgery of the basal ganglia. St. Barnabas Hosp. Med. Bull. 1962, 1, 24–32. [Google Scholar] [PubMed]
- Benninger, M.S.; Derakhshan, A.; Milstein, C.F. The Use of Cryotherapy for Papilloma and Early Laryngeal Cancers:Long-term Results. Ann. Otol. Rhinol. Laryngol. 2015, 124, 509–514. [Google Scholar] [CrossRef]
- Waltz, J.M.; Aristizabal, G.; Riklan, M.; Cooper, I.S. Results of cryothalamectomy for parkinsonism in patients over 70. J. Am. Geriatr. Soc. 1967, 15, 1–8. [Google Scholar] [CrossRef]
- Bahn, D.K.; Lee, F.; Badalament, R.; Kumar, A.; Greski, J.; Chernick, M. Targeted cryoablation of the prostate: 7-Year outcomes in the primary treatment of prostate cancer. Urology 2002, 60, 3–11. [Google Scholar] [CrossRef]
- Waitz, R.; Solomon, S.B.; Petre, E.N.; Trumble, A.E.; Fassò, M.; Norton, L.; Allison, J.P. Potent Induction of Tumor Immunity by Combining Tumor Cryoablation with Anti-CTLA-4 Therapy. Cancer Res. 2012, 72, 430–439. [Google Scholar] [CrossRef]
- Babaian, R.J.; Donnelly, B.; Bahn, D.; Baust, J.G.; Dineen, M.; Ellis, D.; Katz, A.; Pisters, L.; Rukstalis, D.; Shinohara, K.; et al. Best Practice Statement on Cryosurgery for the Treatment of Localized Prostate Cancer. J. Urol. 2008, 180, 1993–2004. [Google Scholar] [CrossRef]
- Donnelly, B.J.; Saliken, J.C.; Brasher, P.M.A.; Ernst, S.D.; Rewcastle, J.C.; Lau, H.; Robinson, J.; Trpkov, K. A randomized trial of external beam radiotherapy versus cryoablation in patients with localized prostate cancer. Cancer 2010, 116, 323–330. [Google Scholar] [CrossRef]
- Onik, G.; Vaughan, D.; Lotenfoe, R.; Dineen, M.; Brady, J. The “male lumpectomy”: Focal therapy for prostate cancer using cryoablation results in 48 patients with at least 2-year follow-up. Urol. Oncol. Semin. Orig. Investig. 2008, 26, 500–505. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, D.; Qi, Y.; Zhou, T.; Rao, W.; Liu, J.; Hu, K. Autologous Cancer Cryoablation Mediated Nanovaccine Augments Systematic Immunotherapy. Mater. Horiz. 2023. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Brace, C.L.; Fred, T.; Lee, J.; Goldberg, S.N. Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Puijk, R.S.; Ahmed, M.; Adam, A.; Arai, Y.; Arellano, R.; Baère, T.d.; Bale, R.; Bellera, C.; Binkert, C.A.; Brace, C.L.; et al. Consensus Guidelines for the Definition of Time-to-Event End Points in Image-guided Tumor Ablation: Results of the SIO and DATECAN Initiative. Radiology 2021, 301, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ban, Q.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci. 2017, 5, 190–210. [Google Scholar] [CrossRef]
- Shang, T.; Yu, X.; Han, S.; Yang, B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater. Sci. 2020, 8, 5241–5259. [Google Scholar] [CrossRef]
- Kok, H.P.; Cressman, E.N.K.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; ter Haar, G.; Wust, P.; Crezee, J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020, 37, 711–741. [Google Scholar] [CrossRef]
- Grasso, A.; Watkinson, A.F.; Tibballs, J.M.; Burroughs, A.K. Radiofrequency ablation in the treatment of hepatocellular carcinoma—A clinical viewpoint. J. Hepatol. 2000, 33, 667–672. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Jiang, H.; Zhang, Y.; Lin, W.; Mo, J.; Jin, C. Combination of Ablation and Immunotherapy for Hepatocellular Carcinoma: Where We Are and Where to Go. Front. Immunol. 2021, 12, 792781. [Google Scholar] [CrossRef]
- Li, X.; Liang, P. Immunotherapy for hepatocellular carcinoma following thermal ablation. JBUON 2014, 19, 867–871. [Google Scholar]
- Naya, Y.; Nakamura, T.; Oishi, M.; Ueda, T.; Nakanishi, H.; Naitoh, Y.; Hongo, F.; Kamoi, K.; Okihara, K.; Tanaka, O.; et al. The efficacy of radio-frequency ablation for metastatic lung or liver tumors of male germ cell tumors as an alternative minimally invasive therapy after salvage chemotherapy. Int. J. Clin. Oncol. 2015, 20, 1192–1197. [Google Scholar] [CrossRef]
- Camacho, J.C.; Petre, E.N.; Sofocleous, C.T. Thermal Ablation of Metastatic Colon Cancer to the Liver. Semin. Interv. Radiol. 2019, 36, 310–318. [Google Scholar] [CrossRef]
- Kelekis, A.; Cornelis, F.H.; Tutton, S.; Filippiadis, D. Metastatic Osseous Pain Control: Bone Ablation and Cementoplasty. Semin. Interv. Radiol 2017, 34, 328–336. [Google Scholar] [CrossRef]
- Lomas, D.J.; Woodrum, D.A.; Mynderse, L.A. Salvage ablation for locally recurrent prostate cancer. Curr. Opin. Urol. 2021, 31, 188–193. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Lerner, E.C.; Edwards, R.M.; Wilkinson, D.S.; Fecci, P.E. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv. Drug Deliv. Rev. 2022, 185, 114311. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, R.; Miao, X.; Chen, X. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field. J. Clin. Transl. Hepatol. 2018, 6, 85–88. [Google Scholar] [CrossRef]
- Wu, F. Heat-Based Tumor Ablation: Role of the Immune Response. In Therapeutic Ultrasound; Escoffre, J.-M., Bouakaz, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 131–153. [Google Scholar] [CrossRef]
- van den Bijgaart, R.J.E.; Schuurmans, F.; Fütterer, J.J.; Verheij, M.; Cornelissen, L.A.M.; Adema, G.J. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front. Immunol. 2021, 12, 617365. [Google Scholar] [CrossRef]
- Qian, L.; Shen, Y.; Xie, J.; Meng, Z. Immunomodulatory effects of ablation therapy on tumors: Potentials for combination with immunotherapy. Biochim. Biophys. Acta (BBA) Rev. Cancer 2020, 1874, 188385. [Google Scholar] [CrossRef]
- Ao, M.; Yu, F.; Li, Y.; Zhong, M.; Tang, Y.; Yang, H.; Wu, X.; Zhuang, Y.; Wang, H.; Sun, X.; et al. Carrier-free nanoparticles of camptothecin prodrug for chemo-photothermal therapy: The making, in vitro and in vivo testing. J. Nanobiotechnol. 2021, 19, 350. [Google Scholar] [CrossRef]
- Wen, L.; Liu, H.; Hu, C.; Wei, Z.; Meng, Y.; Lu, C.; Su, Y.; Lu, L.; Liang, H.; Xu, Q. Thermoacoustic Imaging-Guided Thermo-Chemotherapy for Hepatocellular Carcinoma Sensitized by a Microwave-Responsive Nitric Oxide Nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 10477–10491. [Google Scholar] [CrossRef]
- Ni, W.; Li, Y.; Liang, L.; Yang, S.; Zhan, M.; Lu, C.; Lu, L.; Wen, L. Tumor Microenvironment-Responsive Nanodrug for Clear-Cell Renal Cell Carcinoma Therapy via Triggering Waterfall-Like Cascade Ferroptosis. J. Biomed. Nanotechnol. 2022, 18, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, T.; Fang, Q.; Pan, C.; Akakuru, O.U.; Ren, W.; Lin, J.; Sheng, A.; Ma, X.; Wu, A. Gd2O3/b-TiO2 composite nanoprobes with ultra-high photoconversion efficiency for MR image-guided NIR-II photothermal therapy. Exploration 2022, 2, 20220014. [Google Scholar] [CrossRef]
- Doughty, A.C.V.; Hoover, A.R.; Layton, E.; Murray, C.K.; Howard, E.W.; Chen, W.R. Nanomaterial Applications in Photothermal Therapy for Cancer. Materials 2019, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Jabir, N.R.; Tabrez, S.; Ashraf, G.M.; Shakil, S.; Damanhouri, G.A.; Kamal, M.A. Nanotechnology-based approaches in anticancer research. Int. J. Nanomed. 2012, 7, 4391–4408. [Google Scholar] [CrossRef]
- Dai, H.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration 2022, 2, 20210157. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Y.; Dong, Z.; Li, W.; Yang, N.; Wang, X.; Feng, L.; Liu, Z. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat. Commun. 2021, 12, 4299. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Zhao, H.; Shi, D.; Zheng, C.; Zhao, Y.; Yang, X. Radiofrequency-thermal effect of cisplatin-crosslinked nanogels for triple therapies of ablation-chemo-embolization. Chem. Eng. J. 2022, 450, 138421. [Google Scholar] [CrossRef]
- Kuai, X.; Zhu, Y.; Yuan, Z.; Wang, S.; Lin, L.; Ye, X.; Lu, Y.; Luo, Y.; Pang, Z.; Geng, D.; et al. Perfluorooctyl bromide nanoemulsions holding MnO2 nanoparticles with dual-modality imaging and glutathione depletion enhanced HIFU-eliciting tumor immunogenic cell death. Acta Pharm. Sin. B 2022, 12, 967–981. [Google Scholar] [CrossRef]
- Han, X.; Wang, R.; Xu, J.; Chen, Q.; Liang, C.; Chen, J.; Zhao, J.; Chu, J.; Fan, Q.; Archibong, E.; et al. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials 2019, 224, 119490. [Google Scholar] [CrossRef]
- Zhou, Q.; Gong, N.; Zhang, D.; Li, J.; Han, X.; Dou, J.; Huang, J.; Zhu, K.; Liang, P.; Liang, X.J.; et al. Mannose-Derived Carbon Dots Amplify Microwave Ablation-Induced Antitumor Immune Responses by Capturing and Transferring “Danger Signals” to Dendritic Cells. ACS Nano 2021, 15, 2920–2932. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhu, C.Y.; Zhou, X.L.; Chen, L.; Bo, X.W.; Shen, Y.T.; Guan, X.; Han, X.X.; Shan, D.D.; Sun, L.P.; et al. Engineering ROS-Responsive Bioscaffolds for Disrupting Myeloid Cell-Driven Immunosuppressive Niche to Enhance PD-L1 Blockade-Based Postablative Immunotherapy. Adv. Sci. 2022, 9, 2104619. [Google Scholar] [CrossRef]
- Pan, J.; Hu, P.; Guo, Y.; Hao, J.; Ni, D.; Xu, Y.; Bao, Q.; Yao, H.; Wei, C.; Wu, Q.; et al. Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments. ACS Nano 2020, 14, 1033–1044. [Google Scholar] [CrossRef]
- Liu, X.; Yan, B.; Li, Y.; Ma, X.; Jiao, W.; Shi, K.; Zhang, T.; Chen, S.; He, Y.; Liang, X.-J.; et al. Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. ACS Nano 2020, 14, 1936–1950. [Google Scholar] [CrossRef]
- Yu, J.; Liu, S.; Wang, Y.P.; He, X.D.; Zhang, Q.F.; Qi, Y.X.; Zhou, D.F.; Xie, Z.G.; Li, X.Y.; Huang, Y.B. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact. Mater. 2022, 7, 389–400. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Liu, Y.; Zhang, T.; Zhao, Y.; Zang, J.; Yang, Y.; He, R.; Chong, G.; Ruan, S.; et al. Dual Closed-Loop of Catalyzed Lactate Depletion and Immune Response to Potentiate Photothermal Immunotherapy. ACS Appl. Mater. Interfaces 2022, 14, 23260–23276. [Google Scholar] [CrossRef]
- Li, M.; Guo, R.; Wei, J.; Deng, M.; Li, J.; Tao, Y.; Li, M.; He, Q. Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence. Acta Biomater. 2021, 136, 546–557. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Q.; Feng, Z.; Xu, Q.; Zhang, X.; Yang, Y.; Zhang, Y.; Liang, X.J.; Yu, Z.; Yu, M. Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity. ACS Nano 2022, 16, 951–962. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Cucchetti, A.; Piscaglia, F.; Cescon, M.; Colecchia, A.; Ercolani, G.; Bolondi, L.; Pinna, A.D. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma. J. Hepatol. 2013, 59, 300–307. [Google Scholar] [CrossRef]
- Liu, Q.; Zhai, B.; Yang, W.; Yu, L.-X.; Dong, W.; He, Y.-Q.; Chen, L.; Tang, L.; Lin, Y.; Huang, D.-D.; et al. Abrogation of Local Cancer Recurrence After Radiofrequency Ablation by Dendritic Cell-Based Hyperthermic Tumor Vaccine. Mol. Ther. 2009, 17, 2049–2057. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X.; Hossen, M.N.; Kakar, P.; Zhao, Y.; Chen, X. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat. Commun. 2018, 9, 3695. [Google Scholar] [CrossRef] [PubMed]
- Mai, X.; Chang, Y.; You, Y.; He, L.; Chen, T. Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation. J. Control. Release 2021, 331, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Patel, S.P.; Roszik, J.; Qin, Y. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Front. Immunol. 2018, 9, 1591. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yao, M.; Shi, J.; Li, X.; Gao, Y.; Luo, Q.; Hou, R.; Liang, X.; Wang, F. High Intensity Focused Ultrasound-Responsive and Ultrastable Cerasomal Perfluorocarbon Nanodroplets for Alleviating Tumor Multidrug Resistance and Epithelial-Mesenchymal Transition. ACS Nano 2020, 14, 15904–15918. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Z.; Pan, Z.; Hao, Y.; Wang, C.; Dong, Z.; Li, Q.; Han, Y.; Tian, L.; Feng, L.; et al. Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. Sci. Adv. 2022, 8, eabo5285. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31, 1808283. [Google Scholar] [CrossRef]
- Chao, Y.; Chen, Q.; Liu, Z. Smart Injectable Hydrogels for Cancer Immunotherapy. Adv. Funct. Mater. 2020, 30, 1902785. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Pan, J.; Zhong, X.; Ding, J.; Jing, X.; Sun, S. A general strategy towards an injectable microwave-sensitive immune hydrogel for combined percutaneous microwave ablation and immunotherapy. Chem. Eng. J. 2021, 422, 130111. [Google Scholar] [CrossRef]
- Shen, Y.T.; Chen, L.; Guan, X.; Han, X.X.; Bo, X.W.; Li, S.Y.; Sun, L.P.; Chen, Y.; Yue, W.W.; Xu, H.X. Tailoring Chemoimmunostimulant Bioscaffolds for Inhibiting Tumor Growth and Metastasis after Incomplete Microwave Ablation. Acs Nano 2021, 15, 20414–20429. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, D.; Gu, N.; Zheng, J.; Ding, A.; Wang, Z.; Xing, B.; Ma, M.; Zhang, Y. Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers. J. Nanosci. Nanotechnol. 2005, 5, 1185–1192. [Google Scholar] [CrossRef]
- Sadhukha, T.; Wiedmann, T.S.; Panyam, J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013, 34, 5163–5171. [Google Scholar] [CrossRef]
- Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldofner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 2005, 21, 637–647. [Google Scholar] [CrossRef]
- Thiesen, B.; Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2008, 24, 467–474. [Google Scholar] [CrossRef]
- Olagunju, A.; Forsman, T.; Ward, R.C. An update on the use of cryoablation and immunotherapy for breast cancer. Front. Immunol. 2022, 13, 1026475. [Google Scholar] [CrossRef]
- Yakkala, C.; Denys, A.; Kandalaft, L.; Duran, R. Cryoablation and immunotherapy of cancer. Curr. Opin. Biotechnol. 2020, 65, 60–64. [Google Scholar] [CrossRef]
- He, X.Z.; Wang, Q.F.; Han, S.; Wang, H.Q.; Ye, Y.Y.; Zhu, Z.Y.; Zhang, S.Z. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes. Drug Des. Dev. Ther. 2015, 9, 1449–1458. [Google Scholar] [CrossRef]
- Izawa, J.I.; Madsen, L.T.; Scott, S.M.; Tran, J.P.; McGuire, E.J.; Von Eschenbach, A.C.; Pisters, L.L. Salvage cryotherapy for recurrent prostate cancer after radiotherapy: Variables affecting patient outcome. J. Clin. Oncol. 2002, 20, 2664–2671. [Google Scholar] [CrossRef]
- Chodez, M.; Fiard, G.; Arnoux, V.; Descotes, J.L.; Long, J.A. Les traitements ablatifs dans le cancer du rein localisé: Revue de la littérature en 2014. Prog. Urol. 2015, 25, 499–509. [Google Scholar] [CrossRef]
- Wang, H.; Agarwal, P.; Liang, Y.; Xu, J.; Zhao, G.; Tkaczuk, K.H.R.; Lu, X.; He, X. Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials 2018, 180, 265–278. [Google Scholar] [CrossRef]
- Yao, X.; Jovevski, J.J.; Todd, M.F.; Xu, R.; Li, Y.; Wang, J.; Matosevic, S. Nanoparticle-Mediated Intracellular Protection of Natural Killer Cells Avoids Cryoinjury and Retains Potent Antitumor Functions. Adv. Sci. 2020, 7, 1902938. [Google Scholar] [CrossRef]
- Kwak, K.; Yu, B.; Lewandowski, R.J.; Kim, D.H. Recent progress in cryoablation cancer therapy and nanoparticles mediated cryoablation. Theranostics 2022, 12, 2175–2204. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xiao, F.; Lu, C.; Wen, L. Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Front. Pharmacol. 2022, 13, 905078. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, T.; Cheng, H.; Zhang, F.; Yang, X.; Wang, S.; Zhou, J.; Ding, Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J. Pharm. Sci. 2021, 16, 738–761. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wen, L.; Weng, Y.; Song, J.; Li, H.; Zhang, Y.; He, X.; Zhao, W.; Zhan, M.; Li, Y.; et al. Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. Chem. Eng. J. 2021, 425, 131451. [Google Scholar] [CrossRef]
- Weiss, M.J.; Wolfgang, C.L. Irreversible electroporation: A novel therapy for stage III pancreatic cancer. Adv. Surg. 2014, 48, 253–258. [Google Scholar] [CrossRef]
- Narayanan, G.; Froud, T.; Suthar, R.; Barbery, K. Irreversible electroporation of hepatic malignancy. Semin. Interv. Radiol. 2013, 30, 67–73. [Google Scholar] [CrossRef]
- Chan, G.; Pua, U. Irreversible Electroporation of the Pancreas. Semin. Interv. Radiol. 2019, 36, 213–220. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Z.; Han, X.; Zhu, Z.; Li, Z.; Zhao, Y.; Liu, Z.; Lv, Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front. Immunol. 2022, 12, 811726. [Google Scholar] [CrossRef]
- Berry, E.; Walker, G.C.; Fitzgerald, A.J.; Zinov’ev, N.N.; Chamberlain, M.; Smye, S.W.; Miles, R.E.; Smith, M.A. Do in vivo terahertz imaging systems comply with safety guidelines. J. Laser Appl. 2003, 15, 192–198. [Google Scholar] [CrossRef]
- Amini, T.; Jahangiri, F.; Ameri, Z.; Hemmatian, M.A. A Review of Feasible Applications of THz Waves in Medical Diagnostics and Treatments. J. Lasers Med. Sci. 2021, 12, e92. [Google Scholar] [CrossRef]
- Parshina, S.S.; Kirichuk, V.F.; Tupikin, V.D.; Golovacheva, T.V.; Krenitskiy, A.P.; Majborodin, A.V. Terahertz therapy—A new method of treatment of cardiovascular pathology. In Proceedings of the 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, 19–23 September 2005; Volume 311, pp. 311–312. [Google Scholar]
- Fedorov, V.I. The biological effects of terahertz laser radiation as a fundamental premise for designing diagnostic and treatment methods. Biophysics 2017, 62, 324–330. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Rodriguez-Juarez, R.; Woycicki, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: A new therapeutic avenue? Sci. Rep. 2013, 3, 2363. [Google Scholar] [CrossRef]
- Chen, T.; Gu, T.; Cheng, L.; Li, X.; Han, G.; Liu, Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020, 255, 120202. [Google Scholar] [CrossRef]
- Gu, T.; Wang, Y.; Lu, Y.; Cheng, L.; Feng, L.; Zhang, H.; Li, X.; Han, G.; Liu, Z. Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. Adv. Mater. 2019, 31, e1806803. [Google Scholar] [CrossRef]
- Gu, T.; Chen, T.; Cheng, L.; Li, X.; Han, G.; Liu, Z. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic chemotherapy. Nano Res. 2020, 13, 2209–2215. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, J.; Fang, C.; Zhou, Y.; Li, X.; Han, G. Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen-Inductive Starvation/Electrodynamic Tumor Therapy. Adv. Sci. 2020, 7, 2001223. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349. [Google Scholar] [CrossRef]
- Chen, S.; Li, D.; Du, X. Carrier-Free Nanoassembly of Doxorubicin Prodrug and Sirna for Combinationally Inducing Immunogenic Cell Death and Reversing Immunosuppression. Nano Today 2020, 35, 100924. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; He, L.; Liu, Y.; Dong, H.; Li, Y. Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy. Biomaterials 2020, 244, 119964. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Han, G.; Li, X. Platinum-copper alloy nanoparticles armored with chloride ion transporter to promote electro-driven tumor inhibition. Bioact. Mater. 2022, 12, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554. [Google Scholar] [CrossRef] [PubMed]
- Averitt, R.D.; Westcott, S.L.; Halas, N.J. Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16, 1824–1832. [Google Scholar] [CrossRef]
- Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288, 243–247. [Google Scholar] [CrossRef]
Ablation Technique | Nanoplatforms | Immune Activating Strategies | Immunity Effect | Experimental Models | Type of Cancer | Ref. |
---|---|---|---|---|---|---|
Radiofrequency Ablation (RFA) | hemin and LOX co-loaded CaCO3-encapsulated PLGA nanoreactors (HLCaP NRs) | PD-1 blockade immune checkpoint blockade | Primed antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, | 4T1 tumors on mice, H22 tumors on Balb/c mice, VX2 tumors on New Zealand rabbits | Breast cancer, liver cancer | [48] |
RFA | Poly (N-iso prylacrylamide-b-methyl acrylic acid) nanogels (Pt-PNA) | Inducing a favorable immune response | inducing a favorable immune response and enhancing the synergistic antitumor effect of RFA. | VX2 liver tumor in rabbits, | Liver cancer | [49] |
High-Intensity Focused Ultrasound (HIFU) | Perfluorooctyl bromide (PFOB) nanoemulsions holding MnO2 nanoparticles (MBP) | Triggered immunogenic cell death (ICD) | Elicited maturation of dendritic cells (DCs) facilitated activation of CD8+ T cells, CD4+ T cells, and NK cells. | 4T1 tumors on nude mice | Breast cancer | [50] |
HIFU | PLGA-R837 particles and PLGA-MPLA particles | Adjuvants and immune checkpoint blockade | Stimulated immature DCs and naive T cells at tumor sites | CT26 tumors on Balb/c mice | Colon cancer | [51] |
Microwave Ablation (MWA) | mannose-derived Carbon dots (Man-CDs) | Immune adjuvants | Promoted DCs maturation and secret cytokines such as IL-1β, IL-6 and TNF-α. | Hepa1–6 tumors on C57BL/6 mice | Liver cancer | [52] |
MWA | aPDL1&IPI549@Gel | PD-1 blockade | Inhibited progression of residual tumors after inadequate ablation | CT26 tumors on Balb/c mice | Colon cancer | [53] |
Magnetic Hyperthermia Ablation (MHA) | CoFe2O4@MnFe2O4 | PD-1 blockade | Promoted the maturation and activation of DCs and cytotoxic T cells | 4T1 tumors on Balb/c mice | Breast cancer | [54] |
MHA | Ferrimagnetic vortex-domain iron oxide nanoring and graphene oxide (FVIOs-GO) | Triggered immunogenic cell death (ICD) | Promoted macrophage polarization to M1 phenotypes, and increases tumor-infiltrating T lymphocytes | 4T1 tumors on Balb/c mice | Breast cancer | [55] |
Photothermal Ablation (PTA) | I-PEG2k-COOH capped Pt NPs(I-Pt NPs) | PD-L1 inhibitor (BMS-1) | Captured the antigen released from the ablated tumor cells, enhanced the antigen internalization | 4T1 tumors on Balb/c mice | Breast cancer | [56] |
PTA | Cu2+ and LOX into mPDA nanoparticles(mCuLP) | Triggered immunogenic cell death (ICD) | Promoted DC maturation and then T lymphocyte infiltration to kill tumor cells | 4T1 tumors on Balb/c mice | Breast cancer | [57] |
PTA | CpG ODNs | CpG Toll-like receptor 9 (TLR9) agonist. | Induced maturation of DCs and activated immunogenic cell death (ICD) | B16F10 tumors on C57BL/6 mice | Melanoma | [58] |
PTA | PLGA-ICG-R837 nanoparticles | R837 Toll-like receptor 7 (TLR7) agonist. | Activated immune system, inhibited growth of distant tumours. | 4T1 tumors on Balb/c mice, CT26 tumors on Balb/c mice | Breast cancer, Colorectal cancer | [59] |
Electrodynamic therapy (EDT) | Pt–Pd@DON | Triggered immunogenic cell death (ICD) | Promoted the joint functions of ICD and CD8+ T cell infiltration | 4T1 tumors on Balb/c mice | Breast cancer | [60] |
Ablation Technique | Application | Advantages | Disadvantages |
---|---|---|---|
Radiofrequency Ablation (RFA) | Cancer treatment, arrhythmia treatment, pain management | Low risk, low cost, fast procedure, precise, minimal scarring, compatibility with pacemakers and metal implants | Limited penetration, can cause nerve damage, may require multiple sessions, not suitable for large tumors |
High-Intensity Focused Ultrasound (HIFU) | Cancer treatment, uterine fibroid treatment | Non-invasive, precise, low risk of complications, no ionizing radiation, Large killing range | Limited penetration, requires image guidance, not suitable for all tumor types, expensive |
Microwave Ablation (MWA) | Cancer treatment | Fast procedure, minimal scarring, can be performed on an outpatient basis, suitable for larger tumors, Ability to resist the influence of blood flow | Limited penetration, can cause nerve damage, may require multiple sessions, not suitable for all tumor types |
Magnetic Hyperthermia Ablation (MHA) | Cancer treatment | Non-invasive, can target deep-seated tumors, can be combined with other therapies, low risk of complications | Requires magnetic nanoparticles to be delivered to the tumor site, currently in experimental stages |
Cryoablation (CA) | Cancer treatment, pain management | Non-invasive, precise, low risk of complications, can be performed on an outpatient basis, low anesthesia requirements | Limited penetration, may require multiple sessions, not suitable for all tumor types, can cause nerve damage |
Photothermal Ablation (PTA) | Cancer treatment | Non-invasive, precise, needle catheter ablation for hemostasis | Limited penetration, may require multiple sessions, not suitable for all tumor types, can cause skin damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Yu, X.; Huang, M.; Wen, L.; Lu, C. Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics 2023, 15, 1456. https://doi.org/10.3390/pharmaceutics15051456
Wei Z, Yu X, Huang M, Wen L, Lu C. Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics. 2023; 15(5):1456. https://doi.org/10.3390/pharmaceutics15051456
Chicago/Turabian StyleWei, Zixuan, Xiaoya Yu, Mao Huang, Liewei Wen, and Cuixia Lu. 2023. "Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis" Pharmaceutics 15, no. 5: 1456. https://doi.org/10.3390/pharmaceutics15051456
APA StyleWei, Z., Yu, X., Huang, M., Wen, L., & Lu, C. (2023). Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics, 15(5), 1456. https://doi.org/10.3390/pharmaceutics15051456