Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery
Abstract
:1. Introduction
2. Biological Activity of Polysaccharides
3. Preparation of Polysaccharide Gold Nanoparticles
4. Application of Polysaccharide-AuNPs
5. Research on Polysaccharide-AuNPs as Drug Delivery Carriers
6. Drug Release from Polysaccharide-AuNPs
7. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APSs | astragalus polysaccharide |
ARE | antioxidant response element |
ASP | angelica sinensis polysaccharide |
AuNCs | gold nanoclusters |
AuNFs | gold nanoflowers |
AuNPs | gold nanoparticles |
AuNRs | gold nanorods |
AuNSs | gold nanoshells |
BBS | Brust-Schiffrin |
BMP-2 | bone morphogenetic protein 2 |
CAO | carrageenan oligosaccharide |
CAT | catalase |
CDT | chemodynamic therapy |
CH | chitosan |
CPPs | cell-penetrating peptides |
CPT | cephalexin |
CPT-11 | irinotecan hydrochloride |
Cs-AuNPs | chitosan capped gold nanoparticles |
CT | computed tomography |
CYP | chinese yam polysaccharides |
DAHA | aldehyde/catechol-functionalized hyaluronic acid |
DDS | drug delivery systems |
DNA | deoxyribonucleic acid |
DOX | doxorubicin |
DPPH | 1,1-Diphenyl-2-picrylhydrazyl radical 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl |
EGFR | epidermal growth factor receptor |
EPI | epirubicin |
EPR | enhanced permeability and retention effect |
EPS | extracellular polysaccharides |
FA | folic acid |
GC | glycol chitosan |
GEM | gemcitabine |
GK | gum karaya |
GOx | glucose oxidase |
GSH | glutathione |
GSH-Px | glutathione peroxidase |
HA | hyaluronic acid |
HACD | cyclodextrin-grafted hyaluronic acid |
HBV | hepatitis B virus |
HECS | hydroxyethyl chitosan |
HER2 | human epidermal growth factor receptor 2 |
HIV | human immunodeficiency virus |
HPV | human papilloma virus |
HyNA | hyaluronan nanoassembly |
IL-6 | interleukin-6 |
iNOS | inducible nitric oxide synthase |
ITME | immunosuppressive tumor microenvironmen |
LNT | lentinan |
LSPR | local surface plasmonic resonance |
MCF-7 | Michigan Cancer Foundation-7 |
MDR | multidrug-resistant |
MMP2 | matrix metalloproteinase-2 |
M-M2pep | M2pep fusion peptide |
M2-TAMs | M2-type tumor-associated macrophages |
MTB | mycobacterium tuberculosis |
MUA | 11-mercaptoundecanoic acid |
Nano-DDS | nanodrug delivery systems |
MAPK | mitogen-activated protein kinase |
NDs | nanodiamonds |
NF-κB | nuclear factor kappa-B |
NO | nitric oxide |
NOS | nitric oxide synthase |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
NIR | near-infrared |
NK | natural killer |
NPs | nanoparticles |
OA | osteoarthritis |
PA | pholiota adiposa |
PAP-1a | pholiota adiposa polysaccharide |
PCR | polymerase chain reaction |
PDT | photodynamic therapy |
PEI | polyetherimide |
PEG | polyethylene glycol |
PMATIB | poly(2-methylacrylic acid (3-amido-2,4,6-triiodobenzoic acid)) |
PS | photosensitizer |
PSP | polysaccharide peptide |
PtNPs | photothermal therapy |
PTR | pleurotus tuber-regium |
PTT | photothermal therapy |
PTX | paclitaxel |
QCS-SH/AuNPs | chitosan-stabilized gold nanoparticles |
RhB | rhodamine B |
ROS | reactive oxygen species |
SB-SH | thiolsulfobetaine-stabilized |
S-CYP | sulfated modifications chinese yam polysaccharides |
-SH | -thiol |
siRNA | small interfering RNA |
SOD | superoxide dismutase |
SPPs | the polysaccharide from Sargassum pallidum |
SSZ | salicylazosulfapyridine |
TC-AuNSs | thioglycolic chitosan-coated gold nanoshells |
TCS | thiol chitosan |
TLR4 | toll-like receptor 4 |
Tmab | trastuzumab |
TME | tumor microenvironment |
TNF-α | tumor necrosis factor-α |
TPCA-1 | 2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide |
TPPS | meso-tetrakis(4-sulphonatophenyl)porphyrin |
TPT | topotecan |
References
- Chen, J.; Huang, H.; Lu, R.; Wan, X.; Yao, Y.; Yang, T.; Li, P.; Ning, N.; Zhang, S. Hydrogen-Bond Super-Amphiphile Based Drug Delivery System: Design, Synthesis, and Biological Evaluation. RSC Adv. 2022, 12, 6076–6082. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Otte, A.; Park, K. Evolution of Drug Delivery Systems: From 1950 to 2020 and Beyond. J. Control Release 2022, 342, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Amiryaghoubi, N.; Fathi, M.; Barar, J.; Omidian, H.; Omidi, Y. Advanced Nanoscale Drug Delivery Systems for Bone Cancer Therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166739. [Google Scholar] [CrossRef] [PubMed]
- Rosyidah, A.; Kerdtoob, S.; Yudhistyra, W.I.; Munfadlila, A.W. Gold Nanoparticle-Based Drug Nanocarriers as a Targeted Drug Delivery System Platform for Cancer Therapeutics: A Systematic Review. Gold Bull. 2023, 56, 121–134. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int. J. Nanomed. 2020, 15, 2563–2582. [Google Scholar] [CrossRef]
- Teja, S.P.S.; Damodharan, N. 23 Full Factorial Model for Particle Size Optimization of Methotrexate Loaded Chitosan Nanocarriers: A Design of Experiments (DoE) Approach. BioMed. Res. Int. 2018, 2018, 7834159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Kankala, R.K.; Long, L.; Xie, S.; Chen, A.; Zou, L. Current Understanding of Passive and Active Targeting Nanomedicines to Enhance Tumor Accumulation. Coord. Chem. Rev. 2023, 481, 215051. [Google Scholar] [CrossRef]
- Yao, P.; Wang, X.; Wang, Q.; Dai, Q.; Peng, Y.; Yuan, Q.; Mou, N.; Lv, S.; Weng, B.; Wang, Y.; et al. Cyclic RGD-Functionalized pH/ROS Dual-Responsive Nanoparticle for Targeted Breast Cancer Therapy. Pharmaceutics 2023, 15, 1827. [Google Scholar] [CrossRef]
- Malik, J.A.; Ansari, J.A.; Ahmed, S.; Khan, A.; Ahemad, N.; Anwar, S. Nano-Drug Delivery System: A Promising Approach against Breast Cancer. Ther. Deliv. 2023, 14, 357–381. [Google Scholar] [CrossRef]
- Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020, 25, 5294. [Google Scholar] [CrossRef]
- Janaszewska, A.; Lazniewska, J.; Trzepinski, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of Dendrimers. Biomolecules 2019, 9, 330. [Google Scholar] [CrossRef]
- Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Mat, R.N.; Subramaniyan, V.; Kokare, C.; Lum, P.T.; Begum, M.Y.; et al. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int. J. Nanomed. 2021, 16, 7891–7941. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Lu, X.; Tian, J. Nanoparticle Drug Delivery Systems for Synergistic Delivery of Tumor Therapy. Front. Pharmacol. 2023, 14, 1111991. [Google Scholar] [CrossRef] [PubMed]
- El-Hammadi, M.M.; Arias, J.L. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. Nanomaterials 2022, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zuo, X.; Zhou, Z.; Gu, Y.; Zheng, H.; Wang, X.; Wang, G.; Xu, C.; Wang, F. PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int. J. Mol. Sci. 2023, 24, 4333. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, H.; Sun, Y.; Wang, M.; Yang, Z.; Shi, Y.; Liu, L. PEI Functionalized Cell Membrane for Tumor Targeted and Glutathione Responsive Gene Delivery. Int. J. Biol. Macromol. 2024, 255, 128354. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Diaz, D.T.J.; Sayuri, B.T.; Delezuk, I.S.; Bertao, A.R.; Caha, I.; Deepak, F.L.; Banobre-Lopez, M.; Gomes, H.T. Doxorubicin Delivery Performance of Superparamagnetic Carbon Multi-Core Shell Nanoparticles: pH Dependence, Stability and Kinetic Insight. Nanoscale 2022, 14, 7220–7232. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.; Zhao, X.; Liu, G.; Pang, B.; Liao, N.; Li, H.; Shi, J. Diversity of Fungus-Mediated Synthesis of Gold Nanoparticles: Properties, Mechanisms, Challenges, and Solving Methods. Crit. Rev. Biotechnol. 2023, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Quinsaat, J.E.Q.; Ono, T.; Maeki, M.; Tokeshi, M.; Isono, T.; Tajima, K.; Satoh, T.; Sato, S.; Miura, Y.; et al. Enhanced Dispersion Stability of Gold Nanoparticles by the Physisorption of Cyclic Poly(Ethylene Glycol). Nat. Commun. 2020, 11, 6089. [Google Scholar] [CrossRef]
- Lee, E.; Jeon, H.; Lee, M.; Ryu, J.; Kang, C.; Kim, S.; Jung, J.; Kwon, Y. Molecular Origin of AuNPs-Induced Cytotoxicity and Mechanistic Study. Sci. Rep. 2019, 9, 2494. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Schuth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering Mesoporous Silica Nanoparticles for Drug Delivery: Where Are We after Two Decades? Chem. Soc. Rev. 2022, 51, 5365–5451. [Google Scholar] [CrossRef]
- Fernandes, D.A. Liposomes for Cancer Theranostics. Pharmaceutics 2023, 15, 2448. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Chen, Z.; Wang, M.; Wen, B.; Deng, X. Polysaccharide-Modified Liposomes and Their Application in Cancer Research. Chem. Biol. Drug Des. 2023, 101, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef] [PubMed]
- Hammami, I.; Alabdallah, N.M. Gold Nanoparticles: Synthesis Properties and Applications. J. King Saud. Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active Targeting of Gold Nanoparticles as Cancer Therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Li, H.; Xu, S.; Xia, M.; Han, Z.; Zhuo, Y.; Chai, Y.; Tan, X.; Yuan, R. A Novel Cascade Catalytic Electrochemical Biosensor Based on Bifunctional Mn3O4@AuNPs with Self-Supplied O2 Property and Glucose Oxidase-like Activity for Ultrasensitive Detection of microRNA. Chem. Eng. J. 2024, 479, 147627. [Google Scholar] [CrossRef]
- Luan, S.; Xie, R.; Yang, Y.; Xiao, X.; Zhou, J.; Li, X.; Fang, P.; Zeng, X.; Yu, X.; Chen, M.; et al. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small 2022, 18, 2200115. [Google Scholar] [CrossRef]
- Jonsson, M.; Allahgholi, L.; Sardari, R.; Hreggviethsson, G.O.; Nordberg, K.E. Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules 2020, 25, 930. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Yan, C.; Zhao, B.; Zhao, Y.; Yang, L.; Shi, M.; Yu, H.; Li, X.; Luo, K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. Small 2023, 19, e2206211. [Google Scholar] [CrossRef]
- Fernandes, P.; Coimbra, M.A. The Antioxidant Activity of Polysaccharides: A Structure-Function Relationship Overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Nair, R.; Mahajan, S.; Gupta, U.; Aalhate, M.; Maji, I.; Singh, P.K. Traversing the Diverse Avenues of Exopolysaccharides-Based Nanocarriers in the Management of Cancer. Carbohydr. Polym. 2023, 312, 120821. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Hao, Z.; Gao, Y.; Cai, X.; Tang, J.; Liao, X.; Tan, J. Research Progress on the Hypoglycemic Activity and Mechanisms of Natural Polysaccharides. Int. J. Biol. Macromol. 2023, 252, 126199. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Selvarani, J.A.; Kumar, S.S. Extraction, Purification, and Characterization of Polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and Utilization of Polysaccharides in Nanocarrier Synthesis. Int. J. Nanomed. 2020, 15, 7097–7115. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.S.; Su, J.; Zhang, Y.; Huang, X.W.; Wang, X.P.; Huang, M.C.; Li, B.; Shou, D. Benefits and Mechanisms of Polysaccharides from Chinese Medicinal Herbs for Anti-Osteoporosis Therapy: A Review. Int. J. Biol. Macromol. 2021, 193, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yan, S.; Zhou, Y.; Feng, Y.; Xie, X.; Guo, W.; Shen, Q.; Chen, C. Optimisation of Enzyme-Assisted Extraction of Erythronium Sibiricum Bulb Polysaccharide and Its Effects on Immunomodulation. Glycoconj. J. 2022, 39, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Hao, W. Immunomodulatory Function and Anti-Tumor Mechanism of Natural Polysaccharides: A Review. Front. Immunol. 2023, 14, 1147641. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, G. The Antiviral Activity of Polysaccharides and Their Derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. [Google Scholar] [CrossRef]
- Nataraj, A.; Govindan, S.; Ramani, P.; Subbaiah, K.A.; Sathianarayanan, S.; Venkidasamy, B.; Thiruvengadam, M.; Rebezov, M.; Shariati, M.A.; Lorenzo, J.M.; et al. Antioxidant, Anti-Tumour, and Anticoagulant Activities of Polysaccharide from Calocybe Indica (APK2). Antioxidants 2022, 11, 1694. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.-F.; Shen, Z.-C.; Zou, Q.; Lin, X.-F.; Wang, X.-Y. Recent Developments on Natural Polysaccharides as Potential Anti-Gastric Cancer Substance: Structural Feature and Bioactivity. Int. J. Biol. Macromol. 2023, 232, 123390. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Z.; Li, Y.; Zhang, S.; Bao, J.; Wang, H.; Dong, C.; Ohizumi, Y.; Xu, J.; Guo, Y. Structural Analysis and Biological Effects of a Neutral Polysaccharide from the Fruits of Rosa Laevigata. Carbohydr. Polym. 2021, 265, 118080. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Y.; Niu, Y.; Ju, H.; Chen, R.; Li, B.; Song, X.; Song, L. Chemical Characterization, Antitumor, and Immune-Enhancing Activities of Polysaccharide from Sargassum Pallidum. Molecules 2021, 26, 7559. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and Anti-Tumor Bioactivity of Astragalus Polysaccharides by Immunomodulation. Int. J. Biol. Macromol. 2020, 145, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, Q.; Bai, F.; Luo, Q.; Wu, M.; Song, G.; Zhang, H.; Wang, Y. The Assembly and Antitumor Activity of Lycium Barbarum Polysaccharide-Platinum-Based Conjugates. J. Inorg. Biochem. 2020, 205, 111001. [Google Scholar] [CrossRef]
- Liu, Y.H.; Qin, H.Y.; Zhong, Y.Y.; Li, S.; Wang, H.J.; Wang, H.; Chen, L.L.; Tang, X.; Li, Y.L.; Qian, Z.Y.; et al. Neutral Polysaccharide from Panax Notoginseng Enhanced Cyclophosphamide Antitumor Efficacy in Hepatoma H22-Bearing Mice. BMC Cancer 2021, 21, 37. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, X.; Ma, C.; Guo, R.; Zhang, X.; Zhang, Z.; Ren, X. Enhancing the Antitumor Immunosurveillance of PD-L1-Targeted Gene Therapy for Metastatic Melanoma Using Cationized Panax Notoginseng Polysaccharide. Int. J. Biol. Macromol. 2023, 226, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Yan, M.; Liu, D.; Tao, C.; Hu, B.; Sun, S.; Zheng, Y.; Wu, L. Research Progress on the Structural Characterization, Biological Activity and Product Application of Polysaccharides from Crataegus Pinnatifida. Int. J. Biol. Macromol. 2023, 244, 125408. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.D.; Feng, Y.Y.; Liu, Y.N.; Ji, H.Y.; Yu, S.S.; Liu, A.; Yu, J. A Novel Polysaccharide from Castanea Mollissima Blume: Preparation, Characteristics and Antitumor Activities In Vitro and In Vivo. Carbohydr. Polym. 2020, 240, 116323. [Google Scholar] [CrossRef]
- Chang, M.; Shi, S.; Liu, H.; Tu, J.; Yan, Z.; Ding, S. Extraction, Characterization, and In Vivo Antitumor Activity of a Novel Polysaccharide from Coriandrum Sativum L. J. Food Biochem. 2022, 46, e14323. [Google Scholar] [CrossRef]
- Hoseny, S.S.; Soliman, A.M.; Fahmy, S.R.; Sadek, S.A. Development of a Novel Pomegranate Polysaccharide Nanoemulsion Formulation with Anti-Inflammatory, Antioxidant, and Antitumor Properties. Curr. Drug Deliv. 2023, 20, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cao, Y.X.; Jiao, S.M.; GH, D.; YG, D.; Qin, X.M. Structural Characterization and Immune Activity Screening of Polysaccharides with Different Molecular Weights From Astragali Radix. Front. Pharmacol. 2020, 11, 582091. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, M.; Ma, L.; Liu, X.; Ding, Q.; Chai, G.; Lu, Y.; Wei, H.; Zhang, S.; Ding, C. Structural Modification and Biological Activity of Polysaccharides. Molecules 2023, 28, 5416. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, S.; Huang, R.; Liu, X.; Shen, M.; Xie, J. Immunomodulatory Activity and Mechanism of Chinese Yam Polysaccharide after Sulfated Modification. Ind. Crops Prod. 2023, 197, 116549. [Google Scholar] [CrossRef]
- Lu, W.; Yang, Z.; Chen, J.; Wang, D.; Zhang, Y. Recent Advances in Antiviral Activities and Potential Mechanisms of Sulfated Polysaccharides. Carbohydr. Polym. 2021, 272, 118526. [Google Scholar] [CrossRef] [PubMed]
- Sen, I.K.; Chakraborty, I.; Mandal, A.K.; Bhanja, S.K.; Patra, S.; Maity, P. A Review on Antiviral and Immunomodulatory Polysaccharides from Indian Medicinal Plants, Which May Be Beneficial to COVID-19 Infected Patients. Int. J. Biol. Macromol. 2021, 181, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Yermak, I.; Anastyuk, S.; Kravchenko, A.; Helbert, W.; Glazunov, V.; Shulgin, A.; Spirin, P.; Prassolov, V. New Insights into the Structure of Kappa/Beta-Carrageenan: A Novel Potential Inhibitor of HIV-1. Int. J. Mol. Sci. 2021, 22, 12905. [Google Scholar] [CrossRef]
- Rodriguez-Valentin, M.; Lopez, S.; Rivera, M.; Rios-Olivares, E.; Cubano, L.; Boukli, N.M. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J. Immunol. Res. 2018, 2018, 8741698. [Google Scholar] [CrossRef]
- Mu, S.; Yang, W.; Huang, G. Antioxidant Activities and Mechanisms of Polysaccharides. Chem. Biol. Drug Des. 2021, 97, 628–632. [Google Scholar] [CrossRef]
- Yang, Y.; Song, S.; Nie, Y.; Chen, R.; Chen, P. Lentinan Alleviates Arsenic-Induced Hepatotoxicity in Mice via Downregulation of OX40/IL-17A and Activation of Nrf2 Signaling. BMC Pharmacol. Toxicol. 2022, 23, 16. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Liu, X.; Chen, M.; Bai, B.; Yang, Y.; Bo, T.; Fan, S. The Separation, Purification, Structure Identification, and Antioxidant Activity of Elaeagnus Umbellata Polysaccharides. Molecules 2023, 28, 6468. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Wang, Y.; Zhang, Y.; Xu, N. Oxidative Stress in Osteoarthritis and Antioxidant Effect of Polysaccharide from Angelica Sinensis. Int. J. Biol. Macromol. 2018, 115, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, Y.; Liu, Y.; Tan, F.; Li, J.; Li, N. S-Nitrosothiols Loaded Mini-Sized Au@silica Nanorod Elicits Collagen Depletion and Mitochondrial Damage in Solid Tumor Treatment. Theranostics 2020, 10, 6774–6789. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Fan, S.; Ding, S.; Ren, L. Gold Nanoparticles Based Optical Biosensors for Cancer Biomarker Proteins: A Review of the Current Practices. Front. Bioeng. Biotechnol. 2022, 10, 877193. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Peng, X.; Zeng, M.; Yu, L.; Wang, K.; Li, X.; Wang, G. The Preparation of Au@TiO2 Yolk—Shell Nanostructure and Its Applications for Degradation and Detection of Methylene Blue. Nanoscale Res. Lett. 2017, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Sokary, R.; Abu El-Naga, M.N.; Bekhit, M.; Atta, S. A Potential Antibiofilm, Antimicrobial and Anticancer Activities of Chitosan Capped Gold Nanoparticles Prepared by γ-Irradiation. Mater. Technol. 2022, 37, 493–502. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Fai, T.K.; Kumar, P.V. Revolution in the Synthesis, Physio-Chemical and Biological Characterization of Gold Nanoplatform. Curr. Pharm. Des. 2021, 27, 2482–2504. [Google Scholar] [CrossRef]
- Bartosewicz, B.; Bujno, K.; Liszewska, M.; Budner, B.; Bazarnik, P.; Płociński, T.; Jankiewicz, B.J. Effect of Citrate Substitution by Various α-Hydroxycarboxylate Anions on Properties of Gold Nanoparticles Synthesized by Turkevich Method. Colloids Surf. Physicochem. Eng. Asp. 2018, 549, 25–33. [Google Scholar] [CrossRef]
- Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. [Google Scholar] [CrossRef]
- Qiao, L.; Pollard, N.; Senanayake, R.D.; Yang, Z.; Kim, M.; Ali, A.S.; Hoang, M.T.; Yao, N.; Han, Y.; Hernandez, R.; et al. Atomically Precise Nanoclusters Predominantly Seed Gold Nanoparticle Syntheses. Nat. Commun. 2023, 14, 4408. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Kulabhusan, P.K.; Sabbih, G.; Akram, M.; Danquah, M.K. Phytosynthesized Nanoparticles as a Potential Cancer Therapeutic Agent. 3 Biotech 2020, 10, 535. [Google Scholar] [CrossRef]
- Mandhata, C.P.; Sahoo, C.R.; Padhy, R.N. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: An Overview. Biol. Trace Elem. Res. 2022, 200, 5307–5327. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, X.; Gao, Y.; Yin, J.; Bai, M.; Wang, F. Green Synthesis of Gold Nanoparticles Using Carrageenan Oligosaccharide and Their In Vitro Antitumor Activity. Mar. Drugs 2018, 16, 277. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, J.; Liu, C.; Xiong, Q.; Duan, H.; Cheung, P. Stable and Biocompatible Mushroom Beta-Glucan Modified Gold Nanorods for Cancer Photothermal Therapy. J. Agric. Food Chem. 2017, 65, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Jing, G.; Xu, G.; Li, Q.; Huang, R.; Li, F.; Li, H.; Wang, D.; Chen, W.; Tang, B.Z. A Green and Efficient Strategy Facilitates Continuous Solar-Induced Steam Generation Based on Tea-Assisted Synthesis of Gold Nanoflowers. Nano Res. 2022, 15, 6705–6712. [Google Scholar] [CrossRef]
- Zhang, R.; Qin, X.; Lu, J.; Xu, H.; Zhao, S.; Li, X.; Yang, C.; Kong, L.; Guo, Y.; Zhang, Z. Chemodynamic/Photothermal Synergistic Cancer Immunotherapy Based on Yeast Microcapsule-Derived Au/Pt Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 24134–24148. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.S.C.; Rodrigues, C.F.; Moreira, A.F.; Correia, I.J. Strategies to Improve the Photothermal Capacity of Gold-Based Nanomedicines. Acta Biomater. 2020, 116, 105–137. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Z.; Zhao, H.; Liu, G. Cysteine-Assisted Overgrowth of Gold Nanorods to Prepare Highly Branched Gold Nanoantennas with Tunable Morphological and Plasmonic Properties. CrystEngComm 2023, 25, 5486–5494. [Google Scholar] [CrossRef]
- Aguilar-Ferrer, D.; Vasileiadis, T.; Iatsunskyi, I.; Ziółek, M.; Żebrowska, K.; Ivashchenko, O.; Błaszkiewicz, P.; Grześkowiak, B.; Pazos, R.; Moya, S.; et al. Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods. Adv. Funct. Mater. 2023, 33, 2304208. [Google Scholar] [CrossRef]
- Gao, W.; Fan, X.; Bi, Y.; Zhou, Z.; Yuan, Y. Preparation of NIR-Responsive Gold Nanocages as Efficient Carrier for Controlling Release of EGCG in Anticancer Application. Front. Chem. 2022, 10, 926002. [Google Scholar] [CrossRef]
- Arami, H.; Kananian, S.; Khalifehzadeh, L.; Patel, C.B.; Chang, E.; Tanabe, Y.; Zeng, Y.; Madsen, S.J.; Mandella, M.J.; Natarajan, A.; et al. Remotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostars. Nat. Nanotechnol. 2022, 17, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Loynachan, C.N.; Soleimany, A.P.; Dudani, J.S.; Lin, Y.; Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S.N.; Stevens, M.M. Renal Clearable Catalytic Gold Nanoclusters for In Vivo Disease Monitoring. Nat. Nanotechnol. 2019, 14, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Ying, X.; Li, X.; Tan, X.; Zhang, T.; Zhang, X.; Cai, W.; An, F.; Liu, X.; Han, S. Engineering of Gold Nanorods as Multifunctional Theranostic Agent for Photothermal-Enhanced Radiotherapy of Cancer. Mater. Des. 2023, 225, 111456. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, Q.; Yang, M.; Yang, M. Detoxification and Functionalization of Gold Nanorods with Organic Polymers and Their Applications in Cancer Photothermal Therapy. Microsc. Res. Tech. 2019, 82, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Li, Y.; Liu, Y.; Hou, J.; Guo, Y. Preparation and Photothermal Therapy of Gold Nanorods Modified by Belamcanda chinensis (L.) DC Polysaccharide. Int. J. Biol. Macromol. 2023, 255, 127854. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.V.; Kala, S.M.J.; Prakash, K.S. Green Synthesis of Gold Nanoparticles Using Croton Caudatus Geisel Leaf Extract and Their Biological Studies. Mater. Lett. 2019, 236, 19–22. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Meng, F.; Su, C.; Li, J. Polysaccharide-Based Gold Nanomaterials: Synthesis Mechanism, Polysaccharide Structure-Effect, and Anticancer Activity. Carbohydr. Polym. 2023, 321, 121284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pang, G.; Chen, C.; Qin, J.; Yu, H.; Liu, Y.; Zhang, X.; Song, Z.; Zhao, J.; Wang, F.; et al. Effective Cancer Immunotherapy by Ganoderma Lucidum Polysaccharide-Gold Nanocomposites through Dendritic Cell Activation and Memory T Cell Response. Carbohydr. Polym. 2019, 205, 192–202. [Google Scholar] [CrossRef]
- Kumari, Y.; Singh, S.K.; Kumar, R.; Kumar, B.; Kaur, G.; Gulati, M.; Tewari, D.; Gowthamarajan, K.; Karri, V.; Ayinkamiye, C.; et al. Modified Apple Polysaccharide Capped Gold Nanoparticles for Oral Delivery of Insulin. Int. J. Biol. Macromol. 2020, 149, 976–988. [Google Scholar] [CrossRef]
- Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri, A.S.; Kouhi, M.; Akbarzadeh, A. Application of Gold Nanoparticles in Biomedical and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 410–422. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lu, L.; Gunasekaran, S. Biopolymer/Gold Nanoparticles Composite Plasmonic Thermal History Indicator to Monitor Quality and Safety of Perishable Bioproducts. Biosens. Bioelectron. 2017, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ingeborg Zehbe, G.W.H.H. Sensitive in Situ Hybridization with Catalyzed Reporter Deposition, Streptavidin-Nanogold, and Silver Acetate Autometallography: Detection of Single-Copy Human Papillomavirus. Am. J. Pathol. 1997, 150, 1553–1561. [Google Scholar]
- Hejazi, M.; Arshadi, S.; Amini, M.; Baradaran, B.; Shahbazi-Derakhshi, P.; Sameti, P.; Soleymani, J.; Mokhtarzadeh, A.; Tavangar, S.M. Hyaluronic Acid-Functionalized Gold Nanoparticles as a Cancer Diagnostic Probe for Targeted Bioimaging Applications. Microchem. J. 2023, 193, 108953. [Google Scholar] [CrossRef]
- Tammam, S.N.; Khalil, M.A.; Abdul, G.E.; Althani, A.; Zaghloul, H.; Azzazy, H.M. Chitosan Gold Nanoparticles for Detection of Amplified Nucleic Acids Isolated from Sputum. Carbohydr. Polym. 2017, 164, 57–63. [Google Scholar] [CrossRef]
- Mutalik, C.; Saukani, M.; Khafid, M.; Krisnawati, D.I.; Widodo; Darmayanti, R.; Puspitasari, B.; Cheng, T.M.; Kuo, T.R. Gold-Based Nanostructures for Antibacterial Application. Int. J. Mol. Sci. 2023, 24, 10006. [Google Scholar] [CrossRef] [PubMed]
- Cardenas-Trivino, G.; Ruiz-Parra, M.; Vergara-Gonzalez, L.; Ojeda-Oyarzun, J.; Solorzano, G. Synthesis and Bactericidal Properties of Hyaluronic Acid Doped with Metal Nanoparticles. J. Nanomater. 2017, 2017, 9573869. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Parvez, M.A.; Balusamy, S.R.; Rahman, M.M.; Kim, J.H.; Akter, S. Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers 2022, 14, 5302. [Google Scholar] [CrossRef]
- Fuster, M.G.; Montalban, M.G.; Carissimi, G.; Lima, B.; Feresin, G.E.; Cano, M.; Giner-Casares, J.J.; Lopez-Cascales, J.J.; Enriz, R.D.; Villora, G. Antibacterial Effect of Chitosan—Gold Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model. Nanomaterials 2020, 10, 2340. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Chen, B.Y.; Liao, C.W.; Chen, B.H. Green Synthesis, Characterization and Evaluation of Catalytic and Antibacterial Activities of Chitosan, Glycol Chitosan and Poly(Gamma-Glutamic Acid) Capped Gold Nanoparticles. Int. J. Biol. Macromol. 2020, 161, 1484–1495. [Google Scholar] [CrossRef]
- Bi, Q.; Wu, J.Y.; Qiu, X.M.; Zhang, J.D.; Sun, Z.J.; Wang, W. Tumor-Associated Inflammation: The Tumor-Promoting Immunity in the Early Stages of Tumorigenesis. J. Immunol. Res. 2022, 2022, 3128933. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Carcamo-Bahena, Y.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Hyaluronate-Thiol Passivation Enhances Gold Nanoparticle Peritumoral Distribution When Administered Intratumorally in Lung Cancer. Biomedicines 2021, 9, 1561. [Google Scholar] [CrossRef] [PubMed]
- Manivasagan, P.; Nguyen, V.T.; Jun, S.W.; Hoang, G.; Mondal, S.; Kim, H.; Doan, V.; Kim, J.; Kim, C.S.; Oh, J. Anti-EGFR Antibody Conjugated Thiol Chitosan-Layered Gold Nanoshells for Dual-Modal Imaging-Guided Cancer Combination Therapy. J. Control Release 2019, 311–312, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Z.; Zhu, J.; Xu, J.; Pu, Y.; Bao, Y. Green Synthesis and Characterization of Gold Nanoparticles from Pholiota Adiposa and Their Anticancer Effects on Hepatic Carcinoma. Drug Deliv. 2022, 29, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Komeri, R.; Maya, S.; Unnikrishnan, B.S.; Sreekutty, J.; Preethi, G.U.; Maiti, K.K.; Sreelekha, T.T. Galactoxyloglucan-Modified Gold Nanocarrier of Doxorubicin for Treating Drug-Resistant Brain Tumors. ACS Appl. Nano Mater. 2019, 2, 6287–6299. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, H.; Wang, X.; Yu, B.; Cong, H.; Shen, Y. Polysaccharide-Based Nanocarriers for Efficient Transvascular Drug Delivery. J. Control Release 2023, 354, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Erratum: Intranasal Delivery of Immunotherapeutic Nanoformulations for Treatment of Glioma Through in Situ Activation of Immune Response [Corrigendum]. Int. J. Nanomed. 2020, 15, 8873–8874. [CrossRef] [PubMed]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, M.; Yang, Y.; Zhang, J.; Zhang, Z.; Xiao, J.; Zhou, Y.; Yan, F. Modification of PEG Reduces the Immunogenicity of Biosynthetic Gas Vesicles. Front. Bioeng. Biotechnol. 2023, 11, 1128268. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Ma, R.; Zhu, L.; Yan, T.; Alimu, G.; Du, Z.; Alifu, N.; Zhang, X. NIR-Excitable PEG-Modified Au Nanorods for Photothermal Therapy of Cervical Cancer. ACS Appl. Nano Mater. 2021, 4, 13060–13070. [Google Scholar] [CrossRef]
- Rai, A.; Ferreira, L. Biomedical Applications of the Peptide Decorated Gold Nanoparticles. Crit. Rev. Biotechnol. 2021, 41, 186–215. [Google Scholar] [CrossRef]
- Albertini, B.; Mathieu, V.; Iraci, N.; Van Woensel, M.; Schoubben, A.; Donnadio, A.; Greco, S.; Ricci, M.; Temperini, A.; Blasi, P.; et al. Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Mol. Pharm. 2019, 16, 2430–2444. [Google Scholar] [CrossRef]
- Boussoufi, F.; Gallon, S.; Chang, R.; Webster, T.J. Synthesis and Study of Cell-Penetrating Peptide-Modified Gold Nanoparticles. Int. J. Nanomed. 2018, 13, 6199–6205. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Ren, S.; Zhang, H.; Cao, Y.; Zhao, Y.; Wang, Y.; Qiu, W.; Tian, Y.; Song, L.; Wang, Z. Biomimetic Gold Nanorods Modified with Erythrocyte Membranes for Imaging-Guided Photothermal/Gene Synergistic Therapy. ACS Appl. Mater. Interfaces 2023, 15, 25285–25299. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Liao, Y.; Yang, H.; Chen, Z.; Hu, Y.; Fu, S.; Wu, J. Albumin-Modified Gold Nanoparticles as Novel Radiosensitizers for Enhancing Lung Cancer Radiotherapy. Int. J. Nanomed. 2023, 18, 1949–1964. [Google Scholar] [CrossRef]
- Manivasagan, P.; Khan, F.; Hoang, G.; Mondal, S.; Kim, H.; Doan, V.; Kim, Y.M.; Oh, J. Thiol Chitosan-Wrapped Gold Nanoshells for near-Infrared Laser-Induced Photothermal Destruction of Antibiotic-Resistant Bacteria. Carbohydr. Polym. 2019, 225, 115228. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. Plasma Protein Adsorption and Biological Identity of Systemically Administered Nanoparticles. Available online: https://www.futuremedicine.com/doi/10.2217/nnm-2017-0178 (accessed on 1 January 2024).
- Tian, D.; Qin, F.; Zhao, H.; Zhang, C.; Wang, H.; Liu, N.; Ai, Y. Bio-Responsive Nanoparticle for Tumor Targeting and Enhanced Photo-Immunotherapy. Colloids Surf. B Biointerfaces 2021, 202, 111681. [Google Scholar] [CrossRef] [PubMed]
- Pradeepa; Vidya, S.M.; Mutalik, S.; Bhat, K.U.; Huilgol, P.; Avadhani, K. Preparation of Gold Nanoparticles by Novel Bacterial Exopolysaccharide for Antibiotic Delivery. Life Sci. 2016, 153, 171–179. [Google Scholar] [CrossRef]
- Yuan, H.; Guo, C.; Liu, L.; Zhao, L.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Pan, B.; Tang, X. Progress and Prospects of Polysaccharide-Based Nanocarriers for Oral Delivery of Proteins/Peptides. Carbohydr. Polym. 2023, 312, 120838. [Google Scholar] [CrossRef]
- Sansanaphongpricha, K.; Sonthithai, P.; Kaewkong, P.; Thavornyutikarn, B.; Bamrungsap, S.; Kosorn, W.; Thinbanmai, T.; Saengkrit, N. Hyaluronic Acid-Coated Gold Nanorods Enhancing BMP-2 Peptide Delivery for Chondrogenesis. Nanotechnology 2020, 31, 435101. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold Nanoparticles for Nucleic Acid Delivery. Mol. Ther. 2014, 22, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; et al. Nanodelivery of Nucleic Acids. Nat. Rev. Methods Primers 2022, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Thomas, M.; Lin, P.; Cheng, J.-X.; Matei, D.E.; Wei, A. siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods. Bioconjug. Chem. 2019, 30, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Ahn, I.; Kang, C.S.; Han, J. Where Should siRNAs Go: Applicable Organs for siRNA Drugs. Exp. Mol. Med. 2023, 55, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Ahmadi, S.; Iravani, S.; Varma, R.S. Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022, 14, 2182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lei, W.; Meng, Y.; Zhou, C.; Zhang, B.; Yuan, J.; Wang, M.; Xu, D.; Meng, X.; Chen, W. Expression of PEI-Coated Gold Nanoparticles Carrying Exogenous Gene in Periwinkle Mesophyll Cells and Its Practice in Huanglongbing Research. iScience 2022, 25, 104479. [Google Scholar] [CrossRef]
- Tunali, B.C.; Celik, E.; Yildiran, F.A.B.; Turk, M. Delivery of siRNA Using Hyaluronic Acid-Guided Nanoparticles for Downregulation of CXCR4. Biopolymers 2023, 114, e23535. [Google Scholar] [CrossRef]
- Fan, R.; Chen, C.; Hu, J.; Mu, M.; Chuan, D.; Chen, Z.; Guo, G.; Xu, J. Multifunctional Gold Nanorods in Low-Temperature Photothermal Interactions for Combined Tumor Starvation and RNA Interference Therapy. Acta Biomater. 2023, 159, 324–337. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Bui, N.Q.; Jang, B.; Oh, Y.O.; Lim, I.G.; Oh, J. Doxorubicin-Loaded Fucoidan Capped Gold Nanoparticles for Drug Delivery and Photoacoustic Imaging. Int. J. Biol. Macromol. 2016, 91, 578–588. [Google Scholar] [CrossRef]
- Archana, M.G.; Sreekutty, J.; Syama, H.P.; Joseph, M.M.; Anusree, K.S.; Unnikrishnan, B.S.; Preethi, G.U.; Reshma, P.L.; Sreelekha, T.T. Polysaccharide Guided Tumor Delivery of Therapeutics: A Bio-Fabricated Galactomannan-Gold Nanosystem for Augmented Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 80, 104172. [Google Scholar] [CrossRef]
- Lu, L.; Ao, H.; Fu, J.; Li, M.; Guo, Y.; Guo, Y.; Han, M.; Shi, R.; Wang, X. Ginsenoside Rb1 Stabilized and Paclitaxel/Protopanaxadiol Co-Loaded Nanoparticles for Synergistic Treatment of Breast Tumor. Biomed. Pharmacother. 2023, 163, 114870. [Google Scholar] [CrossRef]
- Jassi, C.; Kuo, W.-W.; Chang, Y.-C.; Wang, T.-F.; Li, C.-C.; Ho, T.-J.; Hsieh, D.J.-Y.; Kuo, C.-H.; Chen, M.-C.; Huang, C.-Y. Aloin and CPT-11 Combination Activates miRNA-133b and Downregulates IGF1R- PI3K/AKT/mTOR and MEK/ERK Pathways to Inhibit Colorectal Cancer Progression. Biomed. Pharmacother. 2023, 169, 115911. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, J.; Ding, Z.; Liu, Z. Radiopharmaceuticals Heat Anti-Tumor Immunity. Theranostics 2023, 13, 767–786. [Google Scholar] [CrossRef]
- Kim, H.-M.; Park, J.H.; Choi, Y.J.; Oh, J.-M.; Park, J. Hyaluronic Acid-Coated Gold Nanoparticles as a Controlled Drug Delivery System for Poorly Water-Soluble Drugs. RSC Adv. 2023, 13, 5529–5537. [Google Scholar] [CrossRef] [PubMed]
- Pooja, D.; Panyaram, S.; Kulhari, H.; Reddy, B.; Rachamalla, S.S.; Sistla, R. Natural Polysaccharide Functionalized Gold Nanoparticles as Biocompatible Drug Delivery Carrier. Int. J. Biol. Macromol. 2015, 80, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, Y.; Zhang, Y.M.; Yang, Y.; Su, Y.; Chen, J.T.; Liu, Y. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs. Sci. Rep. 2014, 4, 4164. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale Theranostics for Physical Stimulus-Responsive Cancer Therapies. Biomaterials 2015, 73, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, D. Near-Infrared-Responsive Cancer Photothermal and Photodynamic Therapy Using Gold Nanoparticles. Polymers 2018, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.C.; Weersink, R.A. The Yin and Yang of PDT and PTT. Photochem. Photobiol. 2020, 96, 219–231. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, W.; Shi, D.; Li, X.; Zhang, H.; Chen, M. Correction to “Porphyrin Derivative Conjugated with Gold Nanoparticles for Dual-Modality Photodynamic and Photothermal Therapies In Vitro”. ACS Biomater. Sci. Eng. 2018, 4, 1924. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Su, K.; Liu, X.; Wu, S. Highly Effective and Noninvasive Near-Infrared Eradication of a Staphylococcus Aureus Biofilm on Implants by a Photoresponsive Coating within 20 Min. Adv. Sci. 2019, 6, 1900599. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K.W.K. Rapid Biofilm Elimination on Bone Implants Using Near-Infrared-Activated Inorganic Semiconductor Heterostructures. Adv. Healthc. Mater. 2019, 8, 1900835. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, F.; Valdovinos, H.F.; Jiang, D.; Goel, S.; Yu, B.; Sun, H.; Barnhart, T.E.; Moon, J.J.; Cai, W. Bacteria-like Mesoporous Silica-Coated Gold Nanorods for Positron Emission Tomography and Photoacoustic Imaging-Guided Chemo-Photothermal Combined Therapy. Biomaterials 2018, 165, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554. [Google Scholar] [CrossRef] [PubMed]
- Gotov, O.; Battogtokh, G.; Shin, D.; Ko, Y.T. Hyaluronic Acid-Coated Cisplatin Conjugated Gold Nanoparticles for Combined Cancer Treatment. J. Ind. Eng. Chem. 2018, 65, 236–243. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Li, B.; Wu, L. Near-Infrared Photothermal Conversion of Polyoxometalate-Modified Gold Nanorods for Plasmon-Enhanced Catalysis. Inorg. Chem. Front. 2023, 10, 1852–1862. [Google Scholar] [CrossRef]
- Han, H.S.; Choi, K.Y.; Lee, H.; Lee, M.; An, J.Y.; Shin, S.; Kwon, S.; Lee, D.S.; Park, J.H. Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation. ACS Nano 2016, 10, 10858–10868. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhu, Y.; Dai, J.; Lei, J.; You, J.; Chen, N.; Wang, L.; Luo, M.; Wu, J. Atomically Precise Au Nanocluster-Embedded Carrageenan for Single near-Infrared Light-Triggered Photothermal and Photodynamic Antibacterial Therapy. Int. J. Biol. Macromol. 2023, 230, 123452. [Google Scholar] [CrossRef]
- Ojugo, A.S.; McSheehy, P.M.; McIntyre, D.J.; McCoy, C.; Stubbs, M.; Leach, M.O.; Judson, I.R.; Griffiths, J.R. Measurement of the Extracellular pH of Solid Tumours in Mice by Magnetic Resonance Spectroscopy: A Comparison of Exogenous 19F and 31P Probes. NMR Biomed. 1999, 12, 495–504. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.Y.; Huh, K.M.; Acharya, G.; Park, K. Hydrotropic Polymer Micelles Containing Acrylic Acid Moieties for Oral Delivery of Paclitaxel. J. Control Release 2008, 132, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Lizhi, S.; Xin, Z.; Xiaoguang, D.; Ranran, W.; Gang, C.; Nana, Z.; Fu-Jian, X. Self-Destructible Polysaccharide Nanocomposites with Unlockable Au Nanorods for High-Performance Photothermal Therapy. NPG Asia Mater. 2018, 10, 509–521. [Google Scholar]
- Zhang, Y.; Li, P.; Su, R.; Wen, F.; Jia, Z.; Lv, Y.; Cai, J.; Su, W. Curcumin-Loaded Multifunctional Chitosan Gold Nanoparticles: An Enhanced PDT/PTT Dual-Modal Phototherapeutic and pH-Responsive Antimicrobial Agent. Photodiagn. Photodyn. Ther. 2022, 39, 103011. [Google Scholar] [CrossRef]
- Nasef, S.M.; Khozemy, E.E.; Mahmoud, G.A. pH-Responsive Chitosan/Acrylamide/Gold/Nanocomposite Supported with Silver Nanoparticles for Controlled Release of Anticancer Drug. Sci. Rep. 2023, 13, 7818. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Kim, T.W.; Kang, Y.; Ju, Y.; Ryu, J.; Kong, H.; Jang, Y.S.; Oh, D.E.; Jang, S.J.; Cho, H.; et al. Targeted Drug Delivery Nanocarriers Based on Hyaluronic Acid-Decorated Dendrimer Encapsulating Gold Nanoparticles for Ovarian Cancer Therapy. Mater. Today Chem. 2022, 26, 101083. [Google Scholar] [CrossRef]
- Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-Loaded Marine Carrageenan Oligosaccharide Capped Gold Nanoparticle System for pH-Triggered Anticancer Drug Release. Sci. Rep. 2019, 9, 6754. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, Q.; Dai, X.; Wei, X.; Yu, Y.; Chen, X.; Li, C.; Cao, Z.; Zhang, X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. Adv. Mater. 2019, 31, 1806024. [Google Scholar] [CrossRef]
- Zelechowska-Matysiak, K.; Wawrowicz, K.; Wierzbicki, M.; Budlewski, T.; Bilewicz, A.; Majkowska-Pilip, A. Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers. Molecules 2023, 28, 2451. [Google Scholar] [CrossRef]
- Manivasagan, P.; Jun, S.W.; Nguyen, V.T.; Truong, N.; Hoang, G.; Mondal, S.; Moorthy, M.S.; Kim, H.; Phan, T.; Doan, V.; et al. A Multifunctional Near- Infrared Laser- Triggered Drug Delivery System Using Folic Acid Conjugated Chitosan Oligosaccharide Encapsulated Gold Nanorods for Targeted Chemo- Photothermal Therapy. J. Mater. Chem. B 2019, 7, 3811–3825. [Google Scholar] [CrossRef]
- Zhao, J. Hyaluronic Acid-Modified and TPCA-1-Loaded Gold Nanocages Alleviate Inflammation. Pharmaceutics 2019, 11, 143. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Qian, J.; Hou, G.; Wang, Y.; Ji, L.; Suo, A. NIR/pH Dual-Responsive Polysaccharide-Encapsulated Gold Nanorods for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109854. [Google Scholar] [CrossRef]
- Cui, T.; Liang, J.J.; Chen, H.; Geng, D.D.; Jiao, L.; Yang, J.Y.; Qian, H.; Zhang, C.; Ding, Y. Performance of Doxorubicin-Conjugated Gold Nanoparticles: Regulation of Drug Location. ACS Appl. Mater. Interfaces 2017, 9, 8569–8580. [Google Scholar] [CrossRef]
- Xu, W.; Qian, J.; Hou, G.; Wang, Y.; Wang, J.; Sun, T.; Ji, L.; Suo, A.; Yao, Y. A Dual-Targeted Hyaluronic Acid-Gold Nanorod Platform with Triple-Stimuli Responsiveness for Photodynamic/Photothermal Therapy of Breast Cancer. Acta Biomater. 2019, 83, 400–413. [Google Scholar] [CrossRef]
Types of Nanomaterials | Advantages | Drawbacks |
---|---|---|
Dendritic polymers | good absorption and bioavailability, easy surface modifications [11], low toxicity, non-immunogenic and good pharmacokinetics [12] | complex arrangements, special reaction difficulties, and cationic dendritic polymers often exhibit high toxicity [11] |
PLGA nanocarriers | biodegradable, biocompatible, slow-releasing [13] | poor binding of negatively charged drugs, rapidly cleared in vivo, unable to recognize cells, not selective [14,15] |
PEI | excellent biocompatibility and high transfection efficiency [13] | potential cytotoxicity following intracellular accumulation [16] |
Magnetic nanoparticles | superparamagnetic, reduces the distribution of cytotoxic substances in cells, and increases cellular uptake at targeted sites [17] | poor biocompatibility, hydrophobic surface, large specific surface area prone to cluster formation and thus embolization [17] |
AuNPs | easy surface modification, size and shape control, photothermal effect, enhanced cellular uptake, increased drug toxicity, tumor growth inhibition, and selective drug targeting [18] | surface-dependent toxicity, poor stability under physiological conditions [19,20] |
Mesoporous silica nanoparticles | highly biocompatible, controllable shape and size, allows for effective drug accumulation, improved drug stability and solubility [21] | not easy to store; restrictive drug loading; drug interactions in the mesoporous lumen [21] |
Liposome | targeting tumors, promoting the mobility and durability of anticancer drugs, and improving pharmacokinetic and pharmacodynamic profiles of chemotherapeutic agents [9] | poor stability, low solubility, multidrug resistance, payload leakage, and phospholipid oxidation [22,23] |
Carbon nanotubes | enhanced electrical conductivity and strength, easy to functionalize, easy to be absorbed by a variety of cells, unique optical properties can improve phototherapy [24] | non-biodegradable, poorly dispersed, and prone to aggregation and cytotoxicity [24] |
top-down | physical synthesis | physical fragmentation |
evaporation condensation | ||
plasma precipitation | ||
sputtering | ||
bottom-up | chemical synthesis | Turkevich–Frens |
Brust–Schiffrin | ||
biosynthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Aipire, A.; Dilxat, E.; Li, J.; Xia, G.; Jiang, Z.; Fan, Z.; Li, J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics 2024, 16, 88. https://doi.org/10.3390/pharmaceutics16010088
Song M, Aipire A, Dilxat E, Li J, Xia G, Jiang Z, Fan Z, Li J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics. 2024; 16(1):88. https://doi.org/10.3390/pharmaceutics16010088
Chicago/Turabian StyleSong, Ming, Adila Aipire, Elzira Dilxat, Jianmin Li, Guoyu Xia, Ziwen Jiang, Zhongxiong Fan, and Jinyao Li. 2024. "Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery" Pharmaceutics 16, no. 1: 88. https://doi.org/10.3390/pharmaceutics16010088
APA StyleSong, M., Aipire, A., Dilxat, E., Li, J., Xia, G., Jiang, Z., Fan, Z., & Li, J. (2024). Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics, 16(1), 88. https://doi.org/10.3390/pharmaceutics16010088