Formulation Strategies of Nanosuspensions for Various Administration Routes
Abstract
:1. Introduction
- NSs provide enhanced oral bioavailability of drugs by increasing the saturation solubility and dissolution of the active substance and by increasing adhesion to the cell surface membranes [17].
- NSs can also allow passive targeting because the particle is of nanometer size [18].
- They are simple, easy, and inexpensive to produce, and they themselves produce rapid and reproducible formulations [19].
- Production costs are very low because of the low excipient requirements during their preparation. Moreover, their production can be scaled up [20].
- They reduce the bioavailability differences in fasted/fed states caused by the effects of food [21].
- They reduce inter-subject variability in bioavailability [17].
- They have a high drug content (accepted as 100%), so the dose used is reduced in therapy [22].
- Physical stability is increased in solidified nanosuspensions, and solidified formulations can be presented to patients in solid dosage forms such as tablets or capsules [17].
- NSs can be formulated for parenteral, pulmonary, topical, and ophthalmic routes of administration, in addition to the oral route [14].
- They can be sterilized by various methods such as filtration, dry heat, steam, and radiation [23].
- The formulation may not be suitable for some pharmaceutical active ingredients, and difficulties may be encountered in choosing the stabilizer type and stabilizer ratio used in the formulation.
- There is a potential for physical stability problems in liquid form during preparation in nanosuspension form [19].
- Particle growth may occur in the drying step because of insufficient cryoprotectant power [27].
- Undesirable polymorphic changes may be encountered because of the need to use devices (high-pressure homogenizers or wet bead mills) in the preparation of NSs and because of the high pressure and temperature increase and of the mechanical power applied accordingly [19].
2. Preparation Methods for Nanosuspensions
2.1. Bottom-Up Technology
2.2. Top-Down Technology
2.2.1. High-Pressure Homogenization Method
2.2.2. Wet Media Milling Method
2.3. Combination Technology
3. Selection of Stabilizers
4. Characterization Studies for Nanosuspensions
5. Solidification of Nanosuspension and Stability
6. Administration Routes of Nanosuspensions
6.1. Oral Administration
6.2. Parenteral Administration
6.3. Pulmonary Administration
6.4. Ocular Administration
6.5. Dermal and Transdermal Administration
7. Challenges and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guner, G.; Yilmaz, D.; Yao, H.F.; Clancy, D.J.; Bilgili, E. Predicting the temperature evolution during nanomilling of drug suspensions via a semi-theoretical lumped parameter model. Pharmaceutics 2022, 14, 2840. [Google Scholar] [CrossRef] [PubMed]
- Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol. Pathol. 2008, 36, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Uhlemann, J.; Diedam, H.; Hoheisel, W.; Schikarski, T.; Peukert, W. Modeling and simulation of process technology for nanoparticulate drug formulations—A particle technology perspective. Pharmaceutics 2021, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Bawab, A.A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Piscatelli, J.A.; Ban, J.; Lucas, A.T.; Zamboni, W.C. Complex factors and challenges that affect the pharmacology, safety and efficacy of nanocarrier drug delivery systems. Pharmaceutics 2021, 13, 114. [Google Scholar] [CrossRef]
- Mirchandani, Y.; Patravale, V.B.; Brijesh, S. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef]
- Öztürk-Atar, K.; Kaplan, M.; Çalış, S. Development and evaluation of polymeric micelle containing tablet formulation for poorly water-soluble drug: Tamoxifen citrate. Drug Dev. Ind. Pharm. 2020, 46, 1695–1704. [Google Scholar] [CrossRef]
- Gorain, B.; Pandey, M.; Choudhury, H.; Jain, G.K.; Kesharwani, P. Chapter 15—Dendrimer for solubility enhancement. In Dendrimer-Based Nanotherapeutics; Kesharwani, P., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 273–283. [Google Scholar] [CrossRef]
- Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102308. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Nano and microemulsions for the treatment of depressive and anxiety disorders: An efficient approach to improve solubility, brain bioavailability and therapeutic efficacy. Pharmaceutics 2022, 14, 2825. [Google Scholar] [CrossRef]
- Karakucuk, A.; Teksin, Z.S.; Eroglu, H.; Celebi, N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur. J. Pharm. Sci. 2019, 131, 153–158. [Google Scholar] [CrossRef]
- Oktay, A.N.; Karakucuk, A.; Ilbasmis-Tamer, S.; Celebi, N. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur. J. Pharm. Sci. 2018, 12, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Peters, K. Nanosuspensions for the formulation of poorly soluble drugs. Int. J. Pharm. 1998, 160, 229–237. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Zhang, N.; Zhong, J. Nanosuspension Drug Delivery System: Preparation, Characterization, Postproduction Processing, Dosage Form, and Application; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 413–443. [Google Scholar] [CrossRef]
- Müller, R.H.; Olbrich, C. Medicament Vehicle for the Controlled Administration of an Active Agent, Produced from Lipid Matrix-Medicament Conjugates. Germany Patent No. WO2000067800A2, 16 November 2000. [Google Scholar]
- Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006, 62, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. 2015, 10, 13–23. [Google Scholar] [CrossRef]
- Sutradhar, K.B.; Khatun, S.; Luna, I.P. Increasing possibilities of nanosuspension. J. Nanotechnol. 2013, 2013, 346581. [Google Scholar] [CrossRef]
- Thenge, R.R.; Patel, A.; Mehetre, G. Chapter 22—Nanocrystals in the drug delivery system. In Photophysics and Nanophysics in Therapeutics; Mahajan, N.M., Saini, A., Raut, N.A., Dhoble, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 443–454. [Google Scholar] [CrossRef]
- Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm. 2013, 453, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.; Yoon, S.; Kim, S.; Cho, J.; Yoon, S.H.; Lim, K.S.; Yu, K.; Jang, I.; Lee, H. Novel nanocrystal formulation of megestrol acetate has improved bioavailability compared with the conventional micronized formulation in the fasting state. Drug Des. Dev. Ther. 2014, 8, 851–858. [Google Scholar] [CrossRef]
- Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals—Special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm. 2011, 78, 1–9. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef]
- Ran, Q.; Wang, M.; Kuang, W.; Ouyang, J.; Han, D.; Gao, Z.; Gong, J. Advances of combinative nanocrystal preparation technology for improving the insoluble drug solubility and bioavailability. Crystals 2022, 12, 1200. [Google Scholar] [CrossRef]
- Joshi, K.; Chandra, A.; Jain, K.; Talegaonkar, S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm. Nanotechnol. 2019, 7, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.K.; Pathak, K. Drug Nanocrystals as Drug Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Du, J.; Li, X.; Zhao, H.; Zhou, Y.; Wang, L.; Tian, S.; Wang, Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int. J. Pharm. 2015, 495, 738–749. [Google Scholar] [CrossRef] [PubMed]
- List, M.; Sucker, H. Pharmaceutical Colloidal Hydrosols for Injection. UK Patent GB2200048B, 6 February 1991. [Google Scholar]
- Oktay, A.N.; Ilbasmis-Tamer, S.; Karakucuk, A.; Celebi, N. Screening of stabilizing agents to optimize flurbiprofen nanosuspensions using experimental design. J. Drug Deliv. Sci. Technol. 2020, 57, 101690. [Google Scholar] [CrossRef]
- Qian, Y.S.; Kumar, R.H.; Meka, V.S.; Dharmalingam, S.R. Preparing kaempferol nanosuspension (KNS) using high pressure homogenization (HPH) technique. BMC Proc. 2015, 9, A22. [Google Scholar] [CrossRef]
- Song, X.; Zhou, C.; Fu, F.; Chen, Z.; Wu, Q. Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Ind. Crops Prod. 2013, 43, 538–544. [Google Scholar] [CrossRef]
- Tashan, E.; Karakucuk, A.; Celebi, N. Optimization and in vitro evaluation of ziprasidone nanosuspensions produced by a top-down approach. J. Drug Deliv. Sci. Technol. 2019, 52, 37–45. [Google Scholar] [CrossRef]
- Gülbağ Pınar, S.; Çelebi, N. Optimization and evaluation of cyclosporine A nanosuspension stabilized by combination stabilizers using high pressure homogenization method. J. Res. Pharm. 2019, 23, 1009–1021. [Google Scholar] [CrossRef]
- Liversidge, G.G.; Cundy, K.C.; Bishop, J.F.; Czekai, D.A. Surface Modified Drug Nanoparticles. Google Patents US5145684A, 8 September 1992. [Google Scholar]
- Karakucuk, A.; Tort, S.; Han, S.; Oktay, A.N.; Celebi, N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencapsul. 2021, 38, 218–232. [Google Scholar] [CrossRef]
- Gülbağ Pınar, S.; Pezik, E.; Mutlu Ağardan, B.; Çelebi, N. Development of cyclosporine A nanosuspension: Cytotoxicity and permeability on Caco-2 cell lines. Pharm. Dev. Technol. 2022, 27, 52–62. [Google Scholar] [CrossRef]
- Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar] [CrossRef]
- Hassan, A.S.; Soliman, G.M. Rutin nanocrystals with enhanced anti-inflammatory activity: Preparation and ex vivo/in vivo evaluation in an inflammatory rat model. Pharmaceutics 2022, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of nanosuspensions in drug delivery. J. Control. Release 2013, 172, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-Vivo fate, targeting and applications in drug delivery. J. Control. Release 2014, 183, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Willmann, A.C.; Berkenfeld, K.; Faber, T.; Wachtel, H.; Boeck, G.; Wagner, K.G. Itraconazole nanosuspensions via dual centrifugation media milling: Impact of formulation and process parameters on particle size and solid-state conversion as well as storage stability. Pharmaceutics 2022, 14, 1528. [Google Scholar] [CrossRef]
- Douroumis, D.; Fahr, A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur. J. Pharm. Sci. 2007, 30, 367–374. [Google Scholar] [CrossRef]
- Gülbağ Pınar, S.; Canpınar, H.; Tan, Ç.; Çelebi, N. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug cyclosporine A: Development, optimization and in vivo evaluation. Eur. J. Pharm. Sci. 2022, 171, 106123. [Google Scholar] [CrossRef]
- Na, Y.G.; Pham, T.M.A.; Byeon, J.J.; Kim, M.K.; Han, M.G.; Baek, J.S.; Lee, H.K.; Cho, C.W. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int. J. Pharm. 2020, 581, 119287. [Google Scholar] [CrossRef]
- Xia, D.; Quan, P.; Piao, H.; Piao, H.; Sun, S.; Yin, Y.; Cui, F. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci. 2010, 40, 325–334. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Rosqvist, E.; Smått, J.H.; Ibrahim, H.M.; Ismael, H.R.; Afouna, M.I.; Samy, A.M.; Rosenholm, J.M. Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. Int. J. Pharm. 2019, 563, 217–227. [Google Scholar] [CrossRef]
- Dolenc, A.; Kristl, J.; Baumgartner, S.; Planinšek, O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int. J. Pharm. 2009, 376, 204–212. [Google Scholar] [CrossRef]
- Leung, D.H. Development of nanosuspension formulations compatible with inkjet printing for the convenient and precise dispensing of poorly soluble drugs. Pharmaceutics 2022, 14, 449. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Xu, J.; Shao, J.; Ding, M.; Shi, S. Preparation, characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics 2022, 14, 923. [Google Scholar] [CrossRef]
- Kobierski, S.; Ofori-Kwakye, K.; Müller, R.H.; Keck, C.M. Resveratrol nanosuspensions for dermal application–production, characterization, and physical stability. Pharmazie 2009, 64, 741–747. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid Interface Sci. 2017, 485, 91–98. [Google Scholar] [CrossRef]
- Xiong, W.; Sang, W.; Linghu, K.G.; Zhong, Z.F.; Cheang, W.S.; Li, J.; Hu, Y.J.; Yu, H.; Wang, Y.T. Dual-functional Brij-S20-modified nanocrystal formulation enhances the intestinal transport and oral bioavailability of berberine. Int. J. Nanomed. 2018, 28, 3781–3793. [Google Scholar] [CrossRef]
- Xue, H.; Ruijuan, S.; Xiuqing, H.; Yingli, W.; Xiao, K.; Shuang, Z.; Hongzhuo, L. Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J. Pharm. 2019, 14, 569–580. [Google Scholar] [CrossRef]
- Deng, J.; Huang, L.; Liu, F. Understanding the structure and stability of paclitaxel nanocrystals. Int. J. Pharm. 2010, 390, 242–249. [Google Scholar] [CrossRef]
- Cerdeira, A.M.; Mazzotti, M.; Gander, B. Formulation and drying of miconazole and itraconazole nanosuspensions. Int. J. Pharm. 2013, 443, 209–220. [Google Scholar] [CrossRef]
- Han, J.; Zhou, X.; Fu, J.; Gao, G.; Zuo, C.; Guo, Y.; Meihua-Han; Wang, X. Annonaceous acetogenins nanosuspensions stabilized by poloxamer 188: Preparation, properties and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2021, 66, 102676. [Google Scholar] [CrossRef]
- Eerdenbrugh, B.V.; Froyen, L.; Martens, J.A.; Blaton, N.; Augustijns, P.; Brewster, M.; Van den Mooter, G. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze–dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 2007, 338, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, R.; Alshweiat, A.; Szabó-Révész, P.; Bartos, C.; Csóka, I. Smartcrystals for efficient dissolution of poorly water-soluble meloxicam. Pharmaceutics 2022, 14, 245. [Google Scholar] [CrossRef]
- Shin, G.H.; Kim, J.T. Comparative study of chitosan and oligochitosan coatings on mucoadhesion of curcumin nanosuspensions. Pharmaceutics 2021, 13, 2154. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, H.; Zhang, D.; Liu, G.; Jia, L.; Zheng, D.; Shen, J.; Shen, Y.; Zhang, Q. Nanosuspension for parenteral delivery of a p-terphenyl derivative: Preparation, characteristics and pharmacokinetic studies. Colloids Surf. B Biointerfaces 2013, 108, 29–33. [Google Scholar] [CrossRef]
- Pal, R. Modeling the viscosity of concentrated nanoemulsions and nanosuspensions. Fluids 2016, 1, 11. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jonnalagadda, S.; Gupta, P.K. Use of Flory–Huggins interaction parameter and contact angle values to predict the suitability of the drug-polymer system for the production and stability of nanosuspensions. Pharm. Res. 2022, 39, 1001–1017. [Google Scholar] [CrossRef]
- Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 2004, 56, 827–840. [Google Scholar] [CrossRef]
- Dressman, J.B.; Amidon, G.L.; Reppas, C.; Shah, V.P. Dissolution testing as a prognostic tool for oral drug. Pharm. Res. 1998, 15, 11–22. [Google Scholar] [CrossRef]
- Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar] [CrossRef]
- Hörter, D.; Dressman, J.B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 1997, 25, 3–14. [Google Scholar] [CrossRef]
- Guan, W.; Ma, Y.; Ding, S.; Liu, Y.; Song, Z.; Liu, X.; Tang, L.; Wang, Y. The Technology for Improving Stability of Nanosuspensions in Drug Delivery; Springer Netherlands: Dordrecht, The Netherlands, 2022; Volume 24. [Google Scholar]
- Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113–120. [Google Scholar] [CrossRef]
- Teleki, A.; Nylander, O.; Bergström, C.A.S. Intrinsic dissolution rate profiling of poorly water-soluble compounds in biorelevant dissolution media. Pharmaceutics 2020, 12, 493. [Google Scholar] [CrossRef]
- Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H.; et al. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev. 2020, 157, 37–62. [Google Scholar] [CrossRef]
- Karakucuk, A.; Celebi, N. Investigation of formulation and process parameters of wet media milling method to develop etodolac nanosuspensions. Pharm. Res. 2020, 37, 111. [Google Scholar] [CrossRef] [PubMed]
- Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in Beagle dogs. Int. J. Pharm. 1995, 125, 91–97. [Google Scholar] [CrossRef]
- Goel, S.; Sachdeva, M.; Agarwal, V. Nanosuspension technology: Recent patents on drug delivery and their characterizations. Recent Pat. Drug Deliv. Formul. 2019, 13, 91–104. [Google Scholar] [CrossRef]
- Singare, D.S.; Marella, S.; Gowthamrajan, K.; Kulkarni, G.T.; Vooturi, R.; Rao, P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010, 402, 213–220. [Google Scholar] [CrossRef]
- Cooper, E.R. Nanoparticles: A personal experience for formulating poorly water soluble drugs. J. Control. Release 2010, 141, 300–302. [Google Scholar] [CrossRef]
- Ahmadi Tehrani, A.; Omranpoor, M.M.; Vatanara, A.; Seyedabadi, M.; Ramezani, V. Formation of nanosuspensions in bottom-up approach: Theories and optimization. DARU J. Pharm. Sci. 2019, 27, 451–473. [Google Scholar] [CrossRef]
- Rupvate, S.R.; Gangurde, S.A.; Adavadkar, P.R.; Ukhade, S.S.; Lale, S.S. Solid self-emulsifying pellets: Solubility enhancement for oral delivery of poorly soluble BCS class II drug. J. Drug Deliv. Ther. 2022, 12, 171–176. [Google Scholar] [CrossRef]
- El-Feky, Y.A.; Mostafa, D.A.; Al-Sawahli, M.M.; El-Telbany, R.F.A.; Zakaria, S.; Fayez, A.M.; Ahmed, K.A.; Alolayan, E.M.; El-Telbany, D.F.A. Reduction of intraocular pressure using timolol orally dissolving strips in the treatment of induced primary open-angle glaucoma in rabbits. J. Pharm. Pharmacol. 2020, 72, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Sampathi, S.; Prajapati, S.; Junnuthula, V.; Dyawanapelly, S. Pharmacokinetics and anti-diabetic studies of gliclazide nanosuspension. Pharmaceutics 2022, 14, 1947. [Google Scholar] [CrossRef] [PubMed]
- Tashan, E.; Karakucuk, A.; Celebi, N. Development of nanocrystal ziprasidone orally disintegrating tablets: Optimization by using design of experiment and in vitro evaluation. AAPS PharmSciTech 2020, 21, 115. [Google Scholar] [CrossRef] [PubMed]
- Karakucuk, A.; Canpinar, H.; Celebi, N. Ritonavir nanosuspensions prepared by microfluidization with enhanced solubility and desirable immunological properties. Pharm. Dev. Technol. 2022, 27, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Elshafeey, A.H.; El-Dahmy, R.M. Formulation and development of oral fast-dissolving films loaded with nanosuspension to augment paroxetine bioavailability: In vitro characterization, ex vivo permeation and pharmacokinetic evaluation in healthy human volunteers. Pharmaceutics 2021, 13, 1869. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.C.; Patel, H.A. A recent solidification approach for nanosuspension: Formulation, optimisation and evaluation of canagliflozin immediate release pellets. Folia Med. 2022, 64, 488–500. [Google Scholar] [CrossRef]
- Shah, R.; Soni, T.; Shah, U.; Suhagia, B.N.; Patel, M.N.; Patel, T.; Gabr, G.A.; Gorain, B.; Kesharwani, P. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J. Biomater. Sci. Polym. Ed. 2021, 32, 833–857. [Google Scholar] [CrossRef]
- Sahnen, F.; Kamps, J.P.; Langer, K. Conversion of indomethacin nanosuspensions into solid dosage forms via fluid bed granulation and compaction. Eur. J. Pharm. Biopharm. 2020, 154, 89–97. [Google Scholar] [CrossRef]
- Al Ashmawy, A.Z.G.; Eissa, N.G.; El Nahas, H.M.; Balata, G.F. Fast disintegrating tablet of doxazosin mesylate nanosuspension: Preparation and characterization. J. Drug Deliv. Sci. Technol. 2021, 61, 102210. [Google Scholar] [CrossRef]
- Lee, H.; Bang, J.B.; Na, Y.G.; Lee, J.Y.; Cho, C.W.; Baek, J.S.; Lee, H.K. Development and evaluation of tannic acid-coated nanosuspension for enhancing oral bioavailability of curcumin. Pharmaceutics 2021, 13, 1460. [Google Scholar] [CrossRef] [PubMed]
- McGuckin, M.B.; Wang, J.; Ghanma, R.; Qin, N.; Palma, S.D.; Donnelly, R.F.; Paredes, A.J. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J. Control. Release 2022, 345, 334–353. [Google Scholar] [CrossRef]
- Ganta, S.; Paxton, J.W.; Baguley, B.C.; Garg, S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int. J. Pharm. 2009, 367, 179–186. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Sun, M.; Guo, C.; Yu, A.; Xi, Y.; Cui, J.; Lou, H.; Zhai, G. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv. 2011, 18, 131–142. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhang, J.; Hao, L.; Guo, H.; Lou, H.; Zhang, D. Bexarotene nanocrystal—Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur. J. Pharm. Biopharm. 2014, 87, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Chan, J.G.; Chan, H.K. Pulmonary drug delivery by powder aerosols. J. Control. Release 2014, 193, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Seydoux, E.; Rodriguez-Lorenzo, L.; Blom, R.A.; Stumbles, P.A.; Petri-Fink, A.; Rothen-Rutishauser, B.M.; Blank, F.; von Garnier, C. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4+ T Cell Proliferation. Nanomedicine 2016, 12, 1815–1826. [Google Scholar] [CrossRef]
- Azarmi, S.; Roa, W.H.; Löbenberg, R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 2008, 60, 863–875. [Google Scholar] [CrossRef]
- Sung, J.C.; Pulliam, B.L.; Edwards, D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007, 25, 563–570. [Google Scholar] [CrossRef]
- Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D.; Mansour, H.M. Inhalable nanoparticulate powders for respiratory delivery. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1189–1199. [Google Scholar] [CrossRef]
- Elsayed, I.; AbouGhaly, M.H. Inhalable nanocomposite microparticles: Preparation, characterization and factors affecting formulation. Expert Opin. Drug Deliv. 2016, 13, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, F.F.; Liao, Y.H. Pharmacokinetic Considerations of Inhaled Pharmaceuticals for Systemic Delivery. Curr. Pharm. Des. 2016, 22, 2532–2548. [Google Scholar] [CrossRef]
- Zhou, Q.T.; Leung, S.S.; Tang, P.; Parumasivam, T.; Loh, Z.H.; Chan, H.K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev. 2015, 85, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tam, J.; Miller, D.A.; Zhou, J.; McConville, J.T.; Johnston, K.P.; Williams, R.O. High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int. J. Pharm. 2008, 361, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Johnston, K.P.; Williams, R.O. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur. J. Pharm. Biopharm. 2010, 75, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.; Müller, R.H. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm. Res. 2002, 19, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Kraft, W.K.; Steiger, B.; Beussink, D.; Quiring, J.N.; Fitzgerald, N.; Greenberg, H.E.; Waldman, S.A. The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J. Clin. Pharmacol. 2004, 44, 67–72. [Google Scholar] [CrossRef]
- Yang, W.; Peters, J.I.; Williams, R.O. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef]
- Chiang, P.C.; Hu, Y.; Thurston, A.; Sommers, C.D.; Guzova, J.A.; Kahn, L.E.; Lai, Y.; Blom, J.D. Pharmacokinetic and pharmacodynamic evaluation of the suitability of using fluticasone and an acute rat lung inflammation model to differentiate lung versus systemic efficacy. J. Pharm. Sci. 2009, 98, 4354–4364. [Google Scholar] [CrossRef]
- Wan, K.Y.; Weng, J.; Wong, S.N.; Kwok, P.C.L.; Chow, S.F.; Chow, A.H.L. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Eur. J. Pharm. Biopharm. 2020, 149, 238–247. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, W.; Huang, G.; Lei, F.; Chen, Y.; Ma, Z.; Chen, L.; Yang, M. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge. Drug Deliv. 2022, 29, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J. Preparation of budesonide nanosuspensions for pulmonary delivery: Characterization, in vitro release and in vivo lung distribution studies. Artif. Cells Nanomed. Biotechnol. 2016, 44, 285–289. [Google Scholar] [CrossRef]
- Casula, L.; Lai, F.; Pini, E.; Valenti, D.; Sinico, C.; Cardia, M.C.; Marceddu, S.; Ailuno, G.; Fadda, A.M. Pulmonary Delivery of Curcumin and Beclomethasone Dipropionate in a Multicomponent Nanosuspension for the Treatment of Bronchial Asthma. Pharmaceutics 2021, 13, 1300. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.T.; Cong, Z.Q.; Zhao, Y.; Chen, W.Y.; Liu, C.Y.; Zheng, Y.; Yang, F.F.; Liao, Y.H. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int. J. Pharm. 2019, 572, 118839. [Google Scholar] [CrossRef] [PubMed]
- Alshweiat, A.; Katona, G.; Csóka, I.; Ambrus, R. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur. J. Pharm. Sci. 2018, 122, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Rundfeldt, C.; Steckel, H.; Scherliess, H.; Wyska, E.; Wlaź, P. Inhalable highly concentrated itraconazole nanosuspension for the treatment of bronchopulmonary aspergillosis. Eur. J. Pharm. Biopharm. 2013, 83, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Akdağ, Y.; Gülsün, T.; Izat, N.; Oner, L.; Sahin, S. Formulation and characterization of mometasone furoate and formoterol fumarate containing dry powder inhaler by spray drying and homogenization methods. J. Res. Pharm. 2022, 26, 383–396. [Google Scholar] [CrossRef]
- Chen, D.; Yun, X.; Lee, D.; DiCostanzo, J.R.; Donini, O.; Shikuma, C.M.; Thompson, K.; Lehrer, A.T.; Shimoda, L.; Suk, J.S. Telmisartan Nanosuspension for Inhaled Therapy of COVID-19 Lung Disease and Other Respiratory Infections. Mol. Pharm. 2023, 20, 750–757. [Google Scholar] [CrossRef]
- Soltani, S.; Zakeri-Milani, P.; Barzegar-Jalali, M.; Jelvehgari, M. Comparison of different nanosuspensions as potential ophthalmic delivery systems for ketotifen fumarate. Adv. Pharm. Bull. 2016, 6, 345–352. [Google Scholar] [CrossRef]
- Del Amo, E.M.; Urtti, A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today 2008, 13, 135–143. [Google Scholar] [CrossRef]
- Gaudana, R.; Jwala, J.; Boddu, S.H.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res. 2009, 26, 1197–1216. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K.; Joan Vijetha, R.; Virendra, B. A review on: Formulation of nanosuspension intended for ophthalmic use. Pharma Innov. J. 2019, 8, 477–486. [Google Scholar]
- Abdulbaqi, M.R.; Taghi, H.S.; Jaafar, Z.M. Nanosuspension as an innovative nanotechnology trend drug delivery system: A review. Sys. Rev. Pharm. 2021, 12, 1212–1218. [Google Scholar]
- Sharma, O.P.; Patel, V.; Mehta, T. Nanocrystal for ocular drug delivery: Hope or hype. Drug Deliv. Transl. Res. 2016, 6, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Kassem, M.A.; Abdel Rahman, A.A.; Ghorab, M.M.; Ahmed, M.B.; Khalil, R.M. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int. J. Pharm. 2007, 340, 126–133. [Google Scholar] [CrossRef]
- Ali, H.S.; York, P.; Ali, A.M.; Blagden, N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release 2011, 149, 175–181. [Google Scholar] [CrossRef] [PubMed]
- García-Millán, E.; Quintáns-Carballo, M.; Otero-Espinar, F.J. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. Int. J. Pharm. 2017, 525, 226–236. [Google Scholar] [CrossRef]
- Donia, M.; Osman, R.; Awad, G.A.S.; Mortada, N. Polypeptide and glycosaminoglycan polysaccharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int. J. Biol. Macromol. 2020, 162, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Tuomela, A.; Liu, P.; Puranen, J.; Rönkkö, S.; Laaksonen, T.; Kalesnykas, G.; Oksala, O.; Ilkka, J.; Laru, J.; Järvinen, K.; et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int. J. Pharm. 2014, 467, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jang, S.W.; Han, S.D.; Hwang, H.D.; Choi, H.G. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Pharmazie 2011, 66, 491–495. [Google Scholar] [PubMed]
- Schopf, L.; Enlow, E.; Popov, A.; Bourassa, J.; Chen, H. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol. Ther. 2014, 3, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Okyar, A.; Özsoy, Y.; Güngör, S. Novel formulation approaches for dermal and transdermal delivery of non-steroidal anti-inflammatory drugs. In Rheumatoid Arthritis; Lemmey A, Ed.; InTech: Rijeka, Croatia, 2012; pp. 25–48. [Google Scholar] [CrossRef]
- Sift Carter, R.; Ebner, D.; Brenner, D.; Bruppacher, R. Use of topical NSAIDs in patients receiving systemic NSAID treatment: A pharmacy-based study in Germany. J. Clin. Epidemiol. 1997, 50, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Williams, A. Transdermal and Topical Drug Delivery: From Theory to Clinical Practice; Pharmaceutical Press: London, UK, 2003. [Google Scholar]
- Guy, R.H. Current status and future prospects of transdermal drug delivery. Pharm. Res. 1996, 13, 1765–1769. [Google Scholar] [CrossRef]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.R.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Production and characterization of hesperetin nanosuspensions for dermal delivery. Int. J. Pharm. 2009, 371, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.M.; Meinke, M.; Keck, C.M.; Müller, R.H. Rutin—Increased antioxidant activity and skin penetration by nanocrystal technology (SmartCrystals). Cosmetics 2016, 3, 9. [Google Scholar] [CrossRef]
- Pireddu, R.; Sinico, C.; Ennas, G.; Marongiu, F.; Muzzalupo, R.; Lai, F.; Fadda, A.M. Novel nanosized formulations of two diclofenac acid polymorphs to improve topical bioavailability. Eur. J. Pharm. Sci. 2015, 77, 208–215. [Google Scholar] [CrossRef]
- Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement—Effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm. 2016, 104, 216–225. [Google Scholar] [CrossRef]
- Shen, C.; Shen, B.; Liu, X.; Yuan, H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J. Drug Deliv. Sci. Technol. 2018, 43, 103385171. [Google Scholar] [CrossRef]
- Romero, G.B.; Arntjen, A.; Keck, C.M.; Müller, R.H. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int. J. Pharm. 2016, 498, 217–224. [Google Scholar] [CrossRef]
- Wang, W.P.; Hul, J.; Sui, H.; Zhao, Y.S.; Feng, J.; Liu, C. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation. Pharmazie 2016, 71, 252–257. [Google Scholar] [PubMed]
- Oktay, A.N.; Ilbasmis-Tamer, S.; Uludag, O.; Celebi, N. Enhanced dermal delivery of flurbiprofen nanosuspension based gel: Development and ex vivo permeation, pharmacokinetic evaluations. Pharm. Res. 2021, 38, 991–1009. [Google Scholar] [CrossRef] [PubMed]
- Oktay, A.N.; Ilbasmis-Tamer, S.; Han, S.; Uludag, O.; Celebi, N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur. J. Pharm. Sci. 2020, 155, 105548. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, I.; Michniak-Kohn, B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin—A case study. AAPS PharmSciTech 2013, 14, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Lademann, J.; Keck, C.M.; Müller, R.H. Nanocrystals of medium soluble actives–novel concept for improved dermal delivery and production strategy. Int. J. Pharm. 2014, 470, 141–150. [Google Scholar] [CrossRef]
Preparation Method | Advantages | Limitations |
---|---|---|
Bottom-up technology |
|
|
Top-down technologies | ||
High-pressure homogenization method |
|
|
Wet media milling method |
|
|
Stabilizer | Stabilizer Type | Structure | References |
---|---|---|---|
Cellulose derivatives | Polymeric stabilizer | A cellulose derivative of cotton natural or synthetic fibers | [35,42,43] |
Polyvinyl alcohol (PVA) | Polymeric stabilizer | A synthetic water-soluble resin obtained from the hydrolysis of polyvinyl acetate | [44,45,46] |
Polyvinyl pyrrolidone (PVP) | Polymeric stabilizer | A synthetic linear-chain water-soluble polymer fabricated from the polymerization of the monomer N-vinylpyrrolidone | [32,47,48] |
Polyethylene glycols | Polymeric stabilizer | A hydrophilic polymer of ethylene oxide | [38,42,49] |
Sodium lauryl sulfate (SLS) | Surfactant | A sulphuric acid mono-dodecyl ester sodium salt | [36,47,48] |
Plantacare® 2000 | Surfactant | A plant-derived feedstock | [12,29,50] |
Brij derivatives | Surfactant | A polyoxyethylene alkyl ether | [51,52,53] |
Lecithin | Surfactant | A mixture of phosphatides with triglycerides, fatty acids, and carbohydrates | [49] |
D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS/ TPGS 1000) | Surfactant | An ester of vitamin E with PEG 1000 | [32,51] |
Poloxamers | Surfactant | Amphiphilic block copolymers | [54,55,56] |
Polysorbate 80 | Surfactant | A polyoxyethylene sorbitan fatty acid ester derivative | [41,57] |
Characterization | Methods | Principle | Significance | References |
---|---|---|---|---|
Particle size and morphological evaluation | Dynamic light scattering (DLS) and photon correlation spectroscopy (PCS) | Fluctuation of Rayleigh scattering of light associated with Brownian motion of nanoparticles | Particle size (PS) and particle size distribution (PDI) measurements | [19,49] |
Optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and stomic force microscopy (AFM) | Reflection or transmission of electrons incident on the particle and the force applied to the sample by the probe | Particle size measurement, surface morphology, and three-dimensional image | [24,48,58] | |
Surface properties | Dynamic light scattering (DLS) | Electrophoretic mobility | Surface charge (zeta potential—ZP) measurements | [40] |
Solid state (Structural) characterization | Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) | Thermogravimetric analysis and physical change in the sample versus change in heat flow | Solid state form analysis (enthalpy, melting point, glass transition temperature) | [58] |
Infrared (IR) spectroscopy (mid-IR and Fourier-transformed IR spectroscopy) and Raman Spectroscopy | Change in dipole moment during molecular vibrations and in polarizability during molecular vibrations | Polymorphic form changes (analysis of amorphous, crystalline, and polymorphs) | [59] | |
X-ray powder diffraction (XRPD) | Diffraction of X-rays transmitted on the sample | Polymorphic form changes (analysis of amorphous, crystalline, and polymorphs) | [60] | |
Rheological properties (for liquid nanosuspensions) | Viscometer and rheometer | The way a liquid flows in response to the applied force and the viscosity of a fluid | Rheological character and flow type | [48,61] |
Solubility | Ultraviolet (UV) spectrophotometer and high-performance liquid spectroscopy (HPLC) | Detection of increase in saturation solubility using spectroscopy or chromatography | Increasing active substance solubility | [49,60] |
Reasons for the Development of Oral Nanosuspensions | Challenges to Be Overcome | Specific Studies |
---|---|---|
|
|
|
Drug | Use/Treatment | Stabilizers | Preparation Method | Characterization | Outcomes | References |
---|---|---|---|---|---|---|
Gliczaide | Antidiabetic | SDS, Lecithin | Solvent–Antisolvent Precipitation | PS: 96.49 ± 15 nm PDI: 0.326 ± 0.05 ZP: −22 ± 5.6 mV | The Cmax and AUC0–t values of NS were approximately 3.35- and 1.9-fold higher than those of the raw medication and marketed formulation. | [81] |
Silymarin | Hepatoprotective | PVA | Solvent–Antisolvent Precipitation | PS: 277.3 ± 10.4 nm PDI: 0.114 ± 0.075 ZP: −22.8 ± 2.8 mV | Saturation solubility of nanosuspensions enhanced 3.48 times compared to the coarse powder, improved dissolution. | [46] |
Ziprasidone | Antipsychotic | PVP K30 | Microfluidization | PS: 600 nm PDI: 0.4 ZP: 29 mV | The solubility of nanosuspensions was increased up to 2.3-fold compared with the coarse powder. Nanosuspensions showed >95% dissolution in the FeSSIF medium and 80% in the FaSSIF medium. | [32,82] |
Cyclosporine A (CsA) | Immunosuppressive | HPMC, SDS | Wet milling | PS: 600 nm PDI: 0.4 ZP: −25 mV | The solubility of CsA was increased 4.5-fold by nanosuspensions. AUC0–24 values of CsA nanosuspension were to be 2.09 and 5.51-fold higher than coarse powder in fasted and fed conditions. Cmax was 3.99-fold higher than coarse powder. | [36,43] |
Ritonavir (RTV) | Antiprotease HIV | HPMC, SDS | Microfluidization | PS: 540–550 nm PDI: 0.1–0.4 ZP: −20 mV | The solubility of nanosuspension was enhanced five times. 57% and 18% of RTV were dissolved in FeSSIF medium for nanosuspension and coarse powder. Cmax and AUC0−t values in nanosuspension displayed an 8.9- and a 12.5-fold increase, respectively, compared to the coarse powder, and a 1.9- and 2.1-fold increase, respectively, compared to the commercial product. | [11,83] |
Paroxetine | Depression and anxiety | Poloxamer 188 | Solvent–Antisolvent Precipitation | PS: 217.09 ± 4.18 nm PDI: 0.46 ± 0.27 ZP: −33.49 ± 2.08 mV | Increase in Cmax (1.74-fold), AUC0–48 (1.56-fold), and AUC0–∞ (1.78-fold), when compared with the market tablet. | [84] |
Canagliflozin | Type 2 diabetes mellitus | Poloxamer 407 | Wet milling | PS: 120.5 ± 5.6 nm PDI: 0.217 ± 0.23 ZP: −23.0 ± 4.75 mV | Pellets released more than 89% drug within 10 min as compared to the marketed tablet and pure drug, which released 24.63% and 18.65% of the drug, respectively, within 10 min. | [85] |
Lumefantrine | Anti-malarial | Polysorbate 80 | Anti-solvent precipitation and ultrasonication | PS: 168.3 nm PDI: 0.128 ZP: −25.7 mV | Saturation solubility increased in nanosuspension (1670 mg/mL) when compared to the pure drug (212.33 mg/mL). Lyophilized nanosuspension showed an 8-fold increase in drug release. | [86] |
Indomethacin | Anti-inflammatory | PVP, SDS | Wet milling | PS: 195 ± 7 nm PDI: 0.12 ± 0.02 | Coarse powder released 49 ± 2% after 60 min while nanosuspensions released >95% after 30 min. | [87] |
Doxazosin Mesylate | Antihypertensive | PVP K 30, Poloxamer 407, SLS | Emulsification solvent diffusion | PS: 385 ± 13.00 nm PDI: 0.049 ± 3.33 ZP: 50.33 ± 4.20 mV | Significant reduction in mean arterial blood pressure of hypertensive rats for more than 3 h when compared with marketed tablet; 100% dissolution after 10 min. | [88] |
Curcumin | Anti-inflammatory, antiviral, antibacterial, and antitumor | SDS, PVP/PVA | Anti-solvent precipitation | PS: 127.7–1.3 nm PDI: 0.227–0.010 | More than 80% of the drug is released. The maximum drug plasma concentration of the tannic acid-coated nanosuspension formulation was 7.2-fold higher than that of the pure drug. | [89] |
Drug | Use/Treatment | Stabilizers | Preparation Method | Characterization | Outcomes | References |
---|---|---|---|---|---|---|
Asulacrine | Anticancer | Poloxamer 188 | High-pressure homogenization | PS: 133 ± 20 nm | Enhanced solubility (app. 40-fold). Reduced Cmax and AUC0–∞ and greater AUC0–∞ in liver, lung, and kidney compared to solution. | [91] |
Curcumin | Anticancer | Cremophor EL-40, Tween 80, Poloxamer 188, SDS, HPMC, Carbomer 940 | Nanoprecipitation, High-speed homogenization, High-pressure homogenization, Combined nanoprecipitation and high-pressure homogenization | Best suspending effect with soya lecithin Successfully prepared by high-pressure homogenization PS: 250.6 nm ZP: −27.92 mV | Solubility and dissolution rates were significantly increased. Superior cytotoxicity in Hela and MCF-7 cells. Less local irritation and phlebitis risks, lower rate of erythrocyte hemolysis. | [92] |
Bexarotene | Anticancer | Poloxamer 188, Soybean lecithin, PVP K30 | Precipitation-combined microfluidization method | PS: 279.0 ± 3.2 nm PDI: 0.104 ± 0.014 | Improved solubility (app. 10-fold). Higher AUC, Cmax, and a longer mean retention time. | [93] |
p-terphenyl derivative (H2) | Anticancer | Poloxamer 188, Lecithin | Combined microfluidization and precipitation method | PS: 201.7 ± 5.87 nm ZP: −21.07 ± 0.57 mV | Increased saturation solubility and accelerated dissolution velocity. 5-fold higher AUC0∼∞. A longer mean retention time. | [60] |
Drug | Use/Treatment | Stabilizers | Preparation Method | Characterization | Outcomes | References |
---|---|---|---|---|---|---|
Budesonide | Asthma | HPMC, SLS | Microfluidization | PS: 122.5 ± 6.3 nm ZP: 13.6 ± 0.4 mV | The dispersion of the nanosuspensions in the lung was easier than normal particles and micronized particles. After 1 h of inhalation, the drug concentration reached 872.9 ng/g. This differs significantly from normal particles (p < 0.01) and micronized particles (p < 0.05). | [110] |
Budesonide | Asthma | Lecithin, Span 85, Tyloxapol | Homogenization | Formulation (contain lecithin) PS: 599 nm PDI: 0.278 ZP: −12 mV Formulation (contain Tyloxapol) PS: 500 nm PDI: 0.397 ZP: −41.1 mV | The results showed that a long-term stable pulmonary budesonide nanosuspension could be used with a conventional nebulizer or with a portable inhaler system. | [104] |
Curcumin (CUR) and Beclomethasone Dipropionate (BDP) | Bronchial asthma | Poloxamer 188 | Wet ball media milling | CUR-NS PS: 202 nm PDI: 0.25 ZP: −30 mV CUR+BDP-NS PS: 240 nm PDI: 0.24 | Improved CUR apparent solubility by approximately, 54-fold comparison with the raw material. The results suggest that the formulation should be delivered accurately and efficiently to deeper lung regions, showing multicomponent nanosuspension, optimal dimensional properties, and aerodynamic parameters. | [111] |
Fluticasone propionate (FP) | Corticosteroid | EDTA-2Na, NaCl, Sodium citrate, Citric acid, Tween 80 | Combined wet milling with high-pressure homogenization | PS: 246 ± 2.94 nm PDI: 0.20 ± 0.04 ZP: 0.35 ± 0.14 mV | This study demonstrated that inhalable nanosuspensions are a viable vehicle for sustained pulmonary delivery of FP and their local anti-inflammatory activity is largely dependent on their dissolution profile. Intratracheally dosed nanosuspensions attenuated mucociliary clearance and prolonged pulmonary absorption time and improved local retention, resulting in a significant prolongation of the local anti-inflammatory effect of FP. | [112] |
Loratidine | Allergic rhinitis, urticaria, and atopic dermatitis | Stabilizer mixtures of Tween 80 or Pluronic F68 + PVP-K25 | Ultrasonic-assisted precipitation | PS: 353–441 nm PDI: 0.167–0.229 ZP: −25.7–−20.7 mV | This study demonstrates that preparing dried loratadine nanoparticles suitable for designing effective drug preparations is a feasible approach. | [113] |
Itrocanozole (ITRA) | Allergic Bronchopulmonary Aspergillosis (ABPA) Cystic fibrosis (CF) | Poloxamer 188, Polysorbate 80, Solutol H15 | Wet milling method | Solutol HS 15 formulation: 300 nm Formulation using polysorbate 80: 180–210 nm PDI: low for both polysorbate 80 and Solutol | The results indicate that ITRA nanosuspension represents an interesting formulation for inhaled administration in CF patients suffering from ABPA. High and long-lasting lung tissue concentrations well above the minimal inhibitory concentration of Aspergillus species enable once-daily administration with minimal systemic exposure. | [114] |
Mometasone Furoate Monohydrate (MFM) combined with Formoterol Fumarate Dihydrate (FFD) | Asthma | DPPC | High-pressure homogenization and spray-drying process | Aerodynamic diameter MFM: 1.71 ± 0.04 µm FFD: 2.20 ± 0.44 µm | The results clearly showed that the combination of homogenization and spray drying methods is suitable to obtain DPI formulation containing MFM and FFD with particle size less than 5 µm to reach alveoli. | [115] |
Telmisartan | COVID-19 Lung Disease and Other Respiratory Infections | Polysorbate 80 | Probe sonication | Hydrodynamic diameter PS: 322 ± 15 nm PDI: 0.24 ± 0.03 ZP: −2.9 ± 0.5 mV | The developed nanosuspension demonstrated excellent applicability to the lungs, pharmacokinetics, and acceptable tolerability in rodents and/or non-human primates. Clinical evaluation of the formulation for inhaler use in patients with COVID-19 or other respiratory diseases is ongoing. | [116] |
Reasons for the Development of Ocular Nanosuspensions | Challenges to Be Overcome | Specific Studies |
---|---|---|
|
|
|
Drug | Use/Treatment | Stabilizers | Preparation Method | Characterization | Outcomes | References |
---|---|---|---|---|---|---|
Hydrocortisone, Prednisolone, Dexamethasone | Conjunctiva | Pluronic F68, EDTA, benzalkonium chloride, hydroxyethyl cellulose | High-pressure homogenization | PS: 650–880 nm | NSs exhibited a higher intensity of drug action and a higher extent of drug absorption. | [123] |
Hydrocortisone | Inflammation | PVP, HPMC, Tween 80 | Microfluidic nanoprecipitation and wet milling | PS: 295–300 nm PDI: 0.18 | The nanosuspensions showed sustained action and enhanced bioavailabilities compared to the hydrocortisone solution, moreover improved stability. | [124] |
Triamcinolone acetonide | Inflammation | Poloxamer 407, PVA | Nanoprecipitation technique | PS: ~150 nm PDI: ~0.3 | Using the NS, improved loading capacity and solubility, and high physical stability were obtained. | [125] |
Acetazolamide | Ocular hypertension | PVA, Soya bean lecithin, HY or PG | Antisolvent precipitation technique + sonication | PS: 100–300 nm ZP > ±20 mV | Enhanced saturation solubility and efficient ocular hypotensive activity were obtained. The modified Draize test showed tolerability and safety on the eye. | [126] |
Brinzolamide | Ocular hypertension | HPMC, Pluronic F127 or F68, Polysorbate 80 | Wet milling | PS: 460–530 nm PDI: 0.12–0.21 | The NSs were homogenous and stable. They dissolved immediately in vitro and provided significantly decreased intraocular pressure values. | [127] |
Ciclosporin A | Keratoconjunctivitis | PVA, PVP, HPMC, HPC, HEC | Media milling | PS: ~530 nm | Using nanosuspension (with PVA stabilizer), less irritation to the eye was observed compared to the marketed product Restasis®. | [128] |
Loteprednol Etabonate (LE) | Inflammation | Pluronic® F127 | Media milling | PS: ~200–241 nm PDI < 0.15 | An increased level of LE in ocular tissue/fluids and an improved pharmacokinetic profile (3-fold higher Cmax)in the ocular tissues of rabbits were observed compared to Lotemax 0.5% suspension. | [129] |
Reasons for the Development of Dermal/Transdermal Nanosuspensions | Challenges to Be Overcome | Specific Studies |
---|---|---|
|
|
|
Drug | Use/Treatment | Stabilizers | Preparation Method | Characterization | Outcomes | References |
---|---|---|---|---|---|---|
Diclofenac sodium (DCF) | Inflammation | Poloxamer 188 | Wet milling | PS ∼ 300 nm PDI ∼ 0.2 ZP ∼ −35 mV | In the application of the NSs having double drug concentration, the accumulated and permeated amount of DCF did not change because of the saturation solubility of DCF being constant. | [137] |
Curcumin | Acne | Plantacare® 2000, Plantacare® 1200, Plantacare® 810 | Smart Crystal® (Wet milling + HPH) | PS: ∼170–180 nm PDI ∼ 0.2 ZP: −30 mV or above | The drug concentration of NS can be 0.2% (for cost-effective drugs) and 0.02% (for very low soluble drugs). The low viscosity of dermal formulations provides enhanced penetration into the skin and follicular targeting/accumulation. | [138] |
Nitrofurazone (NTF) | Antioxidant and anti-inflammatory | HPMC E3, PVP K30, HPMC E5 (alone or in combination with surfactants) Poloxamers 188, SDS, Tween 80, TPGS | Wet milling | PS: ∼300 nm PDI: ∼0.2 Stability index (SI): 0.8 | The dissolution of NTF nanogel was higher compared to the NTF marketed gel. The permeated amount of NTF through the skin of nanogel after 24 h was higher than the marketed gel in the ex vivo rat skin permeation studies. After the application of NTF nanogel, the retained amount of NTF in rats’ skin was 5.5 times higher than the NTF marketed gel. | [139] |
Rutin | Antifungal | Polysorbate 80, Glycerol, Euxyl® PE 9010 | Smart Crystal® (Bead milling + HPH) | PS: 240–282 nm PDI: 0.215 | Rutin nanocrystals showed increased skin penetration and increased in vitro antioxidant activity | [136] |
Cyclosporin A | Antioxidant | TPGS, Kolliphor TPGS | Wet milling | PS ∼ 350 nm PDI: 0.35 | The improved skin penetration with higher stable, formulations were successfully obtained. | [140] |
Glabridin (GLB) | Psoriasis | Poloxamer 188, PVP K30 | NanoedgeTM (anti-solvent precipitation-homogenization) | PS ∼ 149.2 nm PDI: 0.254 | Compared to the coarse suspension and physical mixture, NS enhanced the drug permeation flux of GLB through rat skin with no lag phase both in vitro and in vivo. The GLB-NS did not show any significant aggregates and showed a GLB loss of 5.46% after storage for three months at room temperature. | [141] |
Flurbiprofen (FB) | Analgesic and anti-inflammatory | Plantacare® 2000 UP (PL) | HPH | PS: 665 nm–700 nm PDI: 0.2–0.3 ZP ∼ −30 mV | The saturation solubility of FB was increased 5.3-fold with NS. The permeability of FB NS was higher than the FB solution in rat skin. The DoE approach was a useful tool for the preparation of FB-NS. | [12] |
Flurbiprofen (FB) | Analgesic and anti-inflammatory | Plantacare® 2000 UP (PL) | Wet milling | PS: 237.7 ± 6.8 nm PDI: 0.133 ± 0.030 ZP: −30.4 ± 0.7 mV | In the pharmacokinetic studies, NS gel showed higher permeation and enhanced plasma-blood concentration of FB in rats compared to gels containing coarse suspension and physical mixture. | [142] |
Flurbiprofen (FB) | Analgesic and anti-inflammatory | Plantacare® 2000 UP (PL) | Wet Milling | PS: 237.7 ± 6.8 nm PDI: 0.133 ± 0.030 ZP: −30.4 ± 0.7 mV | According to characterization studies of the various gels containing NS, the HPMC gel was found better than others. The anti-inflammatory and analgesic activities of FB were increased by the FB-NS-based HPMC gel compared to the physical mixture-based and the FB coarse powder-based gels. | [143] |
Flurbiprofen (FB) | Analgesic and anti-inflammatory | HPMC, PVP K30, Plantacare® 2000 UP, Tween 80 | HPH | PS: 593–805 nm PDI: 0.15–1 ZP: −18.5–−38.6 mV | PL stabilized FB-NS protected the crystalline state. The PL is a more efficient stabilizer to obtain smaller PS and more stable NSs. The PL and PVP provided better morphology than others. | [29] |
Ibuprofen (IBU) | Anti-inflammatory | Vitamin E TPGS, HPMC K4 | Wet milling | PS: 284.5–854.6 nm PDI: 0.211–0.502 | A clear correlation was determined between the vitamin E TPGS and particle size of nanocrystals with the flux of IBU through the skin. | [144] |
Etodolac (ETD) | Analgesic and anti-inflammatory | PVP K30 | Wet milling | PS: 188.5 ± 1.6 nm PDI: 0.161 ± 0.049 ZP: −14.8 ± 0.3 mV | In vitro and ex vivo permeation studies showed that NS-based HPMC or HEC gels were better in terms of enhancing the penetration of ETD because of increased saturation solubility. The enhanced anti-inflammatory and analgesic activity of NS-HEC gels was observed compared to the control and physical mixture. | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pınar, S.G.; Oktay, A.N.; Karaküçük, A.E.; Çelebi, N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics 2023, 15, 1520. https://doi.org/10.3390/pharmaceutics15051520
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics. 2023; 15(5):1520. https://doi.org/10.3390/pharmaceutics15051520
Chicago/Turabian StylePınar, Sıla Gülbağ, Ayşe Nur Oktay, Alptuğ Eren Karaküçük, and Nevin Çelebi. 2023. "Formulation Strategies of Nanosuspensions for Various Administration Routes" Pharmaceutics 15, no. 5: 1520. https://doi.org/10.3390/pharmaceutics15051520
APA StylePınar, S. G., Oktay, A. N., Karaküçük, A. E., & Çelebi, N. (2023). Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics, 15(5), 1520. https://doi.org/10.3390/pharmaceutics15051520