Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solubility Determination in 1-Octanol and n-Hexane
2.3. Distribution Examination in the Absence and Presence of Cyclodextrins
2.4. Membrane Permeability Assay in the Absence and Presence of Cyclodextrins
3. Results and Discussion
3.1. Assessment of the Solubility, Distribution and Permeability for IPN, INZ and iNAM at 310.2 K
3.2. Distribution and Permeability of IPN in the Presence of HP-β-CD and M-β-CD in Aqueous Phase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahu, R.; Mishra, R.; Kumar, R.; Salahuddin, C.M.; Mazumder, A.; Kumar, A. Pyridine moiety: Recent advances in cancer treatment. Indian J. Pharm. Sci. 2021, 83, 162–185. [Google Scholar] [CrossRef]
- Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Saleh, M.A.; El-Araby, M.E. Design and synthesis of pyridine-amide based compounds appended naproxen moiety as anti-microbial and anti-inflammatory agents. Am. J. PharmTech Res. 2015, 5, 245–273. [Google Scholar]
- Yang, Z.-B.; Hu, D.-Y.; Zeng, S.; Song, B.-A. Novel hydrazone derivatives containing pyridine amide moiety: Design, synthesis, and insecticidal activity. Bioorg. Med. Chem. Lett. 2016, 26, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bansal, D.; Kaushik, N.K.; Kaushik, N.; Choi, E.H.; Gupta, R. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. J. Chem. Sci. 2014, 126, 1091–1105. [Google Scholar] [CrossRef]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Hidalgo, I.J. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem. 2001, 1, 385–401. [Google Scholar] [CrossRef]
- Martins, F.; Ventura, C.; Santos, S.; Viveiros, M. QSAR Based Design of New Antitubercular Compounds: Improved Isoniazid Derivatives Against Multidrug-Resistant TB. Curr. Pharm. Des. 2014, 20, 4427–4454. [Google Scholar] [CrossRef]
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef]
- Purushothaman, G.; Angira, D.; Thiruvenkatam, V. Investigation of nicotinamide and isonicotinamide derivatives: A quantitative and qualitative structural analysis. J. Mol. Struct. 2019, 1197, 34–44. [Google Scholar] [CrossRef]
- Bashimam, M.; El-Zein, H. Pharmaceutical cocrystal of antibiotic drugs: A comprehensive review. Heliyon 2022, 8, e11872. [Google Scholar] [CrossRef]
- Volkova, T.V.; Simonova, O.R.; Perlovich, G.L. Permeability of diverse drugs through a lipid barrier: Impact of pH and cyclodextrin. J. Mol. Liq. 2022, 357, 119135. [Google Scholar] [CrossRef]
- Volkova, T.V.; Terekhova, I.V.; Silyukov, O.I.; Proshin, A.N.; Bauer-Brandl, A.; Perlovich, G.L. Towards the rational design of novel drugs based on solubility, partitioning/distribution, biomimetic permeability and biological activity exemplified by 1,2,4-thiadiazole derivatives. MedChemComm 2017, 8, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005, 6, E329–E357. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, M.R.; Rolim, L.A.; Soares, M.F.D.L.R.; Rolim-Neto, P.J.; de Albuquerque, M.M.; Soares-Sobrinho, J.L. Inclusion complex of methyl-β-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydr. Polym. 2012, 89, 1095–1100. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, H.; Song, W.; Gu, D.; Hu, Q. Investigation of inclusion complex of cilnidipine with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2012, 90, 1719–1724. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Dorr, R.T.; Blanchard, J. Approaches to reducing toxicity of parenteral anticancer drug formulations using cyclodextrins. PDA J. Pharm. Sci. Technol. 2000, 54, 233–239. [Google Scholar]
- Mantik, P.; Xie, M.; Wong, H.; La, H.; Steigerwalt, R.W.; Devanaboyina, U.; Ganem, G.; Shih, D.; Flygare, J.A.; Fairbrother, W.J.; et al. Cyclodextrin Reduces Intravenous Toxicity of a Model Compound. J. Pharm. Sci. 2019, 108, 1934–1943. [Google Scholar] [CrossRef]
- Russell, N.R. New trends in cyclodextrins and derivatives. J. Incl. Phenom. Macrocycl. Chem. 1993, 15, 399–400. [Google Scholar] [CrossRef]
- Scavone, C.; Bonagura, A.C.; Fiorentino, S.; Cimmaruta, D.; Cenami, R.; Torella, M.; Fossati, T.; Rossi, F. Efficacy and Safety Profile of Diclofenac/Cyclodextrin and Progesterone/Cyclodextrin Formulations: A Review of the Literature Data. Drugs R&D 2016, 16, 129–140. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Másson, M.; Sigurdardóttir, B.V.; Matthíasson, K.; Loftsson, T. Investigation of Drug-Cyclodextrin Complexes by a Phase-Distribution Method: Some Theoretical and Practical Considerations. Chem. Pharm. Bull. 2005, 53, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Dahan, A. Predicting the solubility–permeability interplay when using cyclodextrins in solubility-enabling formulations: Model validation. Int. J. Pharm. 2012, 430, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Miro, A.; Rondinone, A.; Nappi, A.; Ungaro, F.; Quaglia, F.; La Rotonda, M.I. Modulation of release rate and barrier transport of Diclofenac incorporated in hydrophilic matrices: Role of cyclodextrins and implications in oral drug delivery. Eur. J. Pharm. Biopharm. 2009, 72, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Volkova, T.V.; Perlovich, G.L. Comparative analysis of solubilization and complexation characteristics for new antifungal compound with cyclodextrins. Impact of cyclodextrins on distribution process. Eur. J. Pharm. Sci. 2020, 154, 105531. [Google Scholar] [CrossRef] [PubMed]
- Volkova, T.V.; Drozd, K.V.; Surov, A.O. Effect of polymers and cyclodextrins on solubility, permeability and distribution of enzalutamide and apalutamide antiandrogens. J. Mol. Liq. 2020, 322, 114937. [Google Scholar] [CrossRef]
- Redenti, E.; Szente, L.; Szejtli, J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci. 2000, 89, 1–8. [Google Scholar] [CrossRef]
- Szejtli, J. Past, Present, and Future of Cyclodextrin Research. Pure Appl. Chem. 2004, 36, 1825–1845. [Google Scholar] [CrossRef]
- Eli, W.; Chen, W.; Xue, Q. Determination of Association Constants of Cyclodextrin-Nonionic Surfactant Inclusion Complexes by a Partition Coefficient Method. J. Incl. Phenom. Macrocycl. Chem. 2000, 38, 37–43. [Google Scholar] [CrossRef]
- Andrés, A.; Rosés, M.; Ràfols, C.; Bosch, E.; Espinosa, S.; Segarra, V.; Huerta, J.M. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. Eur. J. Pharm. Sci. 2015, 76, 181–191. [Google Scholar] [CrossRef]
- Menges, R.A.; Armstrong, D.W. Use of a three-phase model with hydroxypropyl-βy̧clodextrin for the direct determination of large octanol-water and cyclodextrin-water partition coefficients. Anal. Chim. Acta 1991, 255, 157–162. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Whiting, G.S.; Mitchell, R.C. Hydrogen Bonding. 32. An Analysis of Water-Octanol and Water-Alkane Partitioning and the Δlog P Parameter of Seiler. J. Pharm. Sci. 1994, 83, 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Sabadini, E.; Cosgrove, T.; Egídio, F.D.C. Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: A comparative study. Carbohydr. Res. 2006, 341, 270–274. [Google Scholar] [CrossRef] [PubMed]
- di Cagno, M.; Bibi, H.A.; Bauer-Brandl, A. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. Eur. J. Pharm. Sci. 2015, 73, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, S.V.; Ol’khovich, M.V.; Sharapova, A.V.; Volkova, T.V.; Perlovich, G.L. Solution thermodynamics of pyrazinamide, isoniazid, and p-aminobenzoic acid in buffers and octanol. J. Chem. Thermodyn. 2015, 91, 396–403. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and Its Relationship with Passive Drug Permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Druglike Properties: Concepts, Structure Design and Methods; Academic Press: Cambridge, MA, USA; Elsiever: Burlington, MA, USA, 2008; pp. 44–45. [Google Scholar]
- Gulyaeva, N.; Zaslavsky, A.; Lechner, P.; Chlenov, M.; McConnell, O.; Chait, A.; Kipnis, V.; Zaslavsky, B. Relative hydrophobicity and lipophilicity of drugs measured by aqueous two-phase partitioning, octanol-buffer partitioning and HPLC. A simple model for predicting blood–brain distribution. Eur. J. Med. Chem. 2003, 38, 391–396. [Google Scholar] [CrossRef]
- Avdeef, A. Anomalous Solubility Behavior of Several Acidic Drugs. ADMET DMPK 2014, 2, 33–42. [Google Scholar] [CrossRef]
- Meanwell, N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef]
- Raevsky, O.A.; Grigor’ev, V.J.; Trepalin, S.V. HYBOT (Hydrogen Bond Thermodynamics) Program Package. Russian State Patent No. N990090, 26 February 1999. [Google Scholar]
- Hansch, C.; Steinmetz, W.E.; Leo, A.J.; Mekapati, S.B.; Kurup, A.; Hoekman, D. On the Role of Polarizability in Chemical−Biological Interactions. J. Chem. Inf. Comput. Sci. 2003, 43, 120–125. [Google Scholar] [CrossRef]
- Avdeef, A. Absorption and Drug Development: Solubility, Permeability and Charge State, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 3, pp. 550–551. [Google Scholar]
- Camenisch, G.; Folkers, G.; van de Waterbeemd, H. Review of theoretical passive drug absorption models: Historical background, recent developments and limitations. Pharm. Acta Helvetiae 1996, 71, 309–327. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, E.M. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011, 63, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Carrier, R.L.; Miller, L.A.; Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 2007, 123, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Hoven, J.M.V.D.; Metselaar, J.M.; Storm, G.; Beijnen, J.H.; Nuijen, B. Cyclodextrin as membrane protectant in spray-drying and freeze-drying of PEGylated liposomes. Int. J. Pharm. 2012, 438, 209–216. [Google Scholar] [CrossRef]
- Szente, L.; Fenyvesi, É. Cyclodextrin-Lipid Complexes: Cavity Size Matters. Struct. Chem. 2017, 28, 479–492. [Google Scholar] [CrossRef]
- Mura, P.; Bragagni, M.; Mennini, N.; Cirri, M.; Maestrelli, F. Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: Effect of randomly methylated β-cyclodextrin. Int. J. Pharm. 2014, 475, 306–314. [Google Scholar] [CrossRef]
- Best, S.A.; Merz, K.M., Jr.; Reynolds, C.H. Free Energy Perturbation Study of Octanol/Water Partition Coefficients: Comparison with Continuum GB/SA Calculations. J. Phys. Chem. B 1999, 103, 714–726. [Google Scholar] [CrossRef]
Compound Name | CAS Register No. | Source | Mass Fraction Purity | Purification Method |
---|---|---|---|---|
Iproniazid (N′-isopropyl isonicotinic hydrazide) | 54-92-2 | Weng Jiang Reagent Co. | 0.96 | none |
Isoniazid (isonicotinic acid hydrazide) | 54-85-3 | Acros organics | ≥0.99 | none |
Isonicotinamide (pyridine-4-carboxylic acid amide) | 1453-82-3 | Acros organics | 0.99 | none |
2-Hydroxypropyl-β-cyclodextrin | 128446-35-5 | Sigma-Aldrich | ≥0.96 | none |
Methylated β-cyclodextrin | Aldrich | - | none | |
1-octanol | 111–87-5 | Sigma-Aldrich | ≥0.99 | none |
n-hexane | 110–54-3 | Sigma-Aldrich | ≥0.99 | none |
Potassium dihydrogen phosphate | 7778–77-0 | Merck | ≥0.99 | none |
Disodium hydrogen phosphate dodecahydrate | 10039–32-4 | Merck | ≥0.99 | none |
Compound | T (K) | 1-Octanol | n-Hexane |
---|---|---|---|
S2 × 101 (M) | S2 × 103 (M) | ||
IPN | 290.2 | 4.09 ± 0.08 | 0.72 ± 0.01 |
IPN | 293.2 | 4.44 ± 0.09 | 0.83 ± 0.03 |
IPN | 298.2 | 5.06 ± 0.06 | 1.07 ± 0.02 |
IPN | 303.2 | 5.73 ± 0.11 | 1.42 ± 0.03 |
IPN | 310.2 | 6.86 ± 0.18 | 2.03 ± 0.04 |
INZ | 310.2 | a 1.78 ± 0.04 | 1.37 ± 0.05 |
iNAM | 310.2 | 1.26 ± 0.02 | 1.10 ± 0.04 |
Solvent | ||||||
---|---|---|---|---|---|---|
1 1-octanol | 6.2 ± 0.1 | 5.6 ± 0.1 | 20.5 ± 0.2 | 14.3 ± 0.4 | 14.9 ± 0.4 | 58.9/57.9 |
2 n-hexane | 22.0 ± 0.4 | 21.2 ± 0.4 | 40.0 ± 0.9 | 18.0 ± 0.8 | 18.8 ± 0.8 | 69.0/68.0 |
n-hexane → 1-octanol | 4 | |||||
−15.8 | −15.6 | −19.5 | −3.7 | −3.9 | 84.1/83.3 |
System | ΔlogD | ||
---|---|---|---|
IPN | 2.651 ± 0.093 (0.423) | 12.400 ± 0.191 (−2.907) | 3.33 |
INZ | 0.633 ± 0.021 (−0.199) | 8.254 ± 0.188 (−3.083) | 2.88 |
iNAM | 0.446 ± 0.013 (−0.351) | 5.742 ± 0.172 (−3.241) | 2.89 |
IPN/0.0115 M HP-β-CD | 2.413 ± 0.086 (0.383) | 9.138 ± 0.161 (−3.039) | 3.42 |
IPN/0.025 M HP-β-CD | 2.138 ± 0.087 (0.330) | 4.311 ± 0.113 (−3.365) | 3.70 |
IPN/0.035 M HP-β-CD | 1.922 ± 0.096 (0.284) | 1.672 ± 0.061 (−3.777) | 4.06 |
IPN/0.0115 M M-β-CD | 2.558 ± 0.081 (0.408) | 10.200 ± 0.210 (−2.991) | 3.40 |
IPN/0.025 M M-β-CD | 2.459 ± 0.068 (0.391) | 6.763 ± 0.122 (−3.170) | 3.56 |
IPN/0.035 M M-β-CD | 2.363 ± 0.072 (0.373) | 5.525 ± 0.128 (−3.258) | 3.63 |
Cyclodextrin | KC | a α | b R | c σ | d F |
---|---|---|---|---|---|
1-Octanol/Buffer pH 7.4 System | |||||
HP-β-CD | 0.899 ± 0.022 | 1.004 ± 0.014 | 0.9999 | 2.28·10−5 | 5441.26 |
M-β-CD | 0.479 ± 0.109 | 1.000 ± 0.065 | 0.9979 | 5.22·10−4 | 235.47 |
n-hexane/buffer pH 7.4 system | |||||
HP-β-CD | 1.536 ± 0.128 | 1.087 ± 0.076 | 0.9975 | 7.22·10−4 | 201.42 |
M-β-CD | 1.311 ± 0.241 | 1.057 ± 0.143 | 0.9909 | 2.56·10−3 | 53.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkova, T.; Simonova, O.; Perlovich, G. Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative. Pharmaceutics 2023, 15, 1531. https://doi.org/10.3390/pharmaceutics15051531
Volkova T, Simonova O, Perlovich G. Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative. Pharmaceutics. 2023; 15(5):1531. https://doi.org/10.3390/pharmaceutics15051531
Chicago/Turabian StyleVolkova, Tatyana, Olga Simonova, and German Perlovich. 2023. "Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative" Pharmaceutics 15, no. 5: 1531. https://doi.org/10.3390/pharmaceutics15051531
APA StyleVolkova, T., Simonova, O., & Perlovich, G. (2023). Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative. Pharmaceutics, 15(5), 1531. https://doi.org/10.3390/pharmaceutics15051531