Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterisation of Piperonyl Esters-Loaded Alginate Nanocarriers (ANC-PE)
2.1.1. Reagents
2.1.2. Preparation of ANC-PE Aqueous Suspension
2.1.3. Physicochemical Characterisation of ANC-PE Suspensions
2.1.4. Preparation of Model Cosmetic Gels
2.2. Raman Spectroscopy Data Collection
2.3. Data Handling
3. Results and Discussion
3.1. Physicochemical Characterisation of ANC-PE Suspensions
3.2. Characterisation of Spectral Variability According to ANC-PE Concentrations in the Dataset
3.3. Principal Component Analysis (PCA)
3.4. Construction of Predictive Models (Cross-Validation)
3.5. Prediction of PE Concentration in Test Samples (Unknown; to Be Determined)
3.6. General Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Committee on the Assessment of the Available Scientific Data Regarding the Safety and Effectiveness of Ingredients Used in Compounded Topical Pain Creams. Commissioned Paper: Topical Dosage Form Development and Evaluation; Jackson, L.M., Schwinn, D.A., Eds.; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Garg, T.; Rath, G.; Goyal, A.K. Comprehensive Review on Additives of Topical Dosage Forms for Drug Delivery. Drug Deliv. 2015, 22, 969–987. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Bielfeldt, S.; Bonnier, F.; Byrne, H.J.; Chourpa, I.; Dancik, Y.; Lane, M.E.; Lunter, D.J.; Munnier, E.; Puppels, G.; Tfayli, A.; et al. Monitoring Dermal Penetration and Permeation Kinetics of Topical Products; the Role of Raman Microspectroscopy. TrAC Trends Anal. Chem. 2022, 156, 116709. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Nanotechnology in Cosmetics. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–369. [Google Scholar]
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. [Google Scholar] [CrossRef]
- Elmowafy, M. Skin Penetration/Permeation Success Determinants of Nanocarriers: Pursuit of a Perfect Formulation. Colloids Surf. B Biointerfaces 2021, 203, 111748. [Google Scholar] [CrossRef]
- Hazari, S.A.; Kaur, H.; Karwasra, R.; Abourehab, M.A.; Khan, A.A.; Kesharwani, P. An Overview of Topical Lipid-Based and Polymer-Based Nanocarriers for Treatment of Psoriasis. Int. J. Pharm. 2023, 638, 122938. [Google Scholar] [CrossRef]
- Luo, W.; Bai, L.; Zhang, J.; Li, Z.; Liu, Y.; Tang, X.; Xia, P.; Xu, M.; Shi, A.; Liu, X.; et al. Polysaccharides-Based Nanocarriers Enhance the Anti-Inflammatory Effect of Curcumin. Carbohydr. Polym. 2023, 311, 120718. [Google Scholar] [CrossRef]
- Yao, L.; Xu, J.; Zhang, L.; Liu, L.; Zhang, L. Nanoencapsulation of Anthocyanin by an Amphiphilic Peptide for Stability Enhancement. Food Hydrocoll. 2021, 118, 106741. [Google Scholar] [CrossRef]
- Yi, J.; He, Q.; Peng, G.; Fan, Y. Improved Water Solubility, Chemical Stability, Antioxidant and Anticancer Activity of Resveratrol via Nanoencapsulation with Pea Protein Nanofibrils. Food Chem. 2022, 377, 131942. [Google Scholar] [CrossRef]
- Nguyen, H.T.P.; Munnier, E.; Souce, M.; Perse, X.; David, S.; Bonnier, F.; Vial, F.; Yvergnaux, F.; Perrier, T.; Cohen-Jonathan, S.; et al. Novel Alginate-Based Nanocarriers as a Strategy to Include High Concentrations of Hydrophobic Compounds in Hydrogels for Topical Application. Nanotechnology 2015, 26, 255101. [Google Scholar] [CrossRef]
- Park, S.J.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Development of Nanostructured Lipid Carriers for the Encapsulation and Controlled Release of Vitamin D3. Food Chem. 2017, 225, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry—The European and North America Regulation Challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. 1), S131–S155. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Mohammed, Y.; Pastore, M.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.; Abd, E.; Leite-Silva, V.; Benson, H.; et al. Topical and Cutaneous Delivery Using Nanosystems. J. Control. Release 2017, 247, 86–105. [Google Scholar] [CrossRef]
- Nguyen, H.T.P.; Soucé, M.; Perse, X.; Vial, F.; Perrier, T.; Yvergnaux, F.; Chourpa, I.; Munnier, E. Lipid-Based Submicron Capsules as a Strategy to Include High Concentrations of a Hydrophobic Lightening Agent in a Hydrogel. Int. J. Cosmet. Sci. 2017, 39, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.P.; Allard-Vannier, E.; Gaillard, C.; Eddaoudi, I.; Miloudi, L.; Soucé, M.; Chourpa, I.; Munnier, E. On the Interaction of Alginate-Based Core-Shell Nanocarriers with Keratinocytes in Vitro. Colloids Surf. B Biointerfaces 2016, 142, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Boutin, R.; Munnier, E.; Renaudeau, N.; Girardot, M.; Pinault, M.; Chevalier, S.; Chourpa, I.; Clément-Larosière, B.; Imbert, C.; Boudesocque-Delaye, L. Spirulina Platensis Sustainable Lipid Extracts in Alginate-Based Nanocarriers: An Algal Approach against Biofilms. Algal Res. 2019, 37, 160–168. [Google Scholar] [CrossRef]
- Managuli, R.S.; Kumar, L.; Chonkar, A.D.; Shirodkar, R.K.; Lewis, S.; Koteshwara, K.B.; Reddy, M.S.; Mutalik, S. Development and Validation of a Stability-Indicating RP-HPLC Method by a Statistical Optimization Process for the Quantification of Asenapine Maleate in Lipidic Nanoformulations. J. Chromatogr. Sci. 2016, 54, 1290–1300. [Google Scholar] [CrossRef]
- Temova Rakuša, Ž.; Škufca, P.; Kristl, A.; Roškar, R. Quality Control of Retinoids in Commercial Cosmetic Products. J. Cosmet. Dermatol. 2021, 20, 1166–1175. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Kommalapati, H.S.; Pilli, P.; Samanthula, G. Green Sample Preparation in Bioanalysis: Where Are We Now? Bioanalysis 2023. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, P.; Rajpurohit, P.; Pulusu, V.S.; Shah, S. Green and Sustainable Analytical Chemistry-Driven Chromatographic Method Development for Stability Study of Apixaban Using Box–Behnken Design and Principal Component Analysis. J. Chromatogr. Sci. 2023, bmad033. [Google Scholar] [CrossRef] [PubMed]
- Miloudi, L.; Bonnier, F.; Barreau, K.; Bertrand, D.; Perse, X.; Yvergnaux, F.; Byrne, H.J.; Chourpa, I.; Munnier, E. ATR-IR Coupled to Partial Least Squares Regression (PLSR) for Monitoring an Encapsulated Active Molecule in Complex Semi-Solid Formulations. Analyst 2018, 143, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Bonnier, F.; Miloudi, L.; Henry, S.; Bertrand, D.; Tauber, C.; Perse, X.; Yvergnaux, F.; Byrne, H.J.; Chourpa, I.; Munnier, E. Quantification of Low-Content Encapsulated Active Cosmetic Ingredients in Complex Semi-Solid Formulations by Means of Attenuated Total Reflectance-Infrared Spectroscopy. Anal. Bioanal. Chem. 2020, 412, 159–169. [Google Scholar] [CrossRef]
- Byrne, H.; Sockalingum, G.; Stone, N. Raman Microscopy: Complement or Competitor? RSC Anal. Spectrosc. Ser. 2011, 11, 105–142. [Google Scholar]
- Pirutin, S.K.; Jia, S.; Yusipovich, A.I.; Shank, M.A.; Parshina, E.Y.; Rubin, A.B. Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies. Int. J. Mol. Sci. 2023, 24, 6947. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, H.; Liu, K.; Shang, L.; Xu, L.; Lu, Z.; Li, B. Multi-Point Scanning Confocal Raman Spectroscopy for Accurate Identification of Microorganisms at the Single-Cell Level. Talanta 2023, 254, 124112. [Google Scholar] [CrossRef]
- Uematsu, M.; Shimizu, T. Raman Microscopy-Based Quantification of the Physical Properties of Intracellular Lipids. Commun. Biol. 2021, 4, 1176. [Google Scholar] [CrossRef]
- Auner, G.W.; Koya, S.K.; Huang, C.; Broadbent, B.; Trexler, M.; Auner, Z.; Elias, A.; Mehne, K.C.; Brusatori, M.A. Applications of Raman Spectroscopy in Cancer Diagnosis. Cancer Metastasis Rev. 2018, 37, 691–717. [Google Scholar] [CrossRef]
- Vlasov, A.V.; Maliar, N.L.; Bazhenov, S.V.; Nikelshparg, E.I.; Brazhe, N.A.; Vlasova, A.D.; Osipov, S.D.; Sudarev, V.V.; Ryzhykau, Y.L.; Bogorodskiy, A.O. Raman Scattering: From Structural Biology to Medical Applications. Crystals 2020, 10, 38. [Google Scholar] [CrossRef]
- Stella, A.; Bonnier, F.; Tfayli, A.; Yvergnaux, F.; Byrne, H.J.; Chourpa, I.; Munnier, E.; Tauber, C. Raman Mapping Coupled to Self-Modelling MCR-ALS Analysis to Estimate Active Cosmetic Ingredient Penetration Profile in Skin. J. Biophotonics 2020, 13, e202000136. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Qin, J.; Li, J.; Chen, Y.; Song, D.; Zeng, H.; Wang, S. Confocal Raman Microspectral Analysis and Imaging of the Drug Response of Osteosarcoma to Cisplatin. Anal. Methods 2021, 13, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Depciuch, J.; Kaznowska, E.; Zawlik, I.; Wojnarowska, R.; Cholewa, M.; Heraud, P.; Cebulski, J. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Appl. Spectrosc. 2016, 70, 251–263. [Google Scholar] [CrossRef]
- Ren, J.; Mao, S.; Lin, J.; Xu, Y.; Zhu, Q.; Xu, N. Research Progress of Raman Spectroscopy and Raman Imaging in PharmaceuticalAnalysis. Curr. Pharm. Des. 2022, 28, 1445–1456. [Google Scholar] [CrossRef]
- Shaikh, R.; Daniel, A.; Lyng, F.M. Raman Spectroscopy for Early Detection of Cervical Cancer, a Global Women’s Health Issue—A Review. Molecules 2023, 28, 2502. [Google Scholar] [CrossRef]
- Mohamed, H.T.; Untereiner, V.; Proult, I.; Ibrahim, S.A.; Götte, M.; El-Shinawi, M.; Mohamed, M.M.; Sockalingum, G.D.; Brézillon, S. Characterization of Inflammatory Breast Cancer: A Vibrational Microspectroscopy and Imaging Approach at the Cellular and Tissue Level. Analyst 2018, 143, 6103–6112. [Google Scholar] [CrossRef]
- Rammal, H.; Al Assaad, A.; Dosio, F.; Stella, B.; Maksimenko, A.; Mura, S.; Van Gulick, L.; Callewaert, M.; Desmaële, D.; Couvreur, P.; et al. Investigation of Squalene-Doxorubicin Distribution and Interactions within Single Cancer Cell Using Raman Microspectroscopy. Nanomed. Nanotechnol. Biol. Med. 2021, 35, 102404. [Google Scholar] [CrossRef]
- Byrne, H.J.; Bonnier, F.; Casey, A.; Maher, M.; McIntyre, J.; Efeoglu, E.; Farhane, Z. Advancing Raman Microspectroscopy for Cellular and Subcellular Analysis: Towards in Vitro High-Content Spectralomic Analysis. Appl. Opt. 2018, 57, 11–19. [Google Scholar] [CrossRef]
- Paudel, A.; Raijada, D.; Rantanen, J. Raman Spectroscopy in Pharmaceutical Product Design. Adv. Drug Deliv. Rev. 2015, 89, 3–20. [Google Scholar] [CrossRef]
- Nagy, B.; Farkas, A.; Borbás, E.; Vass, P.; Nagy, Z.K.; Marosi, G. Raman Spectroscopy for Process Analytical Technologies of Pharmaceutical Secondary Manufacturing. AAPS PharmSciTech 2018, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Bao, J.; Liu, Q.; Liu, L.; Zhu, J. Application of Deep-Learning Algorithm Driven Intelligent Raman Spectroscopy Methodology to Quality Control in the Manufacturing Process of Guanxinning Tablets. Molecules 2022, 27, 6969. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Jafari, M.; Soto, R.; Albadarin, A.B.; Croker, D.; Walker, G. In-Line Raman Spectroscopy and Chemometrics for Monitoring Cocrystallisation Using Hot Melt Extrusion. Int. J. Pharm. 2021, 601, 120555. [Google Scholar] [CrossRef] [PubMed]
- Simone, E.; Saleemi, A.N.; Nagy, Z.K. Application of Quantitative Raman Spectroscopy for the Monitoring of Polymorphic Transformation in Crystallization Processes Using a Good Calibration Practice Procedure. Chem. Eng. Res. Des. 2014, 92, 594–611. [Google Scholar] [CrossRef]
- Rehman, G.U.; Vetter, T.; Martin, P.A. Design, Development, and Analysis of an Automated Sampling Loop for Online Monitoring of Chiral Crystallization. Org. Process. Res. Dev. 2022, 26, 1063–1077. [Google Scholar] [CrossRef]
- Elderderi, S.; Wils, L.; Leman-Loubière, C.; Henry, S.; Byrne, H.J.; Chourpa, I.; Munnier, E.; Elbashir, A.A.; Boudesocque-Delaye, L.; Bonnier, F. Comparison of Raman and Attenuated Total Reflectance (ATR) Infrared Spectroscopy for Water Quantification in Natural Deep Eutectic Solvent. Anal. Bioanal. Chem. 2021, 413, 4785–4799. [Google Scholar] [CrossRef]
- Elderderi, S.; Wils, L.; Leman-Loubière, C.; Byrne, H.J.; Chourpa, I.; Enguehard-Gueiffier, C.; Munnier, E.; Elbashir, A.A.; Boudesocque-Delaye, L.; Bonnier, F. In Situ Water Quantification in Natural Deep Eutectic Solvents Using Portable Raman Spectroscopy. Molecules 2021, 26, 5488. [Google Scholar] [CrossRef]
- Elderderi, S.; Sacré, P.-Y.; Wils, L.; Chourpa, I.; Elbashir, A.A.; Hubert, P.; Byrne, H.J.; Boudesocque-Delaye, L.; Ziemons, E.; Bonnier, F. Comparison of Vibrational Spectroscopic Techniques for Quantification of Water in Natural Deep Eutectic Solvents. Molecules 2022, 27, 4819. [Google Scholar] [CrossRef]
- Makki, A.A.; Bonnier, F.; Respaud, R.; Chtara, F.; Tfayli, A.; Tauber, C.; Bertrand, D.; Byrne, H.J.; Mohammed, E.; Chourpa, I. Qualitative and Quantitative Analysis of Therapeutic Solutions Using Raman and Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 218, 97–108. [Google Scholar] [CrossRef]
- Makki, A.A.; Massot, V.; Byrne, H.J.; Respaud, R.; Bertrand, D.; Mohammed, E.; Chourpa, I.; Bonnier, F. Vibrational Spectroscopy for Discrimination and Quantification of Clinical Chemotherapeutic Preparations. Vib. Spectrosc. 2021, 113, 103200. [Google Scholar] [CrossRef]
- Belay, N.F.; Busche, S.; Manici, V.; Shaukat, M.; Arndt, S.-O.; Schmidt, C. Evaluation of Transmission Raman Spectroscopy and NIR Hyperspectral Imaging for the Assessment of Content Uniformity in Solid Oral Dosage Forms. Eur. J. Pharm. Sci. 2021, 166, 105963. [Google Scholar] [CrossRef] [PubMed]
- Waffo Tchounga, C.A.; Sacré, P.-Y.; Ciza Hamuli, P.; Ngono Mballa, R.; De Bleye, C.; Ziemons, E.; Hubert, P.; Marini Djang’eing’a, R. Prevalence of Poor Quality Ciprofloxacin and Metronidazole Tablets in Three Cities in Cameroon. Am. J. Trop. Med. Hyg. 2023, 108, 403–411. [Google Scholar] [CrossRef]
- Cornel, J.; Lindenberg, C.; Mazzotti, M. Quantitative Application of in Situ ATR-FTIR and Raman Spectroscopy in Crystallization Processes. Ind. Eng. Chem. Res 2008, 47, 4870–4882. [Google Scholar] [CrossRef]
- Byrne, H.J.; Bonnier, F.; McIntyre, J.; Parachalil, D.R. Quantitative Analysis of Human Blood Serum Using Vibrational Spectroscopy. Clin. Spectrosc. 2020, 2, 100004. [Google Scholar] [CrossRef]
- Guleken, Z.; Jakubczyk, P.; Paja, W.; Pancerz, K.; Wosiak, A.; Yaylım, İ.; İnal Gültekin, G.; Tarhan, N.; Hakan, M.T.; Sönmez, D.; et al. An Application of Raman Spectroscopy in Combination with Machine Learning to Determine Gastric Cancer Spectroscopy Marker. Comput. Methods Programs Biomed. 2023, 234, 107523. [Google Scholar] [CrossRef] [PubMed]
- Van Gheluwe, L.; Munnier, E.; Kichou, H.; Kemel, K.; Mahut, F.; Vayer, M.; Sinturel, C.; Byrne, H.J.; Yvergnaux, F.; Chourpa, I.; et al. Confocal Raman Spectroscopic Imaging for Evaluation of Distribution of Nano-Formulated Hydrophobic Active Cosmetic Ingredients in Hydrophilic Films. Molecules 2021, 26, 7440. [Google Scholar] [CrossRef]
- Lê, L.M.M.; Berge, M.; Tfayli, A.; Zhou, J.; Prognon, P.; Baillet-Guffroy, A.; Caudron, E. Rapid Discrimination and Quantification Analysis of Five Antineoplastic Drugs in Aqueous Solutions Using Raman Spectroscopy. Eur. J. Pharm. Sci. 2018, 111, 158–166. [Google Scholar] [CrossRef]
- Makki, A.A.; Elderderi, S.; Massot, V.; Respaud, R.; Byrne, H.; Tauber, C.; Bertrand, D.; Mohammed, E.; Chourpa, I.; Bonnier, F. In Situ Analytical Quality Control of Chemotherapeutic Solutions in Infusion Bags by Raman Spectroscopy. Talanta 2021, 228, 122137. [Google Scholar] [CrossRef]
- Bourget, P.; Amin, A.; Moriceau, A.; Cassard, B.; Vidal, F.; Clement, R. La Spectroscopie Raman (SR): Un nouvel outil adapté au contrôle de qualité analytique des préparations injectables en milieu de soins. Comparaison de la SR aux techniques CLHP et UV/visible-IRTF appliquée à la classe des anthracyclines en cancérologie. Pathol. Biol. 2012, 60, 369–379. [Google Scholar] [CrossRef]
- Afseth, N.K.; Kohler, A. Extended Multiplicative Signal Correction in Vibrational Spectroscopy, a Tutorial. Chemom. Intell. Lab. Syst. 2012, 117, 92–99. [Google Scholar] [CrossRef]
- Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Parachalil, D.R.; Brankin, B.; McIntyre, J.; Byrne, H.J. Raman Spectroscopic Analysis of High Molecular Weight Proteins in Solution—Considerations for Sample Analysis and Data Pre-Processing. Analyst 2018, 143, 5987–5998. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of Multidimensional Data Processing Approaches for Raman and Infrared Spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Bonnier, F.; Byrne, H.J. Understanding the Molecular Information Contained in Principal Component Analysis of Vibrational Spectra of Biological Systems. Analyst 2011, 137, 322–332. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, D.B. Vocabulary of Concepts and Terms in Chemometrics (IUPAC Recommendations 2016). Pure Appl. Chem. 2016, 88, 407–443. [Google Scholar] [CrossRef]
- Guillot, A.J.; Martínez-Navarrete, M.; Garrigues, T.M.; Melero, A. Skin Drug Delivery Using Lipid Vesicles: A Starting Guideline for Their Development. J. Control. Release 2023, 355, 624–654. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Mendelovici, E.; Frost, R.L.; Kloprogge, T. Cryogenic Raman Spectroscopy of Glycerol. J. Raman Spectrosc. 2000, 31, 1121–1126. [Google Scholar] [CrossRef]
- Parachalil, D.R.; Bruno, C.; Bonnier, F.; Blasco, H.; Chourpa, I.; Baker, M.J.; McIntyre, J.; Byrne, H.J. Analysis of Bodily Fluids Using Vibrational Spectroscopy: A Direct Comparison of Raman Scattering and Infrared Absorption Techniques for the Case of Glucose in Blood Serum. Analyst 2019, 144, 3334–3346. [Google Scholar] [CrossRef]
- Orphanou, C.-M.; Walton-Williams, L.; Mountain, H.; Cassella, J. The Detection and Discrimination of Human Body Fluids Using ATR FT-IR Spectroscopy. Forensic Sci. Int. 2015, 252, e10–e16. [Google Scholar] [CrossRef]
- Derenne, A.; Derfoufi, K.-M.; Cowper, B.; Delporte, C.; Goormaghtigh, E. FTIR Spectroscopy as an Analytical Tool to Compare Glycosylation in Therapeutic Monoclonal Antibodies. Anal. Chim. Acta 2020, 1112, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Elderderi, S.; Hilali, S.; Wils, L.; Chourpa, I.; Soucé, M.; Clément-Larosière, B.; Elbashir, A.A.; Byrne, H.J.; Munnier, E.; Boudesocque-Delaye, L.; et al. Monitoring Water Content in NADES Extracts from Spirulina Biomass by Means of ATR-IR Spectroscopy. Anal. Methods 2022, 14, 1973–1981. [Google Scholar] [CrossRef]
- Elderderi, S.; Leman-Loubière, C.; Wils, L.; Henry, S.; Bertrand, D.; Byrne, H.J.; Chourpa, I.; Enguehard-Gueiffier, C.; Munnier, E.; Elbashir, A.A.; et al. ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents. J. Mol. Liq. 2020, 311, 113361. [Google Scholar] [CrossRef]
- Tiernan, H.; Byrne, B.; Kazarian, S.G. ATR-FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Biopharmaceuticals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118636. [Google Scholar] [CrossRef]
- Czech, K.; Briggs, J. Quantifying Ethanol Concentration in Hand Sanitizer via Automation. Appl. Noteb. 2020, 35, 53. [Google Scholar]
- Czech, K.; Briggs, J.; Technologies, I. An Observation of Methanol in Ethanol Using Automated ATR Spectroscopy. Appl. Noteb. 2019, 34, 53. [Google Scholar]
- Sala, A.; Spalding, K.E.; Ashton, K.M.; Board, R.; Butler, H.J.; Dawson, T.P.; Harris, D.A.; Hughes, C.S.; Jenkins, C.A.; Jenkinson, M.D.; et al. Rapid Analysis of Disease State in Liquid Human Serum Combining Infrared Spectroscopy and “Digital Drying”. J. Biophotonics 2020, 13, e202000118. [Google Scholar] [CrossRef]
- Bloomfield, M.; Andrews, D.; Loeffen, P.; Tombling, C.; York, T.; Matousek, P. Non-Invasive Identification of Incoming Raw Pharmaceutical Materials Using Spatially Offset Raman Spectroscopy. J. Pharm. Biomed. Anal. 2013, 76, 65–69. [Google Scholar] [CrossRef]
- Olds, W.J.; Sundarajoo, S.; Selby, M.; Cletus, B.; Fredericks, P.M.; Izake, E.L. Noninvasive, Quantitative Analysis of Drug Mixtures in Containers Using Spatially Offset Raman Spectroscopy (SORS) and Multivariate Statistical Analysis. Appl. Spectrosc. 2012, 66, 530–537. [Google Scholar] [CrossRef]
- Eliasson, C.; Matousek, P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy. Anal. Chem. 2007, 79, 1696–1701. [Google Scholar] [CrossRef]
- Ricci, C.; Eliasson, C.; Macleod, N.A.; Newton, P.N.; Matousek, P.; Kazarian, S.G. Characterization of Genuine and Fake Artesunate Anti-Malarial Tablets Using Fourier Transform Infrared Imaging and Spatially Offset Raman Spectroscopy through Blister Packs. Anal. Bioanal. Chem. 2007, 389, 1525. [Google Scholar] [CrossRef] [PubMed]
- Rayyad, A.; Makki, A.A.; Chourpa, I.; Massot, V.; Bonnier, F. Quantification of Clinical MAb Solutions Using Raman Spectroscopy: Macroscopic vs Microscopic Analysis. Talanta 2022, 250, 123692. [Google Scholar] [CrossRef] [PubMed]
- De Beer, T.; Burggraeve, A.; Fonteyne, M.; Saerens, L.; Remon, J.P.; Vervaet, C. Near Infrared and Raman Spectroscopy for the In-Process Monitoring of Pharmaceutical Production Processes. Int. J. Pharm. 2011, 417, 32–47. [Google Scholar] [CrossRef]
- Hausman, D.S.; Cambron, R.T.; Sakr, A. Application of Raman Spectroscopy for On-Line Monitoring of Low Dose Blend Uniformity. Int. J. Pharm. 2005, 298, 80–90. [Google Scholar] [CrossRef]
- Vergote, G.J.; De Beer, T.R.M.; Vervaet, C.; Remon, J.P.; Baeyens, W.R.G.; Diericx, N.; Verpoort, F. In-Line Monitoring of a Pharmaceutical Blending Process Using FT-Raman Spectroscopy. Eur. J. Pharm. Sci. 2004, 21, 479–485. [Google Scholar] [CrossRef]
- Parachalil, D.R.; Bruno, C.; Bonnier, F.; Blasco, H.; Chourpa, I.; McIntyre, J.; Byrne, H.J. Raman Spectroscopic Screening of High and Low Molecular Weight Fractions of Human Serum. Analyst 2019, 144, 4295–4311. [Google Scholar] [CrossRef] [PubMed]
- Bonnier, F.; Petitjean, F.; Baker, M.J.; Byrne, H.J. Improved Protocols for Vibrational Spectroscopic Analysis of Body Fluids. J. Biophotonics 2014, 7, 167–179. [Google Scholar] [CrossRef] [PubMed]
- ICH; International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Comitee ICH Harmonised Guideline: Validation of Analytical Procedures Q2(R2), Draft Version of March 2022. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 10 December 2022).
PE Final Concentration (% w/w) | ||||||||
---|---|---|---|---|---|---|---|---|
Concentration | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
SET 01 | 0.402 | 0.857 | 1.671 | 2.481 | 3.285 | 4.231 | 6.255 | 8.331 |
SET 02 | 0.452 | 0.837 | 1.640 | 2.411 | 3.213 | 4.341 | 6.016 | 8.306 |
SET 03 | 0.533 | 1.128 | 1.865 | 2.727 | 3.507 | 4.703 | 5.513 | 7.127 |
SET 04 | 0.537 | 1.102 | 1.870 | 2.679 | 3.494 | 4.794 | 5.493 | 7.194 |
SET 05 | 0.694 | 1.391 | 2.197 | 2.986 | 3.833 | 5.180 | 6.657 | 7.833 |
SET 06 | 0.667 | 1.333 | 2.167 | 2.933 | 3.833 | 5.167 | 6.667 | 7.833 |
SET 07 | 0.400 | 0.835 | 1.617 | 2.461 | 3.276 | 4.149 | 6.249 | 8.331 |
SET 08 | 0.408 | 0.861 | 1.667 | 2.459 | 3.244 | 4.158 | 6.203 | 8.369 |
SET 09 | 0.542 | 1.103 | 1.934 | 2.678 | 3.539 | 4.720 | 5.486 | 7.134 |
SET 10 | 0.543 | 1.097 | 1.890 | 2.696 | 3.483 | 4.684 | 5.497 | 7.209 |
SET 11 | 0.668 | 1.443 | 2.177 | 2.938 | 3.816 | 5.123 | 6.607 | 7.799 |
SET 12 | 0.702 | 1.360 | 2.134 | 2.954 | 3.826 | 5.102 | 6.620 | 7.737 |
%RE | <1 | <2.5 | <5 | <7.5 | <10 | <12.5 |
---|---|---|---|---|---|---|
Number of samples | 9 | 22 | 15 | 11 | 5 | 2 |
Min (%RE) | 0.14 | 1.02 | 2.54 | 5.41 | 7.59 | 11.15 |
Max (% RE) | 0.95 | 2.49 | 4.99 | 7.31 | 9.86 | 12.07 |
Mean (%RE) | 0.61 | 1.54 | 3.53. | 6.25 | 8.98 | 11.61 |
Overall mean (%RE) | 3.58 |
PE Concentration (w/w%) | No of Samples | Mean %RE | Min–Max %RE |
---|---|---|---|
<1 | 12 | 6.57 | 1.22–12.07 |
[1, 2] | 10 | 5.21 | 0.55–9.86 |
[2, 3] | 10 | 1.77 | 0.91–3.74 |
[3, 4] | 8 | 2.44 | 0.95–6.43 |
[4, 5] | 6 | 2.63 | 0.49–5.73 |
[5, 6] | 4 | 5.13 | 3.46–7.31 |
[6, 7] | 6 | 1.52 | 0.19–4.76 |
[7, 8] | 4 | 2.35 | 1.54–3.14 |
>8 | 4 | 1.52 | 1.02–2.28 |
%RE | <1 | <2.5 | <5 | <7.5 | <10 | <12.5 |
---|---|---|---|---|---|---|
Number of samples | 6 | 8 | 9 | 6 | 0 | 3 |
Min (%RE) | 0.22 | 1.19 | 2.72 | 5.48 | - | 10.09 |
Max (%RE) | 0.69 | 2.23 | 4.77 | 6.82 | - | 11.58 |
Mean (%RE) | 0.39 | 1.61 | 3.57 | 6.34 | - | 10.65 |
overall mean (%RE) | 3.67 |
PE Concentration | No. of Samples | Mean RE% | Min–Max %RE |
---|---|---|---|
<1 | 4 | 8.76 | 3.07–11.57 |
[1, 2] | 6 | 4.61 | 2.09–6.82 |
[2, 3] | 6 | 1.12 | 0.33–2.24 |
[3, 4] | 4 | 3.75 | 1.19–6.67 |
[4, 5] | 2 | 3.89 | 3.75–4.03 |
[5, 6] | 4 | 4.64 | 3.02–6.64 |
[6, 7] | 2 | 0.977 | 0.59–1.36 |
[7, 8] | 4 | 1.17 | 0.18–2.72 |
>8 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elderderi, S.; Bonnier, F.; Perse, X.; Byrne, H.J.; Yvergnaux, F.; Chourpa, I.; Elbashir, A.A.; Munnier, E. Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy. Pharmaceutics 2023, 15, 1571. https://doi.org/10.3390/pharmaceutics15061571
Elderderi S, Bonnier F, Perse X, Byrne HJ, Yvergnaux F, Chourpa I, Elbashir AA, Munnier E. Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy. Pharmaceutics. 2023; 15(6):1571. https://doi.org/10.3390/pharmaceutics15061571
Chicago/Turabian StyleElderderi, Suha, Franck Bonnier, Xavier Perse, Hugh J. Byrne, Florent Yvergnaux, Igor Chourpa, Abdalla A. Elbashir, and Emilie Munnier. 2023. "Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy" Pharmaceutics 15, no. 6: 1571. https://doi.org/10.3390/pharmaceutics15061571
APA StyleElderderi, S., Bonnier, F., Perse, X., Byrne, H. J., Yvergnaux, F., Chourpa, I., Elbashir, A. A., & Munnier, E. (2023). Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy. Pharmaceutics, 15(6), 1571. https://doi.org/10.3390/pharmaceutics15061571