Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation
Abstract
:1. Introduction
2. Material and Methods
2.1. Film Preparation and Characterization
2.1.1. Materials
2.1.2. Film Preparation
2.1.3. Rheological Properties of ODF Wet Mixture
2.1.4. Film Characterization
2.1.5. Stability Study
2.2. Comparative Kinetic Pilot Study
2.2.1. Food Supplements for the Kinetic Pilot Study
2.2.2. Participants
2.2.3. Study Design
2.2.4. Sample Size and Statistical Analysis
3. Results and Discussion
3.1. Development and Characterization of Iron ODF
3.1.1. Selection of Nutrients
3.1.2. Selection of Excipients and Formulation Development
3.1.3. Manufacturing Process
- Introduction of a high amount of ferric pyrophosphate in the mixture during mass preparation.
- Viscosity of the mass during the coating process (see Section 3.1.4).
- Weight of the laminate obtained during coating and drying of the mass.
3.1.4. Evaluation of Rheological Properties of the ODF Wet Mixture
- At rest, the wet mass should have a suitable viscosity to ensure physical stability (i.e., avoiding flocculation, creaming, or precipitation of the dispersed phase).
- When subjected to shear rates, such as during pumping, it has an acceptable dynamic viscosity to be processed without the need for high forces.
3.1.5. Characterization of Iron Orodispersible Films
3.1.6. Stability Results for Iron Orodispersible Films
3.2. Comparative Kinetic Pilot Study
3.2.1. Participants
3.2.2. Primary Endpoint Findings
3.2.3. Secondary Endpoint Findings
3.2.4. Safety Endpoint Findings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001; pp. 47–62. [Google Scholar]
- FAO; WHO. Report of a Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization; Food and Agriculture Organization of the United Nations: Hong Kong, China, 2004. [Google Scholar]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports—Definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef] [PubMed]
- Busti, F.; Campostrini, N.; Martinelli, N.; Girelli, D. Iron deficiency in the elderly population, revisited in the hepcidin era. Front. Pharmacol. 2014, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplement; The European Parliament and the Council of the European Union: Luxembourg, 2002. [Google Scholar]
- Schiele, J.T.; Quinzler, R.; Klimm, H.-D.; Pruszydlo, M.G.; Haefeli, W.E. Difficulties swallowing solid oral dosage forms in a general practice population: Prevalence, causes, and relationship to dosage forms. Eur. J. Clin. Pharmacol. 2013, 69, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Reiner, V.; Giarratana, N.; Ceppi Monti, N.; Breitenbach, A.; Klaffenbach, P. Rapidfilm®: An innovative pharmaceutical form designed to improve patient compliance. Int. J. Pharm. 2010, 393, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Menditto, E.; Orlando, V.; De Rosa, G.; Minghetti, P.; Musazzi, U.M.; Cahir, C.; Kurczewska-Michalak, M.; Kardas, P.; Costa, E.; Lobo, J.M.S.; et al. Patient centric pharmaceutical drug product design—The impact on medication adherence. Pharmaceutics 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.; Stegemann, S.; Hsiao, W.-K.; Pichler, H.; Gaisford, S.; Bresciani, M.; Paudel, A.; Orlu, M. Orodispersible films: Towards drug delivery in special populations. Int. J. Pharm. 2017, 523, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Krampe, R.; Visser, J.C.; Frijlink, H.W.; Breitkreutz, J.; Woerdenbag, H.J.; Preis, M. Oromucosal film preparations: Points to consider for patient centricity and manufacturing processes. Expert Opin. Drug Deliv. 2016, 13, 493–506. [Google Scholar] [CrossRef]
- Turković, E.; Vasiljević, I.; Drašković, M.; Parojčić, J. Orodispersible films—Pharmaceutical development for improved performance: A review. J. Drug Deliv. Sci. Technol. 2022, 75, 103708. [Google Scholar] [CrossRef]
- Morath, B.; Sauer, S.; Zaradzki, M.; Wagner, A.H. Orodispersible films—Recent developments and new applications in drug delivery and therapy. Biochem. Pharmacol. 2022, 200, 115036. [Google Scholar] [CrossRef]
- Yafout, M.; Elhorr, H.; Ousaid, A.; Otmani, I.S.E.; Khayati, Y. Orodispersible films as a solution to drug acceptability issues: A short review. Asian J. Res. Med. Pharm. Sci. 2021, 10, 36–41. [Google Scholar] [CrossRef]
- Klingmann, V.; Pohly, C.E.; Meissner, T.; Mayatepek, E.; Möltner, A.; Flunkert, K.; Breitkreutz, J.; Bosse, H.M. Acceptability of an orodispersible film compared to syrup in neonates and infants: A randomized controlled trial. Eur. J. Pharm. Biopharm. 2020, 151, 239–245. [Google Scholar] [CrossRef]
- Gul, M.O.; Moscovici, K.; Olden, C.; Ranmal, S.; Tuleu, C.; Seddon, P. STAMP-Pilot study into thin orodispersible film acceptability as medicine for preschool children. In Proceedings of the 9th World Meeting of Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Lisbon, Portugal, 31 March–3 April 2014. [Google Scholar]
- Senta-Loys, Z.; Bourgeois, S.; Pailler-Mattei, C.; Agusti, G.; Briançon, S.; Fessi, H. Formulation of orodispersible films for paediatric therapy: Investigation of feasibility and stability for tetrabenazine as drug model. J. Pharm. Pharmacol. 2016, 69, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Orlu, M.; Ranmal, S.R.; Sheng, Y.; Tuleu, C.; Seddon, P. Acceptability of orodispersible films for delivery of medicines to infants and preschool children. Drug Deliv. 2017, 24, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.C.; Woerdenbag, H.J.; Hanff, L.M.; Frijlink, H.W. Personalized medicine in pediatrics: The clinical potential of orodispersible films. AAPS PharmSciTech 2017, 18, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, U.M.; Selmin, F.; Ortenzi, M.A.; Mohammed, G.K.; Franzè, S.; Minghetti, P.; Cilurzo, F. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int. J. Pharm. 2018, 551, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Garba, M.; Khalid, U.M. Extemporaneous printing of diclofenac orodispersible films for pediatrics. Drug Dev. Ind. Pharm. 2021, 47, 636–644. [Google Scholar] [CrossRef]
- Visser, J.C.; Wibier, L.; Mekhaeil, M.; Woerdenbag, H.J.; Taxis, K. Orodispersible films as a personalized dosage form for nursing home residents, an exploratory study. Int. J. Clin. Pharm. 2020, 42, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.C.; Woerdenbag, H.J.; Crediet, S.; Gerrits, E.; Lesschen, M.A.; Hinrichs, W.L.J.; Breitkreutz, J.; Frijlink, H.W. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations. Int. J. Pharm. 2015, 478, 155–163. [Google Scholar] [CrossRef]
- Rustemkyzy, C.; Belton, P.; Qi, S. Preparation and characterization of ultrarapidly dissolving orodispersible films for treating and preventing iodine deficiency in the pediatric population. J. Agric. Food Chem. 2015, 63, 9831–9838. [Google Scholar] [CrossRef] [PubMed]
- Cupone, I.E.; Dellera, E.; Marra, F.; Giori, A.M. Development and characterization of an orodispersible film for vitamin D3 supplementation. Molecules 2020, 25, 5851. [Google Scholar] [CrossRef]
- Pacheco, M.S.; Barbieri, D.; da Silva, C.F.; de Moraes, M.A. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int. J. Biol. Macromol. 2021, 178, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Selmin, F.; Montanari, L. Fast dissolving films made of maltodextrins. Eur. J. Pharm. Biopharm. 2008, 70, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Buratti, S.; Selmin, F.; Gennari, C.G.M.; Montanari, L. Nicotine Fast Dissolving films made of maltodextrins: A feasibility study. AAPS PharmSciTech 2010, 11, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Buratti, S.; Gennari, C.G.M.; Montanari, L. Diclofenac fast-dissolving film: Suppression of bitterness by a taste-sensing system. Drug Dev. Ind. Pharm. 2011, 37, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Cupone, I.E.; Sansone, A.; Marra, F.; Giori, A.M.; Jannini, E.A. Orodispersible film (ODF) platform based on maltodextrin for therapeutical applications. Pharmaceutics 2022, 14, 2011. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011, 8, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, N.U.; von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Asp. Med. 2020, 75, 100865. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, S.; Brilli, E.; Tarantino, G.; Muñoz, M. Sucrosomial® Iron: A New Generation Iron for Improving Oral Supplementation. Pharmaceuticals 2018, 11, 97. [Google Scholar] [CrossRef]
- Fabiano, A.; Brilli, E.; Mattii, L.; Testai, L.; Moscato, S.; Citi, V.; Tarantino, G.; Zambito, Y. Ex Vivo and in Vivo Study of Sucrosomial® Iron Intestinal Absorption and Bioavailability. Int. J. Mol. Sci. 2018, 19, 2722. [Google Scholar] [CrossRef] [PubMed]
- The Commission of European Communities. Commission Regulation (EC) No 1170/2009 of 30 November 2009 amending Directive 2002/46/EC of the European Parliament and of Council and Regulation (EC) No 1925/2006 of the European Parliament and of the Council Regards the Lists of Vitamin and Minerals and Their Forms that Can be Added to Foods, Including Food Supplements; The Commission of European Communities: Brussels, Belgium, 2009. [Google Scholar]
- The European Parliament and the Council of European Union. Regulation (EU) no 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004; The Commission of European Communities: Strasbourg, France, 2011. [Google Scholar]
- WHO. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women of Reproductive Age; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- The European Commission. Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health; The European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Domínguez, L.; Fernández-Ruiz, V.; Morales, P.; Sánchez-Mata, M.-C.; Cámara, M. Assessment of Health Claims Related to Folic Acid in Food Supplements for Pregnant Women According to the European Regulation. Nutrients 2021, 13, 937. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Montanari, L.; Minghetti, P. Self Supporting Film for Pharmaceutical and Food Use. Patent EP16893472004, 27 October 2004. [Google Scholar]
- Cilurzo, F.; Di Grigoli, M.; Minghetti, P.; Pagani, S. Orodispersible Films Having Quick Dissolution Times for Therapeutic and Food Use. Patent WO2014/049548, 3 April 2014. [Google Scholar]
- Radicioni, M.; Castiglioni, C.; Giori, A.; Cupone, I.; Frangione, V.; Rovati, S. Bioequivalence study of a new sildenafil 100 mg orodispersible film compared to the conventional film-coated 100 mg tablet administered to healthy male volunteers. Drug Des. Dev. Ther. 2017, 11, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Radicioni, M.; Caverzasio, C.; Rovati, S.; Giori, A.M.; Cupone, I.; Marra, F.; Mautone, G. Comparative bioavailability study of a new vitamin D3 orodispersible film versus a marketed oral solution in healthy volunteers. Clin. Drug Investig. 2022, 42, 151–161. [Google Scholar] [CrossRef]
- Franceschini, I.; Selmin, F.; Pagani, S.; Minghetti, P.; Cilurzo, F. Nanofiller for the mechanical reinforcement of maltodextrins orodispersible films. Carbohydr. Polym. 2016, 136, 676–681. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Regulation (EC) no 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives; The European Parliament and the Council of the European Union: Strasbourg, France, 2008. [Google Scholar]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of iron absorption: Ascorbic acid and other organic acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Selmin, F.; Baldassari, S.; Gennari, C.G.M.; Caviglioli, G.; Cilurzo, F.; Minghetti, P.; Parodi, B. A focus on mucoadhesive polymers and their application in buccal dosage forms. J. Drug Deliv. Sci. Technol. 2016, 32, 113–125. [Google Scholar] [CrossRef]
- Llabot, J.M.; Palma, S.D.; Manzo, R.H.; Allemandi, D.A. Design of novel antifungal mucoadhesive films: Part I. Pre-formulation studies. Int. J. Pharm. 2007, 330, 54–60. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency. ICH Topic Q 1 A (R2) Stability Testing of New Drug Substances and Products. Step 5: Note for Guidance on Stability Testing: Stability Testing of New Drug Substances and Products (CPMP/ICH/2736/99); European Medicine Agency: London, UK, 2003. [Google Scholar]
Iron Salt | Flavor | Color | Molecular Weight | % of Iron | mg of Salt Equivalent to 30 mg of Iron |
---|---|---|---|---|---|
Ferrous bisglycinate C4H8FeN2O4 | Slightly metallic, sweetish | Greenish-gray | 203.96 | 19–23% Fe(II) | 142 mg |
Ferrous Citrate C6H6FeO7 | Slightly metallic | Gray-green | 245.95 | 21% Fe(II) | 142 mg |
Ferrous Lactate C6H10FeO6 | Mild sweet, metallic | Greenish-white | 270.04 | 20% Fe(II) | 150 mg |
Ferric pyrophosphate Fe4O21P6 | Neutral, slightly sour, slightly astringent | Yellowish | 745.21 | 25% Fe(III) | 120 mg |
Nutrient | Claim |
---|---|
IRON | Contributes to normal cognitive function |
Contributes to normal energy-yielding metabolism | |
Normal formation of red blood cells and hemoglobin | |
Contributes to normal oxygen transport in the body | |
FOLIC ACID | Contributes to normal psychological function |
Contributes to normal homocysteine metabolism | |
Contributes to normal blood formation | |
Contributes to normal amino acid synthesis | |
Contributes to maternal tissue growth during pregnancy | |
IRON AND FOLIC ACID | Contributes to the normal function of the immune system |
Contributes to a reduction in tiredness and fatigue | |
Has a role in the process of cell division |
Function | Component |
---|---|
Nutrient | Ferric pyrophosphate, ferrous bisglycinate, ferrous citrate, ferrous lactate, folic acid |
Film forming | Maltodextrin DE, 6 |
Plasticizer | Glycerol, sorbitol |
Surfactant | Glyceryl monolinoleate, polysorbate 80 |
Flavor | Natural lemon, chocolate, caramel, and raspberry |
Sweeteners | Acesulfame K, sodium cyclamate, sucralose |
Filler | Copovidone |
Other | Citric acid, sodium citrate |
η [mPa s] at γ̇ of: | ||||
---|---|---|---|---|
0.01 s−1 | 0.1 s−1 | 1 s−1 | 10 s−1 | 100 s−1 |
393,005 | 65,937 | 10,602 | 2697 | 1440 |
Recovery (%) Values after: | ||||
---|---|---|---|---|
30 s | 60 s | 90 s | 120 s | 166 s |
59.2 | 79.0 | 88.4 | 94.7 | 97.4 |
CQA | Target |
---|---|
Appearance | Flexible, thin film, square, yellow, homogeneous, characteristic flavor of lemon |
Size | 3 × 3 cm |
Average weight | 340.0 mg |
Iron assay | 100% of label claimed |
Folic acid assay | 100% of label claimed |
Disintegration time | <3 min |
Microbiological contamination | Total yeast and mold count ≤ 102 CFU/film Total aerobic microbial count ≤ 10 CFU/film E. coli, S. Aureus, P. aeruginosa: Absent |
Gluten and lactose | Free |
Test Product | Storage Condition | T = 0 | 1 Month | 3 Months | 6 Months |
---|---|---|---|---|---|
Iron assay results | 25 °C/60% RH | 102.7% | 104.3% | 98.0% | 99.3% |
30 °C/65% RH | 104.7% | 94.0% | 106.3% | ||
40 °C/70% RH | 105.0% | 100.0% | 100.0% | ||
Folic acid assay results | 25 °C/60% RH | 117.5% * | 116.8% | 114.0% | 111.8% |
30 °C/65% RH | 117.0% | 112.3% | 107.0% | ||
40 °C/70% RH | 110.5% | 105.3% | 98.5% |
Measure | Test Product | Reference Product | |||||
---|---|---|---|---|---|---|---|
Mean | Median | Variance | Mean | Median | Variance | ||
AUC0–8 | Area under the concentration–time curve (µg × h/dL) | 824.37 | 676.95 | 80,406.8 | 836.97 | 824.08 | 75,572.3 |
AUCexp | AUC from 0 to ∞ using an exponential extension (µg × h/dL) | 1974.69 | 1732.82 | 916,623 | 1851.49 | 1151.61 | 1,019,033 |
Cmax | Maximum concentration (µg/dL) | 136.33 | 116 | 3512.25 | 131.22 | 115 | 1863.19 |
Tmax | Time of maximum concentration (hour) | 3.22 | 3 | 4.94 | 2.11 | 2 | 1.36 |
Tlast | Time at last concentration (hour) | 8 | 8 | 0 | 8 | 8 | 0 |
Measure | Mean | Median | Variance | |
---|---|---|---|---|
AUC0–8 (ng × h/mL) | Area under the concentration–time curve | 79.8 | 76.14 | 146.57 |
AUCexp (ng × h/mL) | AUC from 0 to ∞ using an exponential extension | 232 | 241.82 | 2377.09 |
Cmax (ng/mL) | Maximum concentration | 13.64 | 13.8 | 3.44 |
Tmax (hour) | Time of maximum concentration | 2.33 | 2 | 1.75 |
Tlast (hour) | Time at last concentration | 8 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cupone, I.E.; Roselli, G.; Marra, F.; Riva, M.; Angeletti, S.; Dugo, L.; Spoto, S.; Fogolari, M.; Giori, A.M. Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation. Pharmaceutics 2023, 15, 1575. https://doi.org/10.3390/pharmaceutics15061575
Cupone IE, Roselli G, Marra F, Riva M, Angeletti S, Dugo L, Spoto S, Fogolari M, Giori AM. Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation. Pharmaceutics. 2023; 15(6):1575. https://doi.org/10.3390/pharmaceutics15061575
Chicago/Turabian StyleCupone, Irma Elisa, Giuliana Roselli, Fabio Marra, Marika Riva, Silvia Angeletti, Laura Dugo, Silvia Spoto, Marta Fogolari, and Andrea Maria Giori. 2023. "Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation" Pharmaceutics 15, no. 6: 1575. https://doi.org/10.3390/pharmaceutics15061575
APA StyleCupone, I. E., Roselli, G., Marra, F., Riva, M., Angeletti, S., Dugo, L., Spoto, S., Fogolari, M., & Giori, A. M. (2023). Orodispersible Film Based on Maltodextrin: A Convenient and Suitable Method for Iron Supplementation. Pharmaceutics, 15(6), 1575. https://doi.org/10.3390/pharmaceutics15061575