Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Synthesis and Purification of Peptides
2.3. Peptide Characterization
2.4. Screening of Blank Nanoparticles (NPs)
2.5. Encapsulation of Peptide by Physical Entrapment Method
2.5.1. CS/DS NPs
2.5.2. CS/HA NPs
2.6. Conjugation of CS-HCl [CS] Salt and Maleimide Butyric Acid (MBA)
2.7. Conjugation of pep 1 to Modified CS-MBA
2.8. Conjugation of pep 2 to Modified CS-MBA
2.9. HA40 Conjugated with N-2-Aminoethyl Maleimide (AEM)
2.10. HA40 with AEM Conjugated with Peptides
2.11. Preparation of the Nanocomplexes with CS
2.12. NP Characterization by DLS and Nanoparticle Tracking Analysis (NTA)
2.13. Morphological Analysis
2.14. Cells and Virus Culture
2.15. Cytotoxicity
2.16. Antiviral Activity
- (a)
- Co-treatment test. This is a screening assay to point out the antiviral compounds’ activity as antiviral agents. Cells were seeded at 2.5 × 105 cells per well of a 12-well plate and cultured for 24 h at 37 °C before infection. Three duplicates of each experiment were carried out. Then, each NP modified polymer with peptide and peptide alone, was added to the cell monolayer (25–200 μM) at the same time as viral infection at a multiplicity of infection (MOI) of 0.1 plaque forming unit (pfu)/cell for 2 h at 37 °C.
- (b)
- Virus pre-treatment. This test is useful for evaluating whether each NP modified polymer with peptide and peptide alone, can act directly on the viral particles. Each peptide was added to the virus (1 × 104 pfu/mL) and incubated for 1 h at 37 °C. After incubation, the mixture (virus/peptide) was diluted on cells and incubated for two supplementary hours, so that the antiviral compounds reached a nonactive concentration and the virus was at a MOI of 0.01 pfu/cell.
3. Results
3.1. Peptide Synthesis and Characterization
3.2. Preparation of Blank NPs and Development of Peptide-Loaded Polysaccharide NPs
3.3. Conjugation of CS-HCl and MBA with Peptides
3.4. HA40 Conjugated with AEM
3.5. Modified HA4 with AEM Was Conjugated with Peptide
3.6. Preparation and Characterization of CS/HA-Peptide NPs
3.7. Morphological and Toxicity Analysis of CS/HA Nanoparticles Containing Peptides Linked to HA
3.8. Antiviral Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Patterson, B.K.; Seethamraju, H.; Dhody, K.; Corley, M.J.; Kazempour, K.; Lalezari, J.P.; Pang, A.P.; Sugai, C.; Francisco, E.B.; Pise, A.; et al. Disruption of the CCL5/RANTES-CCR5 Pathway Restores Immune Homeostasis and Reduces Plasma Viral Load in Critical COVID-19. MedRxiv 2020, 20084673. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, W.; Jin, Q.; Pan, F.; Zhu, J.; Liu, Y.; Chen, L.; Shen, J.; Yang, Y.; Chen, Q.; et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc. Natl. Acad. Sci. USA 2021, 118, e2102957118. [Google Scholar] [CrossRef] [PubMed]
- Hiscott, J.; Alexandridi, M.; Muscolini, M.; Tassone, E.; Palermo, E.; Soultsioti, M.; Zevini, A. The global impact of the coronavirus pandemic. Cytokine Growth Factor Rev. 2020, 53, 1–9. [Google Scholar] [CrossRef]
- Robinson, P.C.; Liew, D.F.L.; Tanner, H.L.; Grainger, J.R.; Dwek, R.A.; Reisler, R.B.; Steinman, L.; Feldmann, M.; Ho, L.P.; Hussell, T.; et al. COVID-19 therapeutics: Challenges and directions for the future. Proc. Natl. Acad. Sci. USA 2022, 119, e2119893119. [Google Scholar] [CrossRef]
- Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. Adv. Virus Res. 2011, 81, 85–164. [Google Scholar] [CrossRef]
- Chen, L.; Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci Eng. C Mater. Biol. Appl. 2020, 112, 110924. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, X.; Qu, M.; Aninwene, G.E., 2nd; Jucaud, V.; Moon, J.J.; Gu, Z.; Sun, W.; Khademhosseini, A. Engineering Antiviral Vaccines. ACS Nano 2020, 14, 12370–12389. [Google Scholar] [CrossRef] [PubMed]
- Coen, D.M.; Whitley, R.J. Antiviral drugs and antiviral drug resistance. Curr. Opin. Virol. 2011, 1, 545–547. [Google Scholar] [CrossRef]
- Corsi, F.; Sorrentino, L.; Mazzucchelli, S.; Truffi, M.; Capetti, A.; Rizzardini, G.; Fiandra, L. Antiretroviral therapy through barriers: A prominent role for nanotechnology in HIV-1 eradication from sanctuaries. J. Pharm. Pharmacol. 2016, 4, 328–340. Available online: https://air.unimi.it/retrieve/dfa8b999-c903-748b-e053-3a05fe0a3a96/7-JPP2016021701.pdf (accessed on 22 February 2023).
- Fontana, R.J. Side effects of long-term oral antiviral therapy for hepatitis B. Hepatology 2009, 49, S185–S195. [Google Scholar] [CrossRef] [PubMed]
- Hensel, A.; Bauer, R.; Heinrich, M.; Spiegler, V.; Kayser, O.; Hempel, G.; Kraft, K. Challenges at the Time of COVID-19: Opportunities and Innovations in Antivirals from Nature. Planta Med. 2020, 86, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Delshadi, R.; Bahrami, A.; McClements, D.J.; Moore, M.D.; Williams, L. Development of nanoparticle-delivery systems for antiviral agents: A review. J. Control. Release 2021, 331, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, A.S.K.; Lim, Y.S.; Fang, C.M.; Loh, H.S.; Le, C.F. The Potential of Antiviral Peptides as COVID-19 Therapeutics. Front. Pharm. 2020, 11, 575444. [Google Scholar] [CrossRef] [PubMed]
- Karoyan, P.; Vieillard, V.; Gomez-Morales, L.; Odile, E.; Guihot, A.; Luyt, C.E.; Denis, A.; Grondin, P.; Lequin, O. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun. Biol. 2021, 4, 197. [Google Scholar] [CrossRef]
- Zhou, Y.; Simmons, G. Development of novel entry inhibitors targeting emerging viruses. Expert Rev. Anti Infect. Ther. 2012, 10, 1129–1138. [Google Scholar] [CrossRef]
- Chastain, D.B.; Stover, K.R.; Riche, D.M. Evidence-based review of statin use in patients with HIV on antiretroviral therapy. J. Clin. Transl. Endocrinol. 2017, 8, 6–14. Available online: https://www.sciencedirect.com/science/article/pii/S2214623717300145 (accessed on 22 February 2023). [CrossRef]
- de Leuw, P.; Stephan, C. Protease inhibitor therapy for hepatitis C virus-infection. Expert Opin. Pharm. 2018, 19, 577–587. [Google Scholar] [CrossRef]
- Sulkowski, M.S. Hepatotoxicity associated with antiretroviral therapy containing HIV-1 protease inhibitors. Semin Liver Dis. 2003, 23, 183–194. [Google Scholar] [CrossRef]
- Tsantrizos, Y.S. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus. Acc. Chem. Res. 2008, 41, 1252–1263. [Google Scholar] [CrossRef]
- Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019, 32, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Agrahari, V.; Ezoulin, M.J.; Zhang, C.; Purohit, S.S.; Molteni, A.; Dim, D.; Oyler, N.A.; Youan, B.C. Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations. Mol. Pharm. 2016, 13, 4129–4140. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Fernández Urrusuno, R.; Calvo, P.; Remuñán-López, C.; Vila Jato, J.L.; Alonso, M.J. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 1999, 16, 1576–1581. Available online: https://link.springer.com/article/10.1023/A:1018908705446 (accessed on 22 February 2023). [CrossRef]
- Behrens, I.; Pena, A.I.; Alonso, M.J.; Kissel, T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: The effect of mucus on particle adsorption and transport. Pharm Res. 2002, 19, 1185–1193. [Google Scholar] [CrossRef]
- Vila, A.; Sánchez, A.; Janes, K.; Behrens, I.; Kissel, T.; Vila Jato, J.L.; Alonso, M.J. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004, 57, 123–131. [Google Scholar] [CrossRef]
- Köping-Höggård, M.; Sánchez, A.; Alonso, M.J. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines. 2005, 4, 185–196. [Google Scholar] [CrossRef]
- Zannella, C.; Chianese, A.; Greco, G.; Santella, B.; Squillaci, G.; Monti, A.; Doti, N.; Sanna, G.; Manzin, A.; Morana, A.; et al. Design of Three Residues Peptides against SARS-CoV-2 Infection. Viruses 2022, 14, 2103. [Google Scholar] [CrossRef]
- Mohammed, M.; Devnarain, N.; Elhassan, E.; Govender, T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1799. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Caporale, A.; Doti, N.; Monti, A.; Sandomenico, A.; Ruvo, M. Automatic procedures for the synthesis of difficult peptides using oxyma as activating reagent: A comparative study on the use of bases and on different deprotection and agitation conditions. Peptides 2018, 102, 38–46. Available online: https://pubmed.ncbi.nlm.nih.gov/29486214/ (accessed on 22 February 2023). [CrossRef] [PubMed]
- Li, H.; Nykoluk, M.; Li, L.; Liu, L.R.; Omange, R.W.; Soule, G.; Schroeder, L.T.; Toledo, N.; Kashem, M.A.; Correia-Pinto, J.F.; et al. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE 2017, 12, e0186079. [Google Scholar] [CrossRef]
- Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2014, 26, 724–744. [Google Scholar] [CrossRef]
- Fernández-Urrusuno, R.; Romani, D.; Calvo, P.; Vila-jato, J.L.; Alonso, M.J. Development of a freeze-dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. STP Pharma Sci. 1999, 9, 429–436. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4118876 (accessed on 22 February 2023).
- Totaro, K.A.; Liao, X.; Bhattacharya, K.; Finneman, J.I.; Sperry, J.B.; Massa, M.A.; Thorn, J.; Ho, S.V.; Pentelute, B.L. Systematic Investigation of EDC/Snhs-Mediated Bioconjugation Reactions for Carboxylated Peptide Substrates. Bioconjug. Chem. 2016, 27, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Udomsinprasert, W.; Laengee, P.; Honsawek, S.; Patarakul, K.; Chirachanchai, S. A Water-Based Chitosan-Maleimide Precursor for Bioconjugation: An Example of a Rapid Pathway for an In Situ Injectable Adhesive Gel. Macromol. Rapid Commun. 2016, 37, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Smyth, D.G.; Nagamatsu, A.; Fruton, J.S. Some Reactions of N-Ethylmaleimide1. J. Am. Chem. Soc. 1960, 82, 4600–4604. [Google Scholar] [CrossRef]
- Baldwin, A.D.; Kiick, K.L. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug. Chem. 2011, 22, 1946–1953. [Google Scholar] [CrossRef]
- Madler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities. J. Mass Spectrom. 2009, 44, 694–706. [Google Scholar] [CrossRef]
- Almalik, A.; Alradwan, I.; Majrashi, M.A.; Alsaffar, B.A.; Algarni, A.T.; Alsuabeyl, M.S.; Alrabiah, H.; Tirelli, N.; Alhasan, A.H. Cellular responses of hyaluronic acid-coated chitosan nanoparticles. Toxicol. Res. 2018, 7, 942–950. Available online: https://pubmed.ncbi.nlm.nih.gov/30310671/ (accessed on 22 February 2023). [CrossRef] [PubMed]
- Nielsen, J.S.; Buczek, P.; Bulaj, G. Cosolvent-assisted oxidative folding of a bicyclic alpha-conotoxin ImI. J. Pept. Sci. 2004, 10, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Thong, Q.X.; Wong, C.L.; Ooi, M.K.; Kueh, C.L.; Ho, K.L.; Alitheen, N.B.; Tan, W.S. Peptide inhibitors of Macrobrachium rosenbergii nodavirus. J. Gen. Virol. 2018, 99, 1227–1238. [Google Scholar] [CrossRef]
- Zannella, C.; Giugliano, R.; Chianese, A.; Buonocore, C.; Vitale, G.A.; Sanna, G.; Sarno, F.; Manzin, A.; Nebbioso, A.; Termolino, P.; et al. Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses 2021, 13, 1263. [Google Scholar] [CrossRef] [PubMed]
- Zannella, C.; Chianese, A.; Palomba, L.; Marcocci, M.E.; Bellavita, R.; Merlino, F.; Grieco, P.; Folliero, V.; De Filippis, A.; Mangoni, M.; et al. Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. Int. J. Mol. Sci. 2022, 23, 2060. [Google Scholar] [CrossRef] [PubMed]
- Campora, S.; Ghersi, G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnol. Rev. 2022, 11, 2595–2631. Available online: https://www.degruyter.com/document/doi/10.1515/ntrev-2022-0148/html?lang=en (accessed on 22 February 2023). [CrossRef]
- Kaye, A.D.; Okeagu, C.N.; Pham, A.D.; Silva, R.A.; Hurley, J.J.; Arron, B.L.; Sarfraz, N.; Lee, H.N.; Ghali, G.E.; Gamble, J.W.; et al. Economic impact of COVID-19 pandemic on healthc.care facilities and systems: International perspectives. Best Pr. Res. Clin. Anaesthesiol. 2021, 35, 293–306. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/media/releases/2022/s0715-COVID-VE.html (accessed on 22 February 2023).
- Vainshelboim, B. Retracted: Facemasks in the COVID-19 era: A health hypothesis. Med. Hypotheses 2021, 146, 110411. [Google Scholar] [CrossRef]
- Alonso-Sande, M.; Teijeiro-Osorio, D.; Remuñán-López, C.; Alonso, M.J. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur. J. Pharm. Biopharm. 2009, 72, 453–462. Available online: https://pubmed.ncbi.nlm.nih.gov/18511246/ (accessed on 22 February 2023). [CrossRef]
- Wattendorf, U.; Coullerez, G.; Vörös, J.; Textor, M.; Merkle, H.P. Mannose-based molecular patterns on stealth microspheres for receptor-specific targeting of human antigen-presenting cells. Langmuir 2008, 24, 11790–11802. Available online: https://pubmed.ncbi.nlm.nih.gov/18785716/ (accessed on 22 February 2023). [CrossRef]
- Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev. 2009, 61, 140–157. Available online: https://pubmed.ncbi.nlm.nih.gov/19121350/ (accessed on 22 February 2023). [CrossRef] [PubMed]
- Samaridou, E.; Alonso, M.J. Nose-to-brain peptide delivery—The potential of nanotechnology. Bioorg Med Chem. 2018, 26, 2888–2905. [Google Scholar] [CrossRef] [PubMed]
- Gulati, N.; Dua, K.; Dureja, H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int. J. Biol. Macromol. 2021, 185, 20–30. Available online: https://pubmed.ncbi.nlm.nih.gov/34116092/ (accessed on 22 February 2023). [CrossRef]
- Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. Available online: https://pubmed.ncbi.nlm.nih.gov/34552489/ (accessed on 22 February 2023). [CrossRef] [PubMed]
- Zhang, W.; Ronca, S.; Mele, E. Electrospun Nanofibres Containing Antimicrobial Plant Extracts. Nanomaterials 2017, 7, 42. Available online: https://pubmed.ncbi.nlm.nih.gov/28336874/ (accessed on 22 February 2023). [CrossRef] [PubMed]
- Tan, R.S.L.; Hassandarvish, P.; Chee, C.F.; Chan, L.W.; Wong, T.W. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr. Polym. 2022, 290, 119500. [Google Scholar] [CrossRef]
- Mohanty, S.; Jena, P.; Mehta, R.; Pati, R.; Banerjee, B.; Patil, S.; Sonawane, A. Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages. Antimicrob Agents Chemother. 2013, 57, 3688–3698. [Google Scholar] [CrossRef]
- Rai, A.; Pinto, S.; Velho, T.R.; Ferreira, A.F.; Moita, C.; Trivedi, U.; Evangelista, M.; Comune, M.; Rumbaugh, K.P.; Simões, P.N.; et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials. 2016, 85, 99–110. [Google Scholar] [CrossRef]
- Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater. 2017, 47, 170–181. [Google Scholar] [CrossRef]
Nanocomplex | Z-Average Size [nm] | PDI | Zeta Potential [mv] | Encapsulation Efficiency Peptides | |
---|---|---|---|---|---|
pep 1 | pep 2 | ||||
CS/DS NP; [CS/DS] 1:0.5 [w/w] | 94 ± 5 | 0.152 | 35 | Less than 10% | Less than 10% |
CS/DS NP; [CS/DS] 1:3 [w/w] | 168± 5 | 0.21 | -31 | Less than 10% | Less than 10% |
CS/ HA NP; [CS/HA40] 1:3 [w/w] | 175 ± 5 | 0.134 | 25 | Less than 10% | Less than 10% |
Description of NPs | Dynamic Light Scattering (DLS) Malvern Zetasizer [n = 3] | ||
---|---|---|---|
Average Size (nm) | Zeta Potential (mV) | Average Size (nm) | |
CS/HA-AEM-pep 1 (Small NPs-pep 1) | 186 ± 2.43 | 22 ± 1.23 | 190 ± 4.39 |
CS/HA-AEM-pep 2 (Small NPs-pep 2) | 184 ± 3.12 | 19 ± 1.46 | 180 ± 3.6 |
CS/HA-AEM-pep 1 (Large NPs-pep 1) | 380 ± 5.1 | 31 ± 2.04 | 371 ± 7.3 |
CS over HA-AEM-pep 2 (Large NPs-pep 2) | 420 ± 6.2 | 27 ± 1.96 | 413 ± 8.4 |
Compound | Co-Treatment Assay | Virus Pre-Treatment Assay | ||
---|---|---|---|---|
IC50 (μM) vs. SARS-CoV-2 | IC50 (μM) vs. HCoV-OC43 | IC50 (μM) vs. SARS-CoV-2 | IC50 (μM) vs. HCoV-OC43 | |
Empty NPs | - | - | - | - |
CS | - | - | - | - |
HA | - | - | - | - |
pep 1 | 40 | 70 | 40 | 85 |
HA-pep 1 | 75 | 75 | 60 | 85 |
Large NPs-pep 1 | 30 | 30 | 20 | 30 |
Small NPs-pep 1 | 40 | 50 | 60 | 50 |
pep 2 | 75 | - | 100 | - |
HA-pep 2 | 75 | - | 85 | - |
Large NPs-pep 2 | 40 | - | 50 | - |
Small NPs-pep 2 | 50 | - | 60 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mali, A.; Franci, G.; Zannella, C.; Chianese, A.; Anthiya, S.; López-Estévez, A.M.; Monti, A.; De Filippis, A.; Doti, N.; Alonso, M.J.; et al. Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43. Pharmaceutics 2023, 15, 1621. https://doi.org/10.3390/pharmaceutics15061621
Mali A, Franci G, Zannella C, Chianese A, Anthiya S, López-Estévez AM, Monti A, De Filippis A, Doti N, Alonso MJ, et al. Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43. Pharmaceutics. 2023; 15(6):1621. https://doi.org/10.3390/pharmaceutics15061621
Chicago/Turabian StyleMali, Avinash, Gianluigi Franci, Carla Zannella, Annalisa Chianese, Shubaash Anthiya, Ana M. López-Estévez, Alessandra Monti, Anna De Filippis, Nunzianna Doti, María José Alonso, and et al. 2023. "Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43" Pharmaceutics 15, no. 6: 1621. https://doi.org/10.3390/pharmaceutics15061621
APA StyleMali, A., Franci, G., Zannella, C., Chianese, A., Anthiya, S., López-Estévez, A. M., Monti, A., De Filippis, A., Doti, N., Alonso, M. J., & Galdiero, M. (2023). Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43. Pharmaceutics, 15(6), 1621. https://doi.org/10.3390/pharmaceutics15061621