Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Peel Extract and Isoprenaline
2.2. Chemicals
2.3. Experimental Animals and Experimental Protocol
2.4. Hearth Tissue Homogenisation
2.5. Oxidative Stress Markers
2.6. Serum Cardiac Markers and Lipid Profile Measurement
2.7. Histopathological Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects on Oxidative Stress Markers in Serum, Erythrocyte Lysate, and Heart Tissue Homogenate
3.2. Effects on Biochemical Parameters and Serum Cardiac Markers
3.3. Effects on Lipid Status
3.4. Pathohistological Analyses of Rat Hearts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sato, H.; Tateishi, H.; Uchida, T.; Dote, K.; Ishihara, M.; Kodama, K.; Haze, K.; Hori, M. Clinical aspect of myocardial injury: From ischemia to heart failure. Kagaku Hyoronsha 1990, 2, 55–64. [Google Scholar]
- Kurisu, S.; Sato, H. History of cardiology in the last 100 years: Japanese contribution to studies on Tako-tsubo like left ventricular dysfunction. Nihon Naika Gakkai Zasshi 2002, 91, 849–852. [Google Scholar] [PubMed]
- Zalewska-Adamiec, M.; Bachorzewska-Gajewska, H.; Tomaszuk-Kazberuk, A.; Nowak, K.; Drozdowski, P.; Bychowski, J.; Krynicki, R.; Musial, W.J.; Dobrzycki, S. Takotsubo cardiomyopathy: Serious early complications and two-year mortality—A 101 case study. Neth. Hear. J. 2016, 24, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Redfors, B.; Vedad, R.; Angeras, O.; Ramunddal, T.; Petursson, P.; Haraldsson, A.A.; Dworeck, C.; Odenstedt, J.; Ioaness, D.; Libungan, B.; et al. Mortality in takotsubo syndrome is similar to mortality in myocardial infarction—A report from the SWEDEHEART registry. Int. J. Cardiol. 2015, 185, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Y-Hassan, S.; Tornvall, P. Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin. Auton. Res. 2017, 28, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Bybee, K.A.; Kara, T.; Prasad, A.; Lerman, A.; Barsness, G.W.; Wright, R.S.; Rihal, C.S. Systematic Review: Transient Left Ventricular Apical Ballooning: A Syndrome That Mimics ST-Segment Elevation Myocardial Infarction. Ann. Intern. Med. 2004, 141, 858–865. [Google Scholar] [CrossRef]
- Shao, Y.; Redfors, B.; Täng, M.S.; Möllmann, H.; Troidl, C.; Szardien, S.; Hamm, C.; Nef, H.; Borén, J.; Omerovic, E. Novel rat model reveals important roles of β-adrenoreceptors in stress-induced cardiomyopathy. Int. J. Cardiol. 2013, 168, 1943–1950. [Google Scholar] [CrossRef]
- Fiserova, I.; Trinh, M.D.; Elkalaf, M.; Vacek, L.; Heide, M.; Martinkova, S.; Bechynska, K.; Kosek, V.; Hajslova, J.; Fiser, O.; et al. Isoprenaline modified the lipidomic profile and reduced β-oxidation in HL-1 cardiomyocytes: In vitro model of takotsubo syndrome. Front. Cardiovasc. Med. 2022, 9, 917989. [Google Scholar] [CrossRef] [PubMed]
- Marcovitz, P.A.; Czako, P.; Rosenblatt, S.; Billecke, S.S. Pheochromocytoma Presenting with Takotsubo Syndrome. J. Interv. Cardiol. 2010, 23, 437–442. [Google Scholar] [CrossRef]
- Eliades, M.; El-Maouche, D.; Choudhary, C.; Zinsmeister, B.; Burman, K.D. Takotsubo Cardiomyopathy Associated with Thyrotoxicosis: A Case Report and Review of the Literature. Thyroid 2014, 24, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Wittstein, I.S.; Thiemann, D.R.; Lima, J.A.C.; Baughman, K.L.; Schulman, S.P.; Gerstenblith, G.; Wu, K.C.; Rade, J.J.; Bivalacqua, T.J.; Champion, H.C. Neurohumoral Features of Myocardial Stunning Due to Sudden Emotional Stress. N. Engl. J. Med. 2005, 352, 539–548. [Google Scholar] [CrossRef] [PubMed]
- I Chappel, C.; Rona, G.; Balazs, T.; Gaudry, R. Severe myocardial necrosis produced by isoproterenol in the rat. Arch. Int. De Pharmacodyn. Et De Ther. 1959, 122, 123–128. [Google Scholar]
- Rona, G.; Kahn, D.S.; I Chappel, C. Studies on Infarct-like Myocardial Necrosis Produced by Isoproterenol: A Review. Rev. Can. De Biol. 1963, 22, 241–255. [Google Scholar]
- Willis, B.C.; Salazar-Cantú, A.; Silva-Platas, C.; Fernández-Sada, E.; Villegas, C.A.; Rios-Argaiz, E.; González-Serrano, P.; Sánchez, L.A.; Guerrero-Beltrán, C.E.; García, N.; et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am. J. Physiol. Circ. Physiol. 2015, 308, H467–H477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fineschi, V.; Michalodimitrakis, M.; D’Errico, S.; Neri, M.; Pomara, C.; Riezzo, I.; Turillazzi, E. Insight into stress-induced cardiomyopathy and sudden cardiac death due to stress. A forensic cardio-pathologist point of view. Forensic Sci. Int. 2010, 194, 1–8. [Google Scholar] [CrossRef]
- Nef, H.M.; Möllmann, H.; Troidl, C.; Kostin, S.; Böttger, T.; Voss, S.; Hilpert, P.; Krause, N.; Weber, M.; Rolf, A.; et al. Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: Insight into a new cardiac entity. J. Mol. Cell Cardiol. 2008, 44, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Vučić, V.; Grabež, M.; Trchounian, A.; Arsić, A. Composition and Potential Health Benefits of Pomegranate: A Review. Curr. Pharm. Des. 2019, 25, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Aviram, M.; Kaplan, M.; Rosenblat, M.; Fuhrman, B. Dietary Antioxidants and Paraoxonases against LDL Oxidation and Atherosclerosis Development. In Atherosclerosis: Diet and Drugs; von Eckardstein, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 263–300. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Šavikin, K.; Živković, J.; Alimpić, A.; Zdunić, G.; Janković, T.; Duletić-Laušević, S.; Menković, N. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind. Crops Prod. 2018, 113, 142–149. [Google Scholar] [CrossRef]
- Grabež, M.; Škrbić, R.; Stojiljković, M.P.; Rudić-Grujić, V.; Šavikin, K.; Menković, N.; Zdunić, G.; Vasiljević, N. Beneficial effects of pomegranate peel extract treatment on anthropometry and body composition of overweight patients with diabetes mellitus type-2: A randomised clinical trial. Scr. Med. 2020, 51, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Grabež, M.; Škrbić, R.; Stojiljković, M.P.; Rudić-Grujić, V.; Paunović, M.; Arsić, A.; Petrović, S.; Vučić, V.; Mirjanić-Azarić, B.; Šavikin, K.; et al. Beneficial effects of pomegranate peel extract on plasma lipid profile, fatty acids levels and blood pressure in patients with diabetes mellitus type-2: A randomized, double-blind, placebo-controlled study. J. Funct. Foods 2019, 64, 103692. [Google Scholar] [CrossRef]
- Liao, X.; Chang, E.; Tang, X.; Watanabe, I.; Zhang, R.; Jeong, H.-W.; Adams, R.H.; Jain, M.K. Cardiac macrophages regulate isoproterenol-induced Takotsubo-like cardiomyopathy. J. Clin. Investig. 2022, 7, e156236. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Costantino, M.D.; Guastafierro, F.; Triggiani, G.; Ferraretti, A.; Tarantino, N.; Saguner, A.; Di Biase, M.; Brunetti, N.D. Inflammatory patterns in Takotsubo cardiomyopathy and acute coronary syndrome: A propensity score matched analysis. Atherosclerosis 2018, 274, 157–161. [Google Scholar] [CrossRef]
- Mohan, M.; Patankar, P.; Ghadi, P.; Kasture, S. Cardioprotective potential of Punica granatum extract in isoproterenol-induced myocardial infarction in Wistar rats. J. Pharmacol. Pharmacother. 2010, 1, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadeja, R.N.; Thounaojam, M.C.; Patel, D.K.; Devkar, R.V.; Ramachandran, A.V. Pomegranate (Punica granatum L.) Juice Supplementation Attenuates Isoproterenol-Induced Cardiac Necrosis in Rats. Cardiovasc. Toxicol. 2010, 10, 174–180. [Google Scholar] [CrossRef]
- Čolić, M.; Bekić, M.; Tomić, S.; Đokić, J.; Radojević, D.; Šavikin, K.; Miljuš, N.; Marković, M.; Škrbić, R. Immunomodulatory Properties of Pomegranate Peel Extract in a Model of Human Peripheral Blood Mononuclear Cell Culture. Pharmaceutics 2022, 14, 1140. [Google Scholar] [CrossRef] [PubMed]
- Suručić, R.; Travar, M.; Petković, M.; Tubić, B.; Stojiljković, M.P.; Grabež, M.; Šavikin, K.; Zdunić, G.; Škrbić, R. Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies. Bioorg. Chem. 2021, 114, 105145. [Google Scholar] [CrossRef]
- Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 1980, 38, 161–170. [Google Scholar] [CrossRef]
- Auclair, C.; Voisin, E. Nitroblue-tetrazolium reduction. In Handbook of Methods for Oxygen Radical Research, 1st ed.; Greenwald, R.A., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 123–132. [Google Scholar]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Beutler, E. Manual of Biochemical Methods; Grune and Stratton: New York, NY, USA, 1982. [Google Scholar]
- Beutler, E. Red Cell Metabolism a Manual of Biochemical Methods, 3rd ed.; Grune and Stratton: Philadelphia, PE, USA, 1984. [Google Scholar]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Kitagawa, Y.; Yamashita, D.; Ito, H.; Takaki, M. Reversible effects of isoproterenol-induced hypertrophy on in situ left ventricular function in rat hearts. Am. J. Physiol. Circ. Physiol. 2004, 287, H277–H285. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Rees, P.S.C.; Prasad, S.; Poole-Wilson, P.A.; Harding, S.E. Stress (Takotsubo) cardiomyopathy—A novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Ishikawa, S.; Kojima, S.; Hayashi, J.; Watanabe, Y.; Hoffman, J.I.E.; Okino, H. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc. Res. 1993, 27, 192–198. [Google Scholar] [CrossRef]
- Priscilla, D.H.; Prince, P.S.M. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem. Interact. 2009, 179, 118–124. [Google Scholar] [CrossRef]
- Panda, V.S.; Naik, S.R. Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents. Altern. Med. Rev. 2009, 14, 161–171. [Google Scholar]
- Khalil, I.; Ahmmed, I.; Ahmed, R.; Tanvir, E.M.; Afroz, R.; Paul, S.; Gan, S.H.; Alam, N. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract. BioMed Res. Int. 2015, 2015, 624159. [Google Scholar] [CrossRef] [Green Version]
- Rajadurai, M.; Prince, P.S.M. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: Biochemical and histopathological evidences. Toxicology 2006, 228, 259–268. [Google Scholar] [CrossRef]
- Fahmy, H.A.; Farag, M.A. Ongoing and potential novel trends of pomegranate fruit peel; a comprehensive review of its health benefits and future perspectives as nutraceutical. J. Food Biochem. 2021, 46, e14024. [Google Scholar] [CrossRef]
- Mandić-Kovačević, N.; Kukrić, Z.; Latinović, S.; Cvjetković, T.; Šobot, T.; Bajić, Z.; Maličević, U.; Marinković, S.; Đukanović, Đ.; Uletilović, S.; et al. Antioxidative potential of pomegranate peel extract: In vitro and in vivo studies. Scr. Med. 2023, 54, 9–18. [Google Scholar] [CrossRef]
- Orak, H.H.; Yagar, H.; Isbilir, S.S. Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, Tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Orgil, O.; Schwartz, E.; Baruch, L.; Matityahu, I.; Mahajna, J.; Amir, R. The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT 2014, 58, 571–577. [Google Scholar] [CrossRef]
- Doostan, F.; Vafafar, R.; Zakeri-Milani, P.; Pouri, A.; Afshar, R.A.; Abbasi, M.M. Effects of Pomegranate (Punica granatum L.) Seed and Peel Methanolic Extracts on Oxidative Stress and Lipid Profile Changes Induced by Methotrexate in Rats. Adv. Pharm. Bull. 2017, 7, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloqbi, A.; Omar, U.; Yousr, M.; Grace, M.; Lila, M.A.; Howell, N. Antioxidant Activity of Pomegranate Juice and Punicalagin. Nat. Sci. 2016, 08, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Al-Gubory, K.H.; Blachier, F.; Faure, P.; Garrel, C. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes. J. Sci. Food Agric. 2015, 96, 3462–3468. [Google Scholar] [CrossRef]
- Mathew, S.; Menon, P.V.; Kurup, P.A. Effect of administration of vitamin A, ascorbic acid and nicotinamide adenine dinucleotide + flavin adenine dinucleotide on severity of myocardial infarction induced by isoproterenol in rats. Experiment 1985, 23, 500–504. [Google Scholar]
- Geetha, A.; Sankar, R.; Marar, T.; Devi, C.S. Alpha-tocopherol reduces doxorubicin-induced toxicity in rats—Histological and biochemical evidences. Indian J. Physiol. Pharmacol. 1990, 34, 94–100. [Google Scholar]
- Jain, P.G.; Mahajan, U.B.; Shinde, S.D.; Surana, S.J. Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol. Biol. Rep. 2018, 45, 1357–1365. [Google Scholar] [CrossRef]
- Liu, M.; Xue, Y.; Liang, Y.; Xue, Y.; Han, X.; Li, Z.; Chu, L. Mechanisms Underlying the Cardioprotection of YangXinDingJi Capsule against Myocardial Ischemia in Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 8539148. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A.; Biswas, S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci. Rep. 2017, 7, 16146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Li, W.; Wang, X.; Xue, J.; Zhao, L.; Song, Y.; Zhou, T.; Zhang, M. Phloroglucinol averts isoprenaline hydrochloride induced myocardial infarction in rats. Drug Dev. Res. 2019, 80, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Tanvir, E.; Afroz, R.; Chowdhury, M.A.Z.; Khalil, I.; Hossain, S.; Rahman, A.; Rashid, H.; Gan, S.H. Honey has a protective effect against chlorpyrifos-induced toxicity on lipid peroxidation, diagnostic markers and hepatic histoarchitecture. Eur. J. Integr. Med. 2015, 7, 525–533. [Google Scholar] [CrossRef]
- Radhiga, T.; Rajamanickam, C.; Senthil, S.; Pugalendi, K.V. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. Food Chem. Toxicol. 2012, 50, 3971–3977. [Google Scholar] [CrossRef] [PubMed]
- Esmaillzadeh, A.; Tahbaz, F.; Gaieni, I.; Alavi-Majd, H.; Azadbakht, L. Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. J. Med. Food 2004, 7, 305–308. [Google Scholar] [CrossRef]
- Fenercioglu, A.K.; Saler, T.; Genc, E.; Sabuncu, H.; Altuntas, Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in Type 2 diabetes mellitus without complications. J. Endocrinol. Investig. 2009, 33, 118–124. [Google Scholar] [CrossRef]
- Manthou, E.; Georgakouli, K.; Deli, C.K.; Sotiropoulos, A.; Fatouros, I.G.; Kouretas, D.; Haroutounian, S.; Matthaiou, C.; Koutedakis, Y.; Jamurtas, A.Z. Effect of pomegranate juice consumption on biochemical parameters and complete blood count. Exp. Ther. Med. 2017, 14, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Sohrab, G.; Roshan, H.; Ebrahimof, S.; Nikpayam, O.; Sotoudeh, G.; Siasi, F. Effects of pomegranate juice consumption on blood pressure and lipid profile in patients with type 2 diabetes: A single-blind randomized clinical trial. Clin. Nutr. ESPEN 2018, 29, 30–35. [Google Scholar] [CrossRef]
- Lv, O.; Wang, L.; Li, J.; Ma, Q.; Zhao, W. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway. Food Funct. 2016, 7, 4976–4983. [Google Scholar] [CrossRef]
- Ngamukote, S.; Mäkynen, K.; Thilawech, T.; Adisakwattana, S. Cholesterol-Lowering Activity of the Major Polyphenols in Grape Seed. Molecules 2011, 16, 5054–5061. [Google Scholar] [CrossRef] [Green Version]
- Kannan, M.M.; Quine, S.D. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study. Eur. J. Pharmacol. 2011, 659, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ponnian, S.M.P. Preventive effects of (−) epicatechin on tachycardia, cardiac hypertrophy, and nuclear factor- κB inflammatory signaling pathway in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol. 2022, 924, 174909. [Google Scholar] [CrossRef] [PubMed]
- Ilic, A.; Todorovic, D.; Mutavdzin, S.; Boricic, N.; Nedeljkovic, B.B.; Stankovic, S.; Simic, T.; Stevanovic, P.; Celic, V.; Djuric, D. Translocator Protein Modulation by 4′-Chlorodiazepam and NO Synthase Inhibition Affect Cardiac Oxidative Stress, Cardiometabolic and Inflammatory Markers in Isoprenaline-Induced Rat Myocardial Infarction. Int. J. Mol. Sci. 2021, 22, 2867. [Google Scholar] [CrossRef] [PubMed]
- Nikolic Turnic, T.R.; Jakovljevic, V.L.; Djuric, D.M.; Jeremic, N.S.; Jeremic, J.N.; Milosavljevic, I.M.; Srejovic, I.M.; Selakovic, D.V.; Zivkovic, V.I. Efficiency of atorvastatin and simvastatin in improving cardiac function during the different degrees of hyperhomocysteinemia. Can. J. Physiol. Pharmacol. 2018, 96, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Chiua, Y.C.; Wu, C.; Jou, I.; Tu, Y.; Hung, C.; Hsieh, P.; Tsai, K. Homocysteine causes dysfunction of chondrocytes and oxidative stress through repression of SIRT1/AMPK pathway: A possible link between hyperhomocysteinemia and osteoarthritis. Redox Biol. 2018, 15, 504–512. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Gagliano, C.; Giordano, M.; Salomone, S.; Vacante, M.; Bucolo, C.; Caraci, F.; Reibaldi, M.; Drago, F.; Avitabile, T.; et al. Homocysteine Serum Levels in Diabetic Patients with Non Proliferative, Proliferative and without Retinopathy. BioMed Res. Int. 2014, 2014, 191497. [Google Scholar] [CrossRef] [Green Version]
- Grabež, M.; Škrbić, R.; Stojiljković, M.P.; Vučić, V.; Grujić, V.R.; Jakovljević, V.; Djuric, D.M.; Suručić, R.; Šavikin, K.; Bigović, D.; et al. A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev. Cardiovasc. Med. 2022, 23, 57. [Google Scholar] [CrossRef]
C | I | P | P + I | |
---|---|---|---|---|
AST (U/L) | 278.60 ± 82.13 | 1472.17 ± 708.62 * | 225.17 ± 58.20 | 600.57 ± 757.43 # |
ALT (U/L) | 116.20 ± 41.57 | 1132.00 ± 1182.71 * | 87.17 ± 36.87 | 192.71 ± 122.08 # |
LDH (U/L) | 1162.80 ± 545.44 | 3922.67 ± 1243.23 * | 981.50 ± 347.02 | 1176.33 ± 413.99 # |
hsTnI (pg/mL) | 70.73 ± 53.24 | 46,021.13 ± 29,975.57 * | 32.40 ± 24.04 | 888.30 ± 549.43 # |
Hcy (µmol/L) | 5.24 ± 0.72 | 15.67 ± 1.67 * | 5.88 ± 0.87 | 11.43 ± 1.72 # |
C | I | P | P + I | |
---|---|---|---|---|
TC (mmol/L) | 1.24 ± 0.15 | 1.37 ± 0.20 | 1.02 ± 0.12 | 1.21 ± 0.31 |
HDL (mmol/L) | 0.58 ± 0.08 | 0.45 ± 0.08 | 0.45 ± 0.08 | 0.49 ± 0.21 |
LDL (mmol/L) | 0.10 ± 0.00 | 0.22 ± 0.04 | 0.10 ± 0.00 | 0.19 ± 0.07 |
TG (mmol/L) | 1.42 ± 0.42 | 1.83 ± 1.78 | 1.43 ± 0.47 | 1.19 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinković, S.T.; Đukanović, Đ.; Duran, M.; Bajic, Z.; Sobot, T.; Uletilović, S.; Mandić-Kovacević, N.; Cvjetković, T.; Maksimović, Ž.M.; Maličević, U.; et al. Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats. Pharmaceutics 2023, 15, 1697. https://doi.org/10.3390/pharmaceutics15061697
Marinković ST, Đukanović Đ, Duran M, Bajic Z, Sobot T, Uletilović S, Mandić-Kovacević N, Cvjetković T, Maksimović ŽM, Maličević U, et al. Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats. Pharmaceutics. 2023; 15(6):1697. https://doi.org/10.3390/pharmaceutics15061697
Chicago/Turabian StyleMarinković, Sonja T., Đorđe Đukanović, Mladen Duran, Zorislava Bajic, Tanja Sobot, Snežana Uletilović, Nebojša Mandić-Kovacević, Tanja Cvjetković, Žana M. Maksimović, Uglješa Maličević, and et al. 2023. "Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats" Pharmaceutics 15, no. 6: 1697. https://doi.org/10.3390/pharmaceutics15061697
APA StyleMarinković, S. T., Đukanović, Đ., Duran, M., Bajic, Z., Sobot, T., Uletilović, S., Mandić-Kovacević, N., Cvjetković, T., Maksimović, Ž. M., Maličević, U., Vesić, N., Jovičić, S., Katana, M., Šavikin, K., Djuric, D. M., Stojiljković, M. P., & Škrbić, R. (2023). Pomegranate Peel Extract Attenuates Isoprenaline-Induced Takotsubo-like Myocardial Injury in Rats. Pharmaceutics, 15(6), 1697. https://doi.org/10.3390/pharmaceutics15061697