Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extract
2.2. Antioxidant Activity Evaluation
2.2.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.2.2. The Radical Scavenging Activity Assay (ABTS)
2.2.3. The Radical Scavenging Activity Assay (DPPH)
2.3. Functional Components
2.3.1. The Total Phenolic Content
2.3.2. The Flavonoids Quantification
2.3.3. The Anthocyanins Quantification
2.4. HPLC Analyses
2.5. Statistical Analysis
3. Results
3.1. Antioxidant Activity Evaluation
3.2. Functional compound evaluation
3.3. Spearman Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gouvaerts, R.; Green, P.S. World checklist of Oleaceae. Available online: http://wcsp.science.kew.org (accessed on 8 February 2023).
- Gülçin, I.; Elias, R.; Gepdiremen, A.; Taoubi, K.; Köksal, E. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci. Technol. 2008, 43, 195–212. [Google Scholar] [CrossRef]
- Dirr, M.A.; Warren, K.S. The Tree Book: Superior Selections for Landscapes, Streetscapes, and Gardens; Timber Press Portland: Portland, OR, USA, 2019. [Google Scholar]
- Ruales, C. Estudios para la Recuperación de la Flora Nativa en el Valle de Tumbaco—Distrito Metropolitano de Quito: Inventario Florístico y Ensayo de Propagación Vegetativa. Ph.D. Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2007. [Google Scholar]
- Available online: https://powo.science.kew.org/taxon (accessed on 1 February 2023).
- Quishpe, J. Evaluación de seis Tratamientos Pregerminativos y Cuatro Tipos de Sustratos para Lapropagación de Arupo (Chionanthus pubescens Kunt). Ph.D. Thesis, EscuelaSuperior Técnica del Chimborazo, Riobamba, Ecuador, 2009. [Google Scholar]
- Añazco Romero, M.J.; Haro Mediavilla, B.S.; Vizcaíno Pantoja, M.I. Pre-germinative treatments applied to Chionanthus pubescens and C. virginicus seeds for sexual propagation. Pesq. Agropec. Trop. 2021, 51, e66875. [Google Scholar] [CrossRef]
- Peralta, E. El Arupo (Chionanthus pubescens Kunt), Árbol Ornamental con Potencial de Uso en Ecuador; Instituto Nacional de Investigación Agropecuaria: Quito, Ecuador, 2017. [Google Scholar]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017, 33, 379–402. [Google Scholar] [CrossRef]
- Agrawal, S.; Kulkarni, G.T.; Sharma, V.N. A comparative study on the antioxidant activity of methanolic extracts of Terminalia paniculata and Madhuca longifolia. Free Rad. Antiox. 2011, 1, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant- and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [Green Version]
- Kostić, D.A.; Dimitrijević, D.S.; Mitić, S.S.; Mitić, M.N.; Stojanović, G.S.; Živanović, A.V. Phenolic Content and Antioxidant Activities of Fruit Extracts of Morus nigra L. (Moraceae) from Southeast Serbia. Trop. J. Pharmaceutical Res. 2013, 12, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Rajurkar, N.S.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food. Sci. Technol. 2005, 25, 726–732. [Google Scholar] [CrossRef] [Green Version]
- Naspud, M. Determinación de la Capacidad Antioxidante de los Extractos Alcohólicos del Fruto de Mora (Rubus glaucus Benth) Obtenidos con Tres Pretratamientos Termicos. Ph.D. Thesis, Universidad Politécnica Salesiana, Quito, Ecuador, 2018. [Google Scholar]
- Thaweesang, S. Antioxidant activity and Total Phenolic compounds of Fresh and Blanching Banana blossom (Musa ABB CV.Kluai “Namwa”) in Thailand. IOP Conf. Ser. Mater. Sci. Eng. 2019, 639, 012047. [Google Scholar] [CrossRef] [Green Version]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Met. 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Barragán-Condori, M.; Delgado-Laime, M.D.C.; Carrasco, E.; Quispe, U.S. Anthocyanins and antioxidant capacity in Gaultheria glomerata (Cav.) Sleumer dried and frozen fruit extracts. Inf. Tecnológica 2021, 32, 3–12. [Google Scholar] [CrossRef]
- Dimcheva, V.; Kaloyanov, N.; Karsheva, M.; Peycheva, M.F.; Stoilova, N. HPLC-DAD method for simultaneous determination of natural polyphenols. Open J. Anal. Bioanal. Chem. 2019, 3, 039–043. [Google Scholar] [CrossRef] [Green Version]
- XLSTAT pro 15.4.03.1729; Data Analysis and Statistical Solutions for Microsoft Excel. Addinsoft: Paris, France, 2013.
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Boo, Y.C. Can Plant Phenolic Compounds Protect the Skin from Airborne Particulate Matter? Antioxidants 2019, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Pawlowska, E.; Szczepanska, J.; Koskela, A.; Kaarniranta, K.; Blasiak, J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection against Oxidative Stress and Beyond. Oxid. Med. Cell Longev. 2019, 2019, 9682318. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.F.; Gao, J.Y.; Yin, W.P.; Deng, R.X. Extraction of essential oil from the inflorescence of Chionanthus retusus Lindl. Et Paxton by supercritical CO2 and its antibacterial activities. Chem. Ind. For. Prod. 2015, 35, 126–132. [Google Scholar] [CrossRef]
- Lee, Y.G.; Lee, H.; Jung, J.W.; Seo, K.H.; Lee, D.Y.; Kim, H.G.; Ko, J.-H.; Lee, D.-S.; Baek, N.-I. Flavonoids from Chionanthus retusus (Oleaceae) inflorescence and their protective effects against glutamate-induced cell toxicity in HT22 cells. Int. J. Mol. Sci. 2019, 20, 3517. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Tech. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Jiménez, A.; Selga, A.; Torres, J.L.; Julià, L. Reducing activity of polyphenols with stable radicals of the TTM series. Electron transfer versus H-abstraction reactions in flavan-3-ols. Org. Lett. 2004, 6, 4583–4586. [Google Scholar] [CrossRef] [PubMed]
- Cheurfa, M.; Abdallah, H.H.; Allem, R.; Noui, A.; Picot-Allain, C.; Mahomoodally, F. Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province; Algeria using in vitro; in vivo and in silico approaches. Food Chem. Toxicol. 2019, 123, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Luís, A.; Gil, N.; Amaral, M.E.; Duarte, A.P. Antioxidant activities of extracts from Acacia melanoxylon, Acacia dealbata and Olea europaea and alkaloids estimation. Int. J. Pharm. Pharm. Sci. 2012, 4, 225–231. [Google Scholar]
- Harborne, J.B. Functions of flavonoids in plants. In Chemistry and Biochemistry of Plant Pigments, 2nd ed.; Goodwin, T.W., Ed.; Academic Press: Cambridge, MA, USA, 1976; Volume 1, pp. 736–778. [Google Scholar]
- Sun, X.M.; Li, X.F.; Deng, R.X.; Liu, Y.Q.; Hou, X.W.; Xing, Y.P.; Liu, P. Extraction technology and antioxidant activity of total flavonoids from the inflorescence of Chionanthus retusa. Food Sci. 2015, 36, 266–271. [Google Scholar]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 21, 3809. [Google Scholar] [CrossRef] [PubMed]
- Stinzing, F.C.; Stinzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanin. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Villacrés, E.; Quelal, M.B. Discusión de Resultados Fitoquίmicos; Informe de Analisis de Laboratorio; Estación Experimental Santa Catalina, INIAP: Quito, Ecuador, 2014. [Google Scholar]
- Liang, B.; Li, C.; Ma, C.; Wei, Z.; Wang, Q.; Huang, D. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiol. Biochem. 2017, 119, 346. [Google Scholar] [CrossRef]
- Li, C.; Sun, X.K.; Chang, C.; Jia, D.F.; Wei, Z.W.; Li, C.Y.; Ma, F.W. Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol. Plant 2015, 153, 584–602. [Google Scholar] [CrossRef]
- Liang, B.; Gao, T.; Zhao, Q.; Ma, C.; Chen, Q.; Wei, Z.; Li, C.; Ma, F. Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Front. Plant Sci. 2018, 9, 755. [Google Scholar] [CrossRef]
- Available online: http://phenol-explorer.eu/contents/polyphenol/574 (accessed on 5 April 2023).
- Umeno, A.; Takashima, M.; Murotomi, K.; Nakajima, Y.; Koike, T.; Matsuo, T.; Yoshida, Y. Radical-scavenging Activity and Antioxidative Effects of Olive Leaf Components Oleuropein and Hydroxytyrosol in Comparison with Homovanillic Alcohol. J. Oleo Sci. 2015, 64, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing. PLoS ONE 2010, 5, e12029. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef] [PubMed]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J. Basic Med. Sci. 2018, 22, 225–237. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients 2018, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.biosynth.com/p/FD12596/93-40-3-34-dimethoxyphenylacetic-acid (accessed on 5 April 2023).
Sample | DPPH %RSA at 0.1 g/mL | DPPH IC50 (mg/mL) | DPPH R2 | ABTS %RSA at 0.1 g/mL | ABTS IC50 (mg/mL) | ABTS R2 | FRAP Pot. Red. Fe2+ (mM) | FRAP IC50 (g/mL) | FRAP R2 |
---|---|---|---|---|---|---|---|---|---|
pink leaf | 73.1457 | 62.8866 | 0.9127 | 88.7318 | 55.852 | 0.9997 | 1.8024 | 2.8466 | 0.9931 |
white leaf | 71.8797 | 66.3938 | 0.9691 | 87.0970 | 55.9809 | 0.9994 | 1.8053 | 2.8414 | 0.9934 |
pink inflorescence | 68.1114 | 73.3836 | 0.9996 | 83.6500 | 66.9785 | 0.9831 | 1.8078 | 2.9483 | 0.9976 |
white inflorescence | 69.8689 | 83.4789 | 0.9998 | 76.5798 | 61.1557 | 0.9908 | 1.8100 | 2.9500 | 0.9977 |
pink fruit | 65.6538 | 90.7797 | 0.9995 | 86.8316 | 58.6658 | 0.9900 | 1.8008 | 2.9337 | 0.9864 |
white fruit | 64.4772 | 94.5021 | 0.9815 | 83.0756 | 59.9252 | 0.9990 | 1.7908 | 2.8769 | 0.9923 |
Trolox | * | 0.08182 | 0.9955 | * | 0.3602 | 0.9697 | * | 0.0197 | 0.9992 |
Samples | TPC (mg GAE/g FW) | TFC (mg QE/g FW) | |
---|---|---|---|
leaf | pink | 28.4594 ± 0.4654 | 60.9502 ± 2.3235 |
white | 24.6031 ± 0.4713 | 66.9001 ± 2.6568 | |
inflorescence | pink | 11.2801 ± 0.5744 | 11.7671 ± 0.3171 |
white | 14.7404 ± 0.2159 | 17.1495 ± 1.1993 | |
fruit | pink | 11.4634 ± 0.2314 | 13.8176 ± 0.5419 |
white | 10.6721 ± 0.8806 | 14.0922 ± 1.3432 |
Variables | TPC | TFC | FRAP | ABTS | DPPH |
---|---|---|---|---|---|
TPC | x | 0.00 | 0.00 | 0.01 | 0.00 |
TFC | 0.88 | x | 0.00 | 0.00 | 0.00 |
FRAP | 0.90 | 0.93 | x | <0.0001 | 0.00 |
ABTS | 0.81 | 0.90 | 0.98 | x | 0.00 |
DPPH | 0.95 | 0.93 | 0.95 | 0.90 | x |
Variables | TPC | TFC | FRAP | ABTS | DPPH |
---|---|---|---|---|---|
TPC | 0.008 | 0.017 | 0.014 | 0.043 | |
TFC | 0.828 | 0.001 | 0.002 | 0.194 | |
FRAP | 0.778 | 0.941 | 0.006 | 0.194 | |
ABTS | 0.800 | 0.904 | 0.854 | 0.291 | |
DPPH | 0.700 | 0.477 | 0.477 | 0.400 |
Samples | Abs | CAT (mg cyanidin-3-glucoside/L) |
---|---|---|
pink inflorescence | 0.559 | 9.33467658 |
white inflorescence | 0.233 | 3.890840149 |
pink fruit | 0.319 | 5.331118959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, R.A.; Espinoza Caiza, I.A.; Melo Heras, E.J.; Florescu, L.I.; Catana, R.D. Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador. Pharmaceutics 2023, 15, 1676. https://doi.org/10.3390/pharmaceutics15061676
Mihai RA, Espinoza Caiza IA, Melo Heras EJ, Florescu LI, Catana RD. Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador. Pharmaceutics. 2023; 15(6):1676. https://doi.org/10.3390/pharmaceutics15061676
Chicago/Turabian StyleMihai, Raluca A., Iván A. Espinoza Caiza, Erly J. Melo Heras, Larisa I. Florescu, and Rodica D. Catana. 2023. "Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador" Pharmaceutics 15, no. 6: 1676. https://doi.org/10.3390/pharmaceutics15061676
APA StyleMihai, R. A., Espinoza Caiza, I. A., Melo Heras, E. J., Florescu, L. I., & Catana, R. D. (2023). Comparative Assessment of Antioxidant Activity and Functional Components of Chionanthus virginicus and Chionanthus pubescens from the Andean Region of Ecuador. Pharmaceutics, 15(6), 1676. https://doi.org/10.3390/pharmaceutics15061676